A Proofs for Offline Policy Optimization

Recall that we have a fixed latent sequence $z_{1: T}$ such that for round t, latent state z_{t} parameterizes the underlying distribution of reward $r_{t} \in[0,1]$. Also recall that we have IPS estimator \hat{V} given in (1), where the clipping parameter M can be ignored by only considering policies in \mathcal{H}. In this section, we denote by \tilde{V} the IPS estimator in (1) with the true latent states $z_{1: T}$. By Lemma 1 , we know that \tilde{V} is unbiased.
Our first result bounds the discrepancy between the two IPS estimators $\tilde{V}(\Pi)$ and $\hat{V}(\Pi)$:
Lemma 4. For any $\Pi \in \mathcal{H}^{\mathcal{Z}}$ and $\delta \in(0,1],|\hat{V}(\Pi)-\tilde{V}(\Pi)| \leq M \varepsilon(T, \delta)$ holds with probability at least $1-\delta$.
Proof. The claim is proved as

$$
|\hat{V}(\Pi)-\tilde{V}(\Pi)|=\left|\sum_{t=1}^{T} \frac{\pi_{\hat{z}_{t}}\left(a_{t} \mid x_{t}\right)}{p_{t}} r_{t}-\frac{\pi_{z_{t}}\left(a_{t} \mid x_{t}\right)}{p_{t}} r_{t}\right| \leq M \sum_{t=1}^{T} \mathbb{1}\left[\hat{z}_{t} \neq z_{t}\right] \leq M \varepsilon(T, \delta)
$$

The first inequality is by assuming that \mathcal{H} in $\mathcal{H}^{\mathcal{Z}}$ satisfy (2). The second inequality is by Assumption 1 in Section 4 and holds with probability at least $1-\delta$.

Next, we bound the estimation error of $\tilde{V}(\Pi)$ from $V(\Pi)$. This error is due to the randomness in \mathcal{D}.
Lemma 5. For any $\Pi \in \mathcal{H}^{\mathcal{Z}}$, logged data \mathcal{D}, and $\delta \in(0,1],|\tilde{V}(\Pi)-V(\Pi)| \leq M \sqrt{2 T \log (2 / \delta)}$ holds with probability at least $1-\delta$.

Proof. We define a martingale sequence $\left(U_{t}\right)_{t \in[T] \cup\{0\}}$ over rounds t and then use Azuma's inequality. The sequence is defined as $U_{0}=0$ and

$$
U_{t}=U_{t-1}+\frac{\pi_{z_{t}}\left(a_{t} \mid x_{t}\right)}{p_{t}} r_{t}-V_{t}\left(\pi_{z_{t}}\right)
$$

for $t>0$. It is easy to verify that this is a martingale. In particular, since z_{t} is fixed,

$$
\mathbb{E}_{x_{t}, a_{t}, r_{t} \sim P_{z_{t}}, \pi_{0}}\left[\left.\frac{\pi_{z_{t}}\left(a_{t} \mid x_{t}\right)}{p_{t}} r_{t}-V_{t}\left(\pi_{z_{t}}\right) \right\rvert\, U_{0}, \ldots, U_{t-1}\right]=\mathbb{E}_{x_{t}, a_{t}, r_{t} \sim P_{z_{t}}, \pi_{z_{t}}}\left[r_{t}\right]-V_{t}\left(\pi_{z_{t}}\right)=0
$$

and $\mathbb{E}\left[U_{t} \mid U_{0}, \ldots, U_{t-1}\right]=U_{t-1}$ for any round t. Also, since $\Pi \in \mathcal{H}^{\mathcal{Z}}$, we have

$$
\left|\frac{\pi_{z_{t}}\left(a_{t} \mid x_{t}\right)}{p_{t}} r_{t}-V_{t}\left(\pi_{z_{t}}\right)\right| \leq M .
$$

Finally, by Azuma's inequality, we get

$$
\mathbb{P}(|\tilde{V}(\Pi)-V(\Pi)| \geq M \sqrt{2 T \log (2 / \delta)})=\mathbb{P}\left(\left|U_{T}-U_{0}\right| \geq M \sqrt{2 T \log (2 / \delta)}\right) \leq 2 \exp \left[-\frac{4 M^{2} T \log (2 / \delta)}{2 M^{2} T}\right] \leq \delta
$$

This concludes the proof.
Using Lemmas 4 and 5 above, we can derive the results stated in the main paper.
Lemma 2. For any policy $\Pi \in \mathcal{H}^{Z}$, its IPS estimate $\hat{V}(\Pi)$ in (1), and true value $V(\Pi)$, we have that

$$
|V(\Pi)-\hat{V}(\Pi)| \leq M \varepsilon\left(T, \delta_{1} / 2\right)+M \sqrt{2 T \log \left(4 / \delta_{2}\right)}
$$

holds with probability at least $1-\delta_{1}-\delta_{2}$.
Proof. We have

$$
|\hat{V}(\Pi)-V(\Pi)| \leq|\hat{V}(\Pi)-\tilde{V}(\Pi)|+|\tilde{V}(\Pi)-V(\Pi)|
$$

from the triangle inequality. The result follows from Lemma 4 and Lemma 5.

Theorem 2. Let

$$
\hat{\Pi}=\underset{\Pi \in \mathcal{H}^{\mathcal{Z}}}{\arg \max } \hat{V}(\Pi), \quad \Pi^{*}=\underset{\Pi \in \mathcal{H}^{\mathcal{Z}}}{\arg \max } V(\Pi)
$$

be the optimal latent policies w.r.t. the off-policy estimated value and the true value respectively. Then for any $\delta_{1}, \delta_{2} \in$ $(0,1]$, we have that

$$
V(\hat{\Pi}) \geq V\left(\Pi^{*}\right)-2 M \varepsilon\left(T, \delta_{1} / 2\right)-2 M \sqrt{2 T \log \left(4 / \delta_{2}\right)}
$$

holds with probability at least $1-\delta_{1}-\delta_{2}$.

Proof. We have

$$
V\left(\Pi^{*}\right)-V(\hat{\Pi})=\left[V\left(\Pi^{*}\right)-\hat{V}(\hat{\Pi})\right]+[\hat{V}(\hat{\Pi})-V(\hat{\Pi})] \leq\left[V\left(\Pi^{*}\right)-\hat{V}\left(\Pi^{*}\right)\right]+[\hat{V}(\hat{\Pi})-V(\hat{\Pi})]
$$

where the inequality is from $\hat{\Pi}$ maximizing \hat{V}. By Lemma 2, we have for any $\Pi \in \mathcal{H}^{\mathcal{Z}}$ that

$$
|\hat{V}(\Pi)-V(\Pi)| \leq M \varepsilon\left(T, \delta_{1} / 2\right)+2 M \sqrt{T \log \left(4 / \delta_{2}\right)}
$$

holds with probability at least $1-\delta_{1} / 2-\delta_{2} / 2$. We apply the lemma to both $\hat{\Pi}$ and Π^{*}, and get the desired result.

B Proofs for Change-Point Detector

Recall that S is the number of stationary segments, and $\tau_{0}=1<\tau_{1}<\ldots<\tau_{S-1}<T=\tau_{S}$ are the change-points. Also recall that we have change-point detector given by Algorithm 1 that on a high-level, computes differences in total reward across sliding windows of length w and detects a change-point if a difference exceeds threshold c. For any $i \in[S-1]$, let $W_{i}=\left[\tau_{i}-w, \tau_{i}+w\right]$ be w-close rounds to change-point τ_{i}. We also define $W=\bigcup_{i} W_{i}$ as all rounds w-close to any change-point.
First, we bound the probability of false positives, or that we declare any round $t \notin W$ as a change-point:
Lemma 6. For any round $t \notin W$, the probability of a false detection is bounded from above as

$$
\mathbb{P}\left(\left|\mu_{t}^{-}-\mu_{t}^{+}\right| \geq c\right) \leq 4 \exp \left[-\frac{w c^{2}}{2}\right]
$$

Proof. Since $t \notin \bigcup_{i} W_{i}$, we have $\mathbb{E}\left[\mu_{t}^{-}\right]=\mathbb{E}\left[\mu_{t}^{+}\right]$. By Hoeffding's inequality, we get

$$
\mathbb{P}\left(\left|\mu_{t}^{-}-\mu_{t}^{+}\right| \geq c\right) \leq \mathbb{P}\left(\left|\mu_{t}^{-}-\mathbb{E}\left[\mu_{t}^{-}\right]\right| \geq c / 2\right)+\mathbb{P}\left(\left|\mu_{t}^{+}-\mathbb{E}\left[\mu_{t}^{+}\right]\right| \geq c / 2\right) \leq \exp \left[-\frac{w c^{2}}{2}\right]
$$

This concludes the proof.

Next we bound the probability of failing to detect a change-point in W :
Lemma 7. For any positive $c \leq \Delta / 2$ and W_{i}, a change-point is not detected in W_{i} with probability at most

$$
\mathbb{P}\left(\forall t \in W_{i}:\left|\mu_{t}^{-}-\mu_{t}^{+}\right| \leq c\right) \leq 4 \exp \left[-\frac{w c^{2}}{2}\right]
$$

Proof. Fix $s=\tau_{i}$. From $s \in W_{i}$, we have

$$
\begin{aligned}
\mathbb{P}\left(\forall t \in W_{i}:\left|\mu_{t}^{-}-\mu_{t}^{+}\right| \leq c\right) & =1-\mathbb{P}\left(\exists t \in W_{i}:\left|\mu_{t}^{-}-\mu_{t}^{+}\right|>c\right) \leq 1-\mathbb{P}\left(\left|\mu_{s}^{-}-\mu_{s}^{+}\right|>c\right) \\
& =\mathbb{P}\left(\left|\mu_{s}^{-}-\mu_{s}^{+}\right| \leq c\right)
\end{aligned}
$$

Note that $\left|\mu_{s}^{-}-\mu_{s}^{+}\right| \leq c$ implies that either μ_{s}^{-}or μ_{s}^{+}is not close to its mean. More specifically, since $\mathbb{E}\left[\mu_{s}^{-}\right]=V_{s-1}\left(\pi_{0}\right)$, $\mathbb{E}\left[\mu_{s}^{+}\right]=V_{s}\left(\pi_{0}\right)$, and $\left|V_{s}\left(\pi_{0}\right)-V_{s-1}\left(\pi_{0}\right)\right| \geq \Delta$, we have

$$
\mathbb{P}\left(\left|\mu_{s}^{-}-\mu_{s}^{+}\right| \leq c\right) \leq \mathbb{P}\left(\left|\mu_{s}^{-}-\mathbb{E}\left[\mu_{s}^{-}\right]\right| \geq \frac{\Delta-c}{2}\right)+\mathbb{P}\left(\left|\mu_{s}^{+}-\mathbb{E}\left[\mu_{s}^{+}\right]\right| \geq \frac{\Delta-c}{2}\right)
$$

From $2 c \leq \Delta$ and by Hoeffding's inequality, the first term is bounded as

$$
\mathbb{P}\left(\left|\mu_{s}^{-}-\mathbb{E}\left[\mu_{s}^{-}\right]\right| \geq \frac{\Delta-c}{2}\right) \leq \mathbb{P}\left(\left|\mu_{s}^{-}-\mathbb{E}\left[\mu_{s}^{-}\right]\right| \geq c / 2\right) \leq 2 \exp \left[-\frac{w c^{2}}{2}\right]
$$

The second term is bounded analogously. Finally, we chain all inequalities and get our claim.

Finally, we prove Theorem 1 by applying Lemma 6 to all rounds $t \notin W$, Lemma 7 to all change-points, and then chaining them by the union bound.

Theorem 1. Let $\tau_{i}-\tau_{i-1}>4 w$ for all $i \in[L]$. For any $\delta \in(0,1]$, and c and w in Algorithm 1 such that

$$
\Delta / 2 \geq c \geq \sqrt{2 \log (8 T / \delta) / w}
$$

then Algorithm 1 estimates $\hat{z}_{1: T}$ so $\sum_{t=1}^{T} \mathbb{1}\left[\hat{z}_{t} \neq z_{t}\right] \leq$ Sw holds with probability at least $1-\delta$.

Proof. Define $\delta \in(0,1]$. We see that given w, setting c as described satisfies,

$$
4 T \exp \left[\frac{-w c^{2}}{2}\right], \quad 4 k \exp \left[\frac{-w c^{2}}{2}\right] \leq \frac{\delta}{2}
$$

We know that $\varepsilon(T, \delta)=k w$ when all the estimated changepoints are in W (at most w rounds from a true change-point), and every $W_{i} \in W$ contains exactly one estimated change-point. This cannot happen if (1) a change-point is falsely detected outside W, and (2), no change-point is detected in some $W_{i} \in W$.

We can bound from above the probability of any error occurring with the union bound. Proposition 3 applied to every round upper-bounds the probability of (1) by $4 T \exp \left(-w c^{2} / 2\right)$. Meanwhile, Proposition 4 applied to every change-point upperbounds the probability of (2) by $4 k \exp \left(-w c^{2} / 2\right)$. From Algorithm 1, we remove a $4 w$-window around each detected changepoint, and under the assumption that $\tau_{i}-\tau_{i-1}>4 w$ for all $i \in[k]$, we guarantee that exactly one changepoint is detected in each W_{i} for true changepoint τ_{i}. Combining yields the total probability of an error,

$$
4 T \exp \left[\frac{-w c^{2}}{2}\right]+4 k \exp \left[\frac{-w c^{2}}{2}\right] \leq \delta
$$

which is the desired result.

C Proofs for Online Deployment

Recall that we have a mixture-of-experts algorithm \mathcal{E} and experts/sub-policies $\hat{\Pi}=(\hat{\pi})_{z \in \mathcal{Z}}$, such that for each round t, actions are sampled according to $a_{t} \sim \mathcal{E}_{t}\left(x_{t}, \hat{\pi}\right)$. Let \mathcal{E} be Exp4.S as described in Algorithm 6; this is similar to one
proposed in Luo et al. (2018), but for stochastic experts.

```
Algorithm 6: Exp4.S
Input: vector of expert sub-policies \(\hat{\Pi}=\left(\hat{\pi}_{z}\right)_{z \in \mathcal{Z}}\) with \(|\mathcal{Z}|=L\), and hyperparameters \(\beta, \eta>0, \gamma \in(0,1]\)
Initialize \(w_{1}=(1 / L, \ldots, 1 / L) \in[0,1]^{L}\).
for \(t \leftarrow 1,2, \ldots, T\) do
    Observe \(x_{t}\), and expert feedback \(\hat{\pi}_{z}\left(\cdot \mid x_{t}\right), \forall z \in \mathcal{Z}\).
    Choose \(a_{t} \sim \mathcal{E}_{t}\), where for each \(a \in \mathcal{A}\),
        \(\mathcal{E}_{t}(a)=(1-\gamma) \sum_{z \in \mathcal{Z}} w_{t}(z) \hat{\pi}_{z}\left(a \mid x_{t}\right)+\frac{\gamma}{L}\).
    Observe \(r_{t}\). Estimate the action costs under full feedback \(\hat{c}_{t}(a)=\mathbb{1}\left[a_{t}=a\right] \frac{1-r_{t}}{\mathcal{E}_{t}(a)}, \forall a \in \mathcal{A}\).
    Propagate the cost to the experts \(\tilde{c}_{t}(z)=\hat{c}_{t}\left(a_{t}\right) \hat{\pi}_{z}\left(a_{t} \mid x_{t}\right), \forall z \in \mathcal{Z}\).
    Update the distribution weights, \(\tilde{w}_{t+1}(z) \propto w_{t}(z) \exp \left(-\eta \tilde{c}_{t}(z)\right), \forall z \in \mathcal{Z}\).
    Mix with uniform weights, \(w_{t+1}(z)=(1-\beta) w_{t}(z)+\beta, \forall z \in \mathcal{Z}\).
end
```

Our first result is the following regret guarantee over any stationary segment. A version of this proof for deterministic experts is in Theorem 2 of Luo et al. (2018).
Lemma 8. Let \mathcal{E} be Exp4.S as in Algorithm 6. Also, let $\gamma=0, \eta=\sqrt{\log (L) /(\ell K)}$, and $\beta=1 / L$. Then, for any stationary segment $\left[\tau_{s-1}, \tau_{s}-1\right]$ of length at most ℓ, any history up to τ_{s-1}, and any latent state $z \in \mathcal{Z}$, the regret is bounded as

$$
\sum_{t=\tau_{s-1}}^{\tau_{s}-1} \mathbb{E}_{z_{t}, \hat{\pi}_{z}}\left[r_{t}\right]-\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right] \leq \sqrt{2 \ell K \log (L)}
$$

Proof. First, we have the following upper-bound,

$$
\begin{aligned}
\log \left[\sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right) \exp \left(-\eta \tilde{c}_{t}\left(z^{\prime}\right)\right)\right] & \leq \log \left[\sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right)\left(1-\eta \tilde{c}_{t}\left(z^{\prime}\right)+\eta^{2} \tilde{c}_{t}\left(z^{\prime}\right)^{2}\right)\right] \\
& \leq-\eta \sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right) \tilde{c}_{t}\left(z^{\prime}\right)+\eta^{2} \sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right) \tilde{c}_{t}\left(z^{\prime}\right)^{2}
\end{aligned}
$$

where we use that $\exp (-x) \leq 1-x+x^{2}$, and $\log (1+x) \leq x$ for all $x \geq 0$. Meanwhile, for any $z \in \mathcal{Z}$, we can also bound the same quantity from below,

$$
\begin{aligned}
\log \left[\sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right) \exp \left(-\eta \tilde{c}_{t}\left(z^{\prime}\right)\right)\right]=\log \left[\frac{w_{t}(z) \exp \left(-\eta \tilde{c}_{t}(z)\right)}{\tilde{w}_{t+1}(z)}\right] & =\log \left[\frac{w_{t}(z)(1-\beta)}{w_{t+1}(z)-\beta}\right]-\eta \tilde{c}_{t}(z) \\
& \geq \log \left[\frac{w_{t}(z)}{w_{t+1}(z)}\right]-2 \beta-\eta \tilde{c}_{t}(z)
\end{aligned}
$$

where for the last inequality, we use that $\log (1-\beta) \geq-\beta /(1-\beta) \geq-2 \beta$. Combining the two inequalities, summing over all $t \in\left[\tau_{s-1}, \tau_{s}-1\right]$, and telescoping yields,

$$
\begin{aligned}
\sum_{t=\tau_{s-1}}^{\tau_{s}-1} \sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right) \tilde{c}_{t}\left(z^{\prime}\right)-\tilde{c}_{t}(z) & \leq \frac{1}{\eta} \log \left[\frac{w_{\tau_{s}}(z)}{w_{\tau_{s-1}}(z)}\right]+\frac{2 \beta \ell}{\eta}+\eta \sum_{t=\tau_{s-1}}^{\tau_{s}-1} \sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right) \tilde{c}_{t}\left(z^{\prime}\right)^{2} \\
& \leq \frac{\log (1 / \beta)+2 \beta \ell}{\eta}+\eta \sum_{t=\tau_{s-1}}^{\tau_{s}-1} \sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right) \tilde{c}_{t}\left(z^{\prime}\right)^{2}
\end{aligned}
$$

where we use that $w_{t}(z) \in[\beta, 1]$ for all rounds t.
When $\gamma=0$ we know that $\hat{c}_{t}\left(a_{t}\right)$ is unbiased, or $\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[\hat{c}_{t}\left(a_{t}\right)\right]=1-\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right]$. We also have that for any $z^{\prime} \in \mathcal{Z}$,

$$
\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[\tilde{c}_{t}\left(z^{\prime}\right)\right]=\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[\sum_{a \in \mathcal{A}} \hat{\pi}_{z^{\prime}}\left(a \mid x_{t}\right) \hat{c}_{t}(a)\right]=1-\mathbb{E}_{z_{t}, \hat{\pi}_{z}}\left[r_{t}\right]
$$

Taking the expectation of both sides leads to,

$$
\sum_{t=\tau_{s-1}}^{\tau_{s}-1} \mathbb{E}_{z_{t}, \hat{\pi}_{z}}\left[r_{t}\right]-\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right] \leq \frac{\log (1 / \beta)+2 \beta \ell}{\eta}+\eta \sum_{t=\tau_{s-1}}^{\tau_{s}-1} \sum_{z^{\prime} \in \mathcal{Z}} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[w_{t}\left(z^{\prime}\right) \tilde{c}_{t}\left(z^{\prime}\right)^{2}\right]
$$

Next, we have that for any $z^{\prime} \in \mathcal{Z}$,

$$
\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[\tilde{c}_{t}\left(z^{\prime}\right)^{2}\right]=\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[\left(\frac{\hat{\pi}_{z^{\prime}}\left(a_{t} \mid x_{t}\right)\left(1-r_{t}\right)}{\mathcal{E}_{t}\left(a_{t}\right)}\right)^{2}\right] \leq \sum_{a \in \mathcal{A}} \frac{\hat{\pi}_{z^{\prime}}\left(a \mid x_{t}\right)}{\mathcal{E}_{t}(a)}
$$

where we use that $a_{t} \sim \mathcal{E}_{t}$ and $r_{t} \in[0,1]$. Substituting this result yields,

$$
\sum_{z^{\prime} \in \mathcal{Z}} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[w_{t}\left(z^{\prime}\right) \tilde{c}_{t}\left(z^{\prime}\right)^{2}\right] \leq \sum_{a \in \mathcal{A}} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[\frac{1}{\mathcal{E}_{t}(a)} \sum_{z^{\prime} \in \mathcal{Z}} w_{t}\left(z^{\prime}\right) \pi_{z^{\prime}}\left(a_{t} \mid x_{t}\right)\right] \leq K
$$

where we again use that $a_{t} \sim \mathcal{E}_{t}$. Substituting into the regret bound and using the values for η, β yields

$$
\sum_{t=\tau_{s-1}}^{\tau_{s}-1} \mathbb{E}_{z_{t}, \hat{\pi}_{z}}\left[r_{t}\right]-\mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right] \leq \frac{\log (1 / \beta)+2 \beta \ell}{\eta}+\eta K \ell \leq \sqrt{2 \ell K \log (L)}
$$

as desired.

In practice, we do not know the lengths of stationary segments, and may not be able to find a tight upper-bound ℓ on the lengths of stationary segments. However, in our analysis, we can further partition stationary segments so that they do not exceed length ℓ at the cost of increasing the number of change-points. This is formalized in the following corollary.
Lemma 9. Let \mathcal{E} be Exp4.S as in Algorithm 6. Also, let $\gamma=0, \eta=\sqrt{\log (L) /(\ell K)}$, and $\beta=1 / L$. Then, the total regret is bounded by

$$
\sum_{s=1}^{S} \max _{z \in \mathcal{Z}} \sum_{t=\tau_{s-1}}^{\tau_{s}-1} \mathbb{E}_{z_{t}, \hat{\pi}_{z}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right] \leq(T / \sqrt{\ell}+S \sqrt{\ell}) \sqrt{2 K \log (L)} .
$$

Proof. Recall that S is the number of stationary segments within the T rounds, as defined in Section 3. Our goal is to divide the T rounds into stationary intervals of length at most ℓ, so that we can apply Lemma 8 on each interval. We do this as follows. First, we construct T / ℓ intervals of length at most T. Then, we additionally divide intervals that contain changepoints, so that each interval contains only a single latent state. This leads to at most $T / \ell+S$ stationary intervals. Finally, using Lemma 8 on each interval and summing the regrets the desired result. Note that though we consider $T / \ell+S$ intervals, we only need to consider the best latent sub-policy for each of S stationary segments, as intervals belonging to the same stationary segment have the same optimal sub-policy.
Lemma 3. The regret $\mathcal{R}(T ; \mathcal{E}, \hat{\Pi})$ is bounded from above as

$$
\begin{align*}
& \mathcal{R}(T ; \mathcal{E}, \hat{\Pi}) \leq\left[\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \pi_{z_{t}}^{*}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \hat{\pi}_{z_{t}}}\left[r_{t}\right]\right] \\
& \quad+\left[\sum_{s=1}^{S} \max _{z \in \mathcal{Z}} \sum_{t=\tau_{s-1}}^{\tau_{s}-1} \mathbb{E}_{z_{t}, \hat{\pi}_{z}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right]\right] . \tag{4}
\end{align*}
$$

Proof. The regret can be decomposed as follows:

$$
\begin{aligned}
\mathcal{R}(T ; \mathcal{E}, \hat{\Pi}) & =\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \pi_{z_{t}}^{*}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right] \\
& =\left[\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \pi_{z_{t}}^{*}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \hat{\pi}_{z_{t}}}\left[r_{t}\right]\right]+\left[\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \hat{\pi}_{z_{t}}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right]\right]
\end{aligned}
$$

where we introduce $\hat{\Pi}$ that acts according to the true latent state. Then, recalling there are S stationary segments, the above expression can be further expressed as

$$
\begin{aligned}
& {\left[\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \pi_{z_{t}}^{*}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \hat{\pi}_{z_{t}}}\left[r_{t}\right]\right]+\left[\sum_{s=1}^{S} \sum_{t=\tau_{s-1}}^{\tau_{s}-1} \mathbb{E}_{z_{t}, \hat{\pi}_{z_{t}}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right]\right]} \\
& \quad \leq\left[\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \pi_{z_{t}}^{*}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \hat{\pi}_{z_{t}}}\left[r_{t}\right]\right]+\left[\sum_{s=1}^{S} \max _{z \in \mathcal{Z}} \sum_{t=\tau_{s-1}}^{\tau_{s}-1} \mathbb{E}_{z_{t}, \hat{\pi}_{z}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right]\right]
\end{aligned}
$$

where we utilize the fact that each stationary segment has one optimal sub-policy.
Theorem 3. Let $\hat{\Pi}$ be defined as in Theorem 2 and \mathcal{E} be Exp4.S Algorithm 6. Let $z_{1: T}$ be the same latent states as in offline data \mathcal{D} and S be the number of stationary segments. Then for any $\delta_{1}, \delta_{2} \in(0,1]$, we have that

$$
\begin{aligned}
& \mathcal{R}(T ; \mathcal{E}, \hat{\Pi}) \leq \\
& \quad 2 M \varepsilon\left(T, \delta_{1} / 2\right)+2 M \sqrt{2 T \log \left(4 / \delta_{2}\right)}+2 \sqrt{S T K \log L}
\end{aligned}
$$

holds with probability at least $1-\delta_{1}-\delta_{2}$.
Proof. We have the following regret decomposition due to Lemma 3,

$$
\mathcal{R}(T ; \mathcal{E}, \hat{\Pi}) \leq\left[\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \pi_{z_{t}}^{*}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \hat{\pi}_{z_{t}}}\left[r_{t}\right]\right]+\left[\sum_{s=1}^{S} \max _{z \in \mathcal{Z}} \sum_{t=\tau_{s-1}}^{\tau_{s}-1} \mathbb{E}_{z_{t}, \hat{\pi}_{z}}\left[r_{t}\right]-\sum_{t=1}^{T} \mathbb{E}_{z_{t}, \mathcal{E}_{t}}\left[r_{t}\right]\right]
$$

The first term can be bounded using our offline analysis, which shows near-optimality of $\hat{\Pi}$ when the latent state is known. In the case where $z_{1: T}$ is the same both offline and online, we see that for each round $t, \mathbb{E}_{z_{t}, \pi_{z_{t}}^{*}}\left[r_{t}\right]-\mathbb{E}_{z_{t}, \hat{\pi}_{z_{t}}}\left[r_{t}\right]=$ $V_{t}\left(\pi_{z_{t}}^{*}\right)-V_{t}\left(\hat{\pi}_{z_{t}}\right)$. Hence, the first term is exactly $V\left(\Pi^{*}\right)-V(\hat{\Pi})$ and is bounded by Theorem 2 w.p. at least $1-\delta_{1}-\delta_{2}$. The second term is the switching regret of Exp4.S, and is bounded by choosing $\ell=T / S$ in Lemma 9 . Combining the two bounds yields the desired result.

