
Bayesian Model Averaging for Causality Estimation and
its Approximation based on Gaussian Scale Mixture Distributions

1 Derivation of the analytical form of p(G|DN) and p(θG|G,DN)

First, we derive p(θG|G,DN ) for a fixed G ∈ G. For j ∈ {1, . . . ,m}, let pa(Xj) = (Xj1 , Xj2 , . . . , Xjmj
) and

Xj = [xj1 ,xj2 , . . . ,xjmj
] ∈ RN×mj , where xi ∈ RN is the sample of Xi. Then, for θj = (θj1j , θj2j , . . . , θjmj

j),

the likelihood function p(DN |G,θj) is given by

p(DN |G,θj) = N (xj ;Xjθj , τImj ) + const., (1)

where Imj
is the identity matrix of size mj . Since we assumed a conjugate Gaussian prior for p(θG|D), the

posterior distribution p(θj |G,DN ) is given by

p(θj |G,DN ) = N (θj ;µj ,Σj), (2)

µj = sεΣjX
T
j xj , (3)

Σj =
(
sεX

T
j Xj + τ−1Imj

)−1
. (4)

Further, we can calculate the likelihood p(DN |G) as follows.

p(DN |G) =

m∏
j=1

p(xj |Xj), (5)

p(xj |Xj) =
mj

2
ln τ−1 +

N

2
ln sε − Ej −

1

2
ln |Aj | −

N

2
ln(2π), (6)

Ej =
sε
2
||xj −Xjµj ||2 +

τ−1

2
µTj µj , (7)

Aj = τ−1Imj
+ sεX

T
j Xj . (8)

We can calculate the posterior probability p(G|DN ) by using the Bayes rule. See [Bishop, 2006] for the derivation
of (2) and (6).
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2 Derivation of Variational Bayes algorithm

The joint distribution for xj ,Xj ,θj , τj ,αj is factorized as

p(xj ,Xj ,θj , τj ,αj) = p(xj |Xj ,θj)p(θj |τj)p(τj |αj)p(αj ;κ, ν). (9)

Let ξ = (θj , τj ,αj). The variational Bayes method finds an approximation distribution q(ξ) that approximates
p(ξ|xj ,Xj). The goal is to find q(ξ) that minimizes the Kullback-Leibler divergence KL(q(ξ)||p(ξ|xj ,Xj)):

q∗(ξ) = arg min
q(ξ)

∫
q(ξ) ln

q(ξ)

p(ξ|xj ,Xj)
dξ (10)

= arg min
q(ξ)

∫
q(ξ) ln

q(ξ)

p(ξ,xj ,Xj)
dξ. (11)

However, it is difficult to minimize (11) for arbitrary distributions. We limit the optimization distributions to
q(ξ) that can be factorized as

q(θj , τj ,αj) = q(θj)q(τj)q(αj). (12)

For ξk ∈ ξ, the variational Bayes method minimizes (11) by updating q(ξk) sequentially. With the distribution
q(ξ \ ξk) of ξ \ ξk fixed, the update equation of q(ξk) is given as follows [Bishop, 2006].

ln q∗(ξk) = Eq(ξ\ξk) [ln p(ξ,xj ,Xj)] + const. (13)

In the following, we describe concrete update equation of each q(ξk). To keep the description concise, for functions
f(ξk), the expectation taken by q(ξk) at the point is written as 〈f(ξk)〉.

Update equation of q(θj)

From (13), the update equation of q(θj) is

ln q∗(θj) = Eq(τj) [p(xj |Xj ,θj)p(θj |τj)] + const. (14)

Using the assumption that p(xj |Xj ,θj) and p(θj |τj) are Gaussian distributions, we obtain

q∗(θj) = N (θ̄j , Σ̃j), (15)

θ̄j = sεΣ̃jX
T
j xj , (16)

Σ̃j =
(
sεX

T
j Xj +

〈
Sτj

〉)−1
, (17)

where

Sτj = diag
(
τ−1j,1 , . . . , τ

−1
j,mj

)
. (18)

Update equation of q(τ )

From (13), the update equation of q(τ ) is

ln q∗(τ ) = Eq(θj ,αj) [p(xj |Xj ,θj)p(θj |τj)p(θj |αj)] + const. (19)

From the model assumption, without loss of generality, we can assume that q(τj) is decomposed as

q(τj) =

mj∏
i=1

q(τj,i). (20)

By arranging the terms in (19) that include τj,i, we obtain

q∗(τj,i) = GIG
(
〈αj,i〉 ,

〈
θ2j,i
〉
,

1

2

)
, (21)



where GIG(a, b, ρ) denotes the generalized inverse Gaussian distribution, whose probability density function is
given by

p(x; a, b, ρ) =
(a/b)ρ/2

2Kρ(
√
ab)

xρ−1 exp

(
−ax+ bx−1

2

)
, (22)

where Kρ is a modified Bessel function of the second kind. To update q(θj) and q(αj), we need the expected
values 〈τj,i〉 and

〈
τ−1j,i

〉
. They are given by

〈τj,i〉 =
1 +

√
〈τj,i〉

〈
θ2j,i
〉

αj,i
, (23)

〈
τ−1j,i

〉
=

√
〈αj,i〉〈
θ2j,i
〉 . (24)

Update equation of q(α)

From (13), the update equation of q(α) is

ln q∗(α) = Eq(τ ) [p(τ |α)p(α;κ, ν)] + const. (25)

As in the case for τj , we can assume that q(αj) is decomposed as

q(αj) =

mj∏
i=1

q(αj,i). (26)

By arranging the terms in (25) that include αj,i, we obtain

q∗(αj,i) = GA
(
κ+ 1, ν +

〈τj,i〉
2

)
, (27)

where GA(κ, ν) is the gamma distribution, whose probability density function is given by

p(x;κ, ν) =
νκ

Γ(κ)
xκ−1e−νx. (28)

To update q(τ ), we need the expected value 〈αj,i〉. It is given by

〈αj,i〉 = (κ+ 1)

(
ν +
〈τj,i〉

2

)
. (29)
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