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A Proofs for Offline Policy Optimization

Recall that we have a fixed latent sequence z1.7 such that for round ¢, latent state z; parameterizes the underlying distri-
bution of reward r; € [0, 1]. Also recall that we have IPS estimator 1 given in (1), where the clipping parameter M can
be ignored by only considering policies in . In this section, we denote by V' the IPS estimator in (1) with the true latent
states z1.7. By Lemma 1, we know that V is unbiased.

Our first result bounds the discrepancy between the two IPS estimators V (IT) and V (II):

Lemma 4. For any Il € HZ and 6 € (0,1], |V/(II) — V(H)) < Me(T, 6) holds with probability at least 1 — 6.

Proof. The claim is proved as
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The first inequality is by assuming that # in H~ satisfy (2). The second inequality is by Assumption 1 in Section 4 and
holds with probability at least 1 — 4. O

Next, we bound the estimation error of V (IT) from V (II). This error is due to the randomness in D.

Lemma 5. For any 11 € HZ, logged data D, and § € (0, 1], |V (IT) — V(H)‘ < M+/2Tlog(2/8) holds with probability
at least 1 — 9.

Proof. We define a martingale sequence (Uy);e[rjugo} over rounds ¢ and then use Azuma’s inequality. The sequence is
defined as Uy = 0 and
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for ¢t > 0. It is easy to verify that this is a martingale. In particular, since z; is fixed,
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and E [U; | Uy, ...,U;_1] = U;_; for any round . Also, since IT € HZ, we have
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Finally, by Azuma’s inequality, we get

~ 4M?>T log(2
P (|V(n) — V()| > M\/2Tlog(2/6)) —P (|UT —Up| > M«/2T10g(2/<5)) < 2exp [—W(;gT(/‘S) <s.
This concludes the proof. O

Using Lemmas 4 and 5 above, we can derive the results stated in the main paper.

Lemma 2. For any policy Il € HZ, its IPS estimate V (I1) in (1), and true value V (II), we have that

|V(IT) — V()| < Me(T,6,/2) + M+/2T log(4/65)
holds with probability at least 1 — 61 — 0.

Proof. We have

V(I - V()| <

V(I = V(| + [V () - v ()|

from the triangle inequality. The result follows from Lemma 4 and Lemma 5. O
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Theorem 2. Let

II = argmax V(II), II* = argmax V (II)
HeH= HeH=

be the optimal latent policies w.r.t. the off-policy estimated value and the true value respectively. Then for any 61,62 €
(0, 1], we have that

V(I) > V(IT*) — 2Me(T, 61 /2) — 2M+/2T log(4/55)
holds with probability at least 1 — 61 — 0.

Proof. We have
V(IT) = V() = [V(IT) = V()| + [V () - v(iD] < [vr) - var| + [van - v
where the inequality is from I maximizing V. By Lemma 2, we have for any IT € HZ that

|V (II) — V(I)| < Me(T,6,/2) + 2M+/Tlog(4/65)

holds with probability at least 1 — 61 /2 — d2/2. We apply the lemma to both IT and IT*, and get the desired result. O

B Proofs for Change-Point Detector

Recall that S is the number of stationary segments, and 7o = 1 < 73 < ... < 7g5_1 < T = 75 are the change-points. Also
recall that we have change-point detector given by Algorithm | that on a high-level, computes differences in total reward
across sliding windows of length w and detects a change-point if a difference exceeds threshold c. For any ¢ € [S — 1],
let W; = [1; — w, 7; + w] be w-close rounds to change-point 7;. We also define W = Uz W; as all rounds w-close to any
change-point.

First, we bound the probability of false positives, or that we declare any round ¢ ¢ W as a change-point:

Lemma 6. For any round t ¢ W, the probability of a false detection is bounded from above as

2
P (|uy —pi| =) < dexp [w;} :

Proof. Sincet & |J, W;, we have E [ut_ ] =E [uf ] By Hoeffding’s inequality, we get
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This concludes the proof. O

Next we bound the probability of failing to detect a change-point in W:
Lemma 7. For any positive ¢ < A/2 and W;, a change-point is not detected in W; with probability at most

2
]P’(VtEWi: ,ut_—,uﬂgc)gllexp {_wzc} .

Proof. Fix s = ;. From s € W, we have
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Note that |y — pF| < cimplies that either ;1 or pf is not close to its mean. More specifically, since E [u; ] = Vi_1(m0),
E [u] = Vi(mo), and |V (mg) — Vs_1(mo)| > A, we have

A — A —
P(\us—ui!<c)<P<|ﬂs—E[us]|> 5 c)+P(\u:—E[ujH>ZC) .

From 2¢ < A and by Hoeffding’s inequality, the first term is bounded as

Pl ~E )l 2 255) <P (s - B )| 2 /) < 20 [“’2} .

The second term is bounded analogously. Finally, we chain all inequalities and get our claim. O

Finally, we prove Theorem 1 by applying Lemma 6 to all rounds ¢ ¢ W, Lemma 7 to all change-points, and then chaining
them by the union bound.

Theorem 1. Let 7; — 7,1 > 4w for all i € [L]. For any § € (0, 1], and ¢ and w in Algorithm 1 such that

AJ2>c>+/21og(8T/6)/w,

then Algorithm | estimates 21.1 so ZtT:1 1[2: # 2] < Sw holds with probability at least 1 — 6.

Proof. Define 6 € (0, 1]. We see that given w, setting ¢ as described satisfies,
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We know that €(T, §) = kw when all the estimated changepoints are in W (at most w rounds from a true change-point), and
every W, € W contains exactly one estimated change-point. This cannot happen if (1) a change-point is falsely detected
outside W, and (2), no change-point is detected in some W, € W.

We can bound from above the probability of any error occurring with the union bound. Proposition 3 applied to every round
upper-bounds the probability of (1) by 47 exp (fwc2 / 2). Meanwhile, Proposition 4 applied to every change-point upper-
bounds the probability of (2) by 4k exp (waQ / 2). From Algorithm 1, we remove a 4w-window around each detected
changepoint, and under the assumption that 7, — 7;_1 > 4w for all ¢ € [k], we guarantee that exactly one changepoint is
detected in each W; for true changepoint 7;. Combining yields the total probability of an error,

—w02

4Texp{ ]+4kexp[ 1;) ]<5,

which is the desired result. O

C Proofs for Online Deployment

Recall that we have a mixture-of-experts algorithm £ and experts/sub-policies I = () 2e 2, such that for each round ¢,
actions are sampled according to a; ~ & (x¢, 7). Let £ be Exp4.S as described in Algorithm 6; this is similar to one
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proposed in Luo et al. (2018), but for stochastic experts.

Algorithm 6: Exp4.S
Input: vector of expert sub-policies I1 = (#,).ez with |Z| = L, and hyperparameters 3,7 > 0, € (0, 1]

Initialize wy = (1/L,...,1/L) € [0,1]%.

fort <« 1,2,...,T do

Observe z;, and expert feedback 7, (- | z), Vz € Z.
Choose a; ~ &;, where for each a € A,

Eila) = (1=7) Y wi()z(a| w) + 7

z2€EZ

Observe ;. Estimate the action costs under full feedback ¢;(a) = 1[a; = a] £ s Ve € A
Propagate the cost to the experts ¢;(z) = ¢ (a) 7. (as | 1), Vz € Z.

Update the distribution weights, w;y1(2) o we(z) exp (—né¢(2)), Vz € Z.

Mix with uniform weights, wy11(2) = (1 — flwe(z) + 3, Vz € Z.

end

Our first result is the following regret guarantee over any stationary segment. A version of this proof for deterministic
experts is in Theorem 2 of Luo et al. (2018).

Lemma 8. Ler £ be Exp4.S as in Algorithm 6. Also, let v = 0, = \/log(L)/(¢K), and 8 = 1/ L. Then, for any stationary
segment [Ts_1,Ts — 1] of length at most £, any history up to 7s_1, and any latent state z € Z, the regret is bounded as

Ts—1
> Eeps ] = Ezpg, ] < /20K log(L) .

t=Ts_1

Proof. First, we have the following upper-bound,

log [Z wi() eXp(—nét(Z’))] < log [Z wi() (1 - ne() + n%t<z'>2)]

Z'eZ z'eZ
-n Z we(z )+m Z wi(2)e(2")?,
z'eZ Z'eZ

where we use that exp(—z) < 1 — x + 22, and log(1 + z) < z for all z > 0. Meanwhile, for any z € Z, we can also
bound the same quantity from below,

log [Z wt<z'>exp<—nat<z’>>] —tog | 2L EPCAD) | oy | EIEZR
z'eZ
wt(Z) ~
= log [wtﬂ(z)] ~ 28— nle),

where for the last inequality, we use that log(1 — 8) > —3/(1 — 8) > —24. Combining the two inequalities, summing
overall t € [15_1,7s — 1], and telescoping yields,
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where we use that wy(z) € [, 1] for all rounds .

When v = 0 we know that & (a,) is unbiased, or E,, ¢, [¢,(at)] =1 — E,, ¢, [r¢]. We also have that for any 2’ € Z,

E..e [6(2)] =Kz e, lz T (a ] z)é(a )] =1-E. . [r] -

acA
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Taking the expectation of both sides leads to,
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Next, we have that for any 2’ € Z,
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where we use that a; ~ & and r; € [0, 1]. Substituting this result yields,

Z E. e [’LUt 2 Ve (z Z E.. e lt(@ Z wt(zl)ﬂ'zl (az | xt)] <K,

z'eZ acA z'eZ

where we again use that a; ~ &;. Substituting into the regret bound and using the values for 7, 5 yields

Ts—1

< log(1 2

S Beon (] — Eeyg, [r] < BUWAD T2 iy < /IR o (D)
n
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as desired. O

In practice, we do not know the lengths of stationary segments, and may not be able to find a tight upper-bound ¢ on the
lengths of stationary segments. However, in our analysis, we can further partition stationary segments so that they do not
exceed length ¢ at the cost of increasing the number of change-points. This is formalized in the following corollary.

Lemma 9. Let &€ be Exp4.S as in Algorithm 6. Also, let v = 0,n = /log(L)/(¢K), and 8 = 1/ L. Then, the total regret
is bounded by

S Ts—1

max 3 E. . [r] ZEZ, e [re] < (T/\/Z +S\/Z) 9K log(L).

2EZ -
s=1 t=Ts_1

Proof. Recall that S is the number of stationary segments within the 7" rounds, as defined in Section 3. Our goal is to
divide the T rounds into stationary intervals of length at most ¢, so that we can apply Lemma 8 on each interval. We do
this as follows. First, we construct 7'/¢ intervals of length at most 7". Then, we additionally divide intervals that contain
changepoints, so that each interval contains only a single latent state. This leads to at most 7'//¢ + S stationary intervals.
Finally, using Lemma 8 on each interval and summing the regrets the desired result. Note that though we consider T'/¢+ S
intervals, we only need to consider the best latent sub-policy for each of S stationary segments, as intervals belonging to
the same stationary segment have the same optimal sub-policy. O

Lemma 3. The regret R(T; £, 11) is bounded from above as

T

R(T;E,10) ZEM . =) E., s, [

t=1

“

S Ts—1

max E E., &, [r4] E E., ¢, [r]
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Proof. The regret can be decomposed as follows:
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where we introduce II that acts according to the true latent state. Then, recalling there are .S stationary segments, the above
expression can be further expressed as

T S Ts—1

T
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t=1 t=1 s=1t=7s_1
T s To—1
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where we utilize the fact that each stationary segment has one optimal sub-policy. U

Theorem 3. Let 11 be defined as in Theorem 2 and £ be Exp4.S Algorithm 6. Let z1.1 be the same latent states as in offline
data D and S be the number of stationary segments. Then for any 01, 93 € (0, 1], we have that

R(T;€,11) <
2Me(T, 51 /2) 4+ 2M /2T log(4/52) + 21/STK log L

holds with probability at least 1 — 61 — 0.

Proof. We have the following regret decomposition due to Lemma 3,

T T S Ts—1

R(T,S,f{)g Z Zt,ﬂ'*t ZEZthf Izneaé},’{ Z Ezt,ﬂz Tt ZEzt,& Tt

t=1 t=1 = t=Ts_1

The first term can be bounded using our offline analysis, which shows near-optimality of I1 when the latent state is known.
In the case where z;.7 is the same both offline and online, we see that for each round ¢, Ezmr;t [re] — E., ., [rs] =

Vi(n3,) — Vi(#.,). Hence, the first term is exactly V' (IT*) — V/(IT) and is bounded by Theorem 2 w.p. at least 1 — d; — 0.
The second term is the switching regret of Exp4.S, and is bounded by choosing ¢ = T'/S in Lemma 9. Combining the two
bounds yields the desired result. O



