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A Proofs for Offline Policy Optimization

Recall that we have a fixed latent sequence z1:T such that for round t, latent state zt parameterizes the underlying distri-
bution of reward rt 2 [0, 1]. Also recall that we have IPS estimator V̂ given in (1), where the clipping parameter M can
be ignored by only considering policies in H. In this section, we denote by Ṽ the IPS estimator in (1) with the true latent
states z1:T . By Lemma 1, we know that Ṽ is unbiased.

Our first result bounds the discrepancy between the two IPS estimators Ṽ (⇧) and V̂ (⇧):

Lemma 4. For any ⇧ 2 H
Z

and � 2 (0, 1],
���V̂ (⇧)� Ṽ (⇧)

��� M"(T, �) holds with probability at least 1� �.

Proof. The claim is proved as

���V̂ (⇧)� Ṽ (⇧)
��� =

�����

TX

t=1

⇡ẑt(at | xt)

pt
rt �

⇡zt(at | xt)

pt
rt

����� M

TX

t=1

[ẑt 6= zt] M"(T, �) .

The first inequality is by assuming that H in H
Z satisfy (2). The second inequality is by Assumption 1 in Section 4 and

holds with probability at least 1� �.

Next, we bound the estimation error of Ṽ (⇧) from V (⇧). This error is due to the randomness in D.

Lemma 5. For any ⇧ 2 H
Z

, logged data D, and � 2 (0, 1],
���Ṽ (⇧)� V (⇧)

���  M
p

2T log(2/�) holds with probability

at least 1� �.

Proof. We define a martingale sequence (Ut)t2[T ][{0} over rounds t and then use Azuma’s inequality. The sequence is
defined as U0 = 0 and

Ut = Ut�1 +
⇡zt(at | xt)

pt
rt � Vt(⇡zt)

for t > 0. It is easy to verify that this is a martingale. In particular, since zt is fixed,

Ext,at,rt⇠Pzt ,⇡0


⇡zt(at | xt)

pt
rt � Vt(⇡zt)

����U0, . . . , Ut�1

�
= Ext,at,rt⇠Pzt ,⇡zt

[rt]� Vt(⇡zt) = 0 ,

and E [Ut | U0, . . . , Ut�1] = Ut�1 for any round t. Also, since ⇧ 2 H
Z , we have

����
⇡zt(at | xt)

pt
rt � Vt(⇡zt)

���� M .

Finally, by Azuma’s inequality, we get

P
⇣
|Ṽ (⇧)� V (⇧)| �M

p
2T log(2/�)

⌘
= P

⇣
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 2 exp
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2M2T

�
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This concludes the proof.

Using Lemmas 4 and 5 above, we can derive the results stated in the main paper.
Lemma 2. For any policy ⇧ 2 H

Z
, its IPS estimate V̂ (⇧) in (1), and true value V (⇧), we have that

|V (⇧)� V̂ (⇧)| M"(T, �1/2) +M

p
2T log(4/�2)

holds with probability at least 1� �1 � �2.

Proof. We have
���V̂ (⇧)� V (⇧)

��� 
���V̂ (⇧)� Ṽ (⇧)

���+
���Ṽ (⇧)� V (⇧)

���

from the triangle inequality. The result follows from Lemma 4 and Lemma 5.
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Theorem 2. Let

⇧̂ = argmax
⇧2HZ

V̂ (⇧), ⇧⇤ = argmax
⇧2HZ

V (⇧)

be the optimal latent policies w.r.t. the off-policy estimated value and the true value respectively. Then for any �1, �2 2

(0, 1], we have that

V (⇧̂) � V (⇧⇤)� 2M"(T, �1/2)� 2M
p
2T log(4/�2)

holds with probability at least 1� �1 � �2.

Proof. We have

V (⇧⇤)� V (⇧̂) =
h
V (⇧⇤)� V̂ (⇧̂)

i
+
h
V̂ (⇧̂)� V (⇧̂)

i


h
V (⇧⇤)� V̂ (⇧⇤)

i
+
h
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i
,

where the inequality is from ⇧̂ maximizing V̂ . By Lemma 2, we have for any ⇧ 2 H
Z that

|V̂ (⇧)� V (⇧)| M"(T, �1/2) + 2M
p
T log(4/�2)

holds with probability at least 1� �1/2� �2/2. We apply the lemma to both ⇧̂ and ⇧⇤, and get the desired result.

B Proofs for Change-Point Detector

Recall that S is the number of stationary segments, and ⌧0 = 1 < ⌧1 < . . . < ⌧S�1 < T = ⌧S are the change-points. Also
recall that we have change-point detector given by Algorithm 1 that on a high-level, computes differences in total reward
across sliding windows of length w and detects a change-point if a difference exceeds threshold c. For any i 2 [S � 1],
let Wi = [⌧i � w, ⌧i + w] be w-close rounds to change-point ⌧i. We also define W =

S
i Wi as all rounds w-close to any

change-point.

First, we bound the probability of false positives, or that we declare any round t 62W as a change-point:

Lemma 6. For any round t 62W , the probability of a false detection is bounded from above as

P
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�� � c
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2

2

�
.

Proof. Since t 62
S

i Wi, we have E
⇥
µ
�

t

⇤
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⇥
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⇤
. By Hoeffding’s inequality, we get
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This concludes the proof.

Next we bound the probability of failing to detect a change-point in W :

Lemma 7. For any positive c  �/2 and Wi, a change-point is not detected in Wi with probability at most

P
�
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.

Proof. Fix s = ⌧i. From s 2Wi, we have
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Note that |µ�

s � µ
+
s |  c implies that either µ�

s or µ+
s is not close to its mean. More specifically, since E [µ�

s ] = Vs�1(⇡0),
E [µ+

s ] = Vs(⇡0), and |Vs(⇡0)� Vs�1(⇡0)| � �, we have
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.

From 2c  � and by Hoeffding’s inequality, the first term is bounded as

P
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The second term is bounded analogously. Finally, we chain all inequalities and get our claim.

Finally, we prove Theorem 1 by applying Lemma 6 to all rounds t 62W , Lemma 7 to all change-points, and then chaining
them by the union bound.

Theorem 1. Let ⌧i � ⌧i�1 > 4w for all i 2 [L]. For any � 2 (0, 1], and c and w in Algorithm 1 such that

�/2 � c �

p
2 log(8T/�)/w ,

then Algorithm 1 estimates ẑ1:T so
PT

t=1 [ẑt 6= zt]  Sw holds with probability at least 1� �.

Proof. Define � 2 (0, 1]. We see that given w, setting c as described satisfies,

4T exp


�wc

2

2

�
, 4k exp


�wc

2

2

�


�

2
.

We know that "(T, �) = kw when all the estimated changepoints are in W (at most w rounds from a true change-point), and
every Wi 2 W contains exactly one estimated change-point. This cannot happen if (1) a change-point is falsely detected
outside W , and (2), no change-point is detected in some Wi 2W .

We can bound from above the probability of any error occurring with the union bound. Proposition 3 applied to every round
upper-bounds the probability of (1) by 4T exp

�
�wc

2
/2
�
. Meanwhile, Proposition 4 applied to every change-point upper-

bounds the probability of (2) by 4k exp
�
�wc

2
/2
�
. From Algorithm 1, we remove a 4w-window around each detected

changepoint, and under the assumption that ⌧i � ⌧i�1 > 4w for all i 2 [k], we guarantee that exactly one changepoint is
detected in each Wi for true changepoint ⌧i. Combining yields the total probability of an error,

4T exp


�wc

2

2

�
+ 4k exp


�wc

2

2

�
 �,

which is the desired result.

C Proofs for Online Deployment

Recall that we have a mixture-of-experts algorithm E and experts/sub-policies ⇧̂ = (⇡̂)z2Z , such that for each round t,
actions are sampled according to at ⇠ Et(xt, ⇡̂). Let E be Exp4.S as described in Algorithm 6; this is similar to one
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proposed in Luo et al. (2018), but for stochastic experts.

Algorithm 6: Exp4.S

Input: vector of expert sub-policies ⇧̂ = (⇡̂z)z2Z with |Z| = L, and hyperparameters �, ⌘ > 0, � 2 (0, 1]

Initialize w1 = (1/L, . . . , 1/L) 2 [0, 1]L.
for t 1, 2, . . . , T do

Observe xt, and expert feedback ⇡̂z(· | xt), 8z 2 Z .
Choose at ⇠ Et, where for each a 2 A,

Et(a) = (1� �)
X

z2Z

wt(z)⇡̂z(a | xt) +
�

L
.

Observe rt. Estimate the action costs under full feedback ĉt(a) = [at = a] 1�rt
Et(a)

, 8a 2 A.
Propagate the cost to the experts c̃t(z) = ĉt(at)⇡̂z(at | xt), 8z 2 Z .
Update the distribution weights, w̃t+1(z) / wt(z) exp (�⌘c̃t(z)), 8z 2 Z .
Mix with uniform weights, wt+1(z) = (1� �)wt(z) + �, 8z 2 Z .

end

Our first result is the following regret guarantee over any stationary segment. A version of this proof for deterministic
experts is in Theorem 2 of Luo et al. (2018).
Lemma 8. Let E be Exp4.S as in Algorithm 6. Also, let � = 0, ⌘ =

p
log(L)/(`K), and � = 1/L. Then, for any stationary

segment [⌧s�1, ⌧s � 1] of length at most `, any history up to ⌧s�1, and any latent state z 2 Z , the regret is bounded as

⌧s�1X

t=⌧s�1

Ezt,⇡̂z [rt]� Ezt,Et [rt] 
p
2`K log(L) .

Proof. First, we have the following upper-bound,

log
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#
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2
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0)2
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#

 �⌘

X

z02Z

wt(z
0)c̃t(z

0) + ⌘
2
X

z02Z

wt(z
0)c̃t(z

0)2 ,

where we use that exp(�x)  1 � x + x
2, and log(1 + x)  x for all x � 0. Meanwhile, for any z 2 Z , we can also

bound the same quantity from below,

log

"
X

z02Z

wt(z
0) exp(�⌘c̃t(z

0))

#
= log


wt(z) exp(�⌘c̃t(z))

w̃t+1(z)

�
= log


wt(z)(1� �)

wt+1(z)� �

�
� ⌘c̃t(z)

� log


wt(z)

wt+1(z)

�
� 2� � ⌘c̃t(z) ,

where for the last inequality, we use that log(1 � �) � ��/(1 � �) � �2�. Combining the two inequalities, summing
over all t 2 [⌧s�1, ⌧s � 1], and telescoping yields,
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X
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0)2 ,

where we use that wt(z) 2 [�, 1] for all rounds t.

When � = 0 we know that ĉt(at) is unbiased, or Ezt,Et [ĉt(at)] = 1� Ezt,Et [rt]. We also have that for any z
0
2 Z ,

Ezt,Et [c̃t(z
0)] = Ezt,Et

"
X

a2A

⇡̂z0(a | xt)ĉt(a)

#
= 1� Ezt,⇡̂z [rt] .
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Taking the expectation of both sides leads to,

⌧s�1X

t=⌧s�1

Ezt,⇡̂z [rt]� Ezt,Et [rt] 
log(1/�) + 2�`

⌘
+ ⌘

⌧s�1X

t=⌧s�1

X

z02Z

Ezt,Et

⇥
wt(z

0)c̃t(z
0)2

⇤
.

Next, we have that for any z
0
2 Z ,

Ezt,Et

⇥
c̃t(z

0)2
⇤
= Ezt,Et

"✓
⇡̂z0(at | xt)(1� rt)

Et(at)

◆2
#


X

a2A

⇡̂z0(a | xt)

Et(a)
,

where we use that at ⇠ Et and rt 2 [0, 1]. Substituting this result yields,

X

z02Z

Ezt,Et

⇥
wt(z

0)c̃t(z
0)2

⇤


X

a2A

Ezt,Et

"
1

Et(a)

X

z02Z

wt(z
0)⇡z0(at | xt)

#
 K ,

where we again use that at ⇠ Et. Substituting into the regret bound and using the values for ⌘,� yields

⌧s�1X

t=⌧s�1

Ezt,⇡̂z [rt]� Ezt,Et [rt] 
log(1/�) + 2�`

⌘
+ ⌘K` 

p
2`K log(L) ,

as desired.

In practice, we do not know the lengths of stationary segments, and may not be able to find a tight upper-bound ` on the
lengths of stationary segments. However, in our analysis, we can further partition stationary segments so that they do not
exceed length ` at the cost of increasing the number of change-points. This is formalized in the following corollary.
Lemma 9. Let E be Exp4.S as in Algorithm 6. Also, let � = 0, ⌘ =

p
log(L)/(`K), and � = 1/L. Then, the total regret

is bounded by

SX

s=1

max
z2Z

⌧s�1X

t=⌧s�1

Ezt,⇡̂z [rt]�
TX

t=1

Ezt,Et [rt] 
⇣
T/

p

`+ S

p

`

⌘p
2K log(L) .

Proof. Recall that S is the number of stationary segments within the T rounds, as defined in Section 3. Our goal is to
divide the T rounds into stationary intervals of length at most `, so that we can apply Lemma 8 on each interval. We do
this as follows. First, we construct T/` intervals of length at most T . Then, we additionally divide intervals that contain
changepoints, so that each interval contains only a single latent state. This leads to at most T/` + S stationary intervals.
Finally, using Lemma 8 on each interval and summing the regrets the desired result. Note that though we consider T/`+S

intervals, we only need to consider the best latent sub-policy for each of S stationary segments, as intervals belonging to
the same stationary segment have the same optimal sub-policy.

Lemma 3. The regret R(T ; E , ⇧̂) is bounded from above as

R(T ; E , ⇧̂) 

"
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(4)

Proof. The regret can be decomposed as follows:
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,
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where we introduce ⇧̂ that acts according to the true latent state. Then, recalling there are S stationary segments, the above
expression can be further expressed as

"
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#
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5 ,

where we utilize the fact that each stationary segment has one optimal sub-policy.

Theorem 3. Let ⇧̂ be defined as in Theorem 2 and E be Exp4.S Algorithm 6. Let z1:T be the same latent states as in offline

data D and S be the number of stationary segments. Then for any �1, �2 2 (0, 1], we have that

R(T ; E , ⇧̂) 

2M"(T, �1/2) + 2M
p
2T log(4/�2) + 2

p
STK logL

holds with probability at least 1� �1 � �2.

Proof. We have the following regret decomposition due to Lemma 3,

R(T ; E , ⇧̂) 

"
TX

t=1
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[rt]�
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#
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3
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The first term can be bounded using our offline analysis, which shows near-optimality of ⇧̂ when the latent state is known.
In the case where z1:T is the same both offline and online, we see that for each round t, Ezt,⇡⇤

zt
[rt] � Ezt,⇡̂zt

[rt] =

Vt(⇡⇤

zt)� Vt(⇡̂zt). Hence, the first term is exactly V (⇧⇤)� V (⇧̂) and is bounded by Theorem 2 w.p. at least 1� �1 � �2.
The second term is the switching regret of Exp4.S, and is bounded by choosing ` = T/S in Lemma 9. Combining the two
bounds yields the desired result.


