Bayesian Model Averaging for Causality Estimation and
its Approximation based on Gaussian Scale Mixture Distributions

1 Derivation of the analytical form of p(G|D") and p(0¢|G, DV)

First, we derive p(8g|G, DY) for a fixed G € G. For j € {1,...,m}, let pa(X;) = (le,ij,...,ijJ) and
Xj = [xj1?$j27 e 7w]‘mj] S RNX”Lj, where x; € RV is the sample of X;. Then, for 0j = (9]‘1]‘, szj, ey Gjmjj),
the likelihood function p(DV|G, 8;) is given by

p(DV|G,0;) = N(z;; X;0;,71,,) + const., (1)

where I,,; is the identity matrix of size m;. Since we assumed a conjugate Gaussian prior for p(6¢|D), the
posterior distribution p(8;|G, DY) is given by

p(0;|G, DY) = N(8;: ;. 55), (2)
H’j = SEEijmj, (3)
Ej = (SEXJTXJ' + 7—711-777,_7)_1 . (4)
Further, we can calculate the likelihood p(DY|G) as follows.
p(DN1@) = [] (=, X)), (5)
j=1
j N 1 N
P X)) = s+ ZIns.— B — = In|A;| — = In(2r), (6)
2 2 2 2
Se 2 =1 T
By = 2y~ Xy + T, @
Aj =7, +5.X]X;. (8)

We can calculate the posterior probability p(G| D) by using the Bayes rule. See [Bishop, 2006] for the derivation
of (2) and (6).
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2 Derivation of Variational Bayes algorithm
The joint distribution for x;, X, 8, 7;, a; is factorized as

p(xj, X;,0;, 1, a5) = p(x;| X5, 0,;)p(0;]m5)p(T5 |0 )p(e; v, v). (9)

Let £ = (0, T, ;). The variational Bayes method finds an approximation distribution ¢(£) that approximates
p(&|z;, X;). The goal is to find ¢(£) that minimizes the Kullback-Leibler divergence KL(g(&)||p(&|x;, X;)):

* = arg min H7Q(£)

(&) =ars min [ () n B (10)
= arg min niq(g)
B %(g) /q(S)I P('S»f’?jan)dél (1D

However, it is difficult to minimize (11) for arbitrary distributions. We limit the optimization distributions to
q(&) that can be factorized as

q(0;, 75, a5) = q(05)q(Tj)q(exj). (12)

For & € €, the variational Bayes method minimizes (11) by updating ¢(&x) sequentially. With the distribution
q(€\ &) of €\ & fixed, the update equation of ¢(&) is given as follows [Bishop, 2006].

Ing* (&) = Eqeve,) Inp(§, x5, X;)] + const. (13)

In the following, we describe concrete update equation of each q(€). To keep the description concise, for functions
f (&), the expectation taken by g(&x) at the point is written as (f(&x)).

Update equation of ¢(6,)
From (13), the update equation of ¢(;) is
In q*(gj) = Eq(.,.j) [p(CCj|Xj7 Oj)p(gj‘T])] -+ const. (14)

Using the assumption that p(x;| X, 0;) and p(@;|1;) are Gaussian distributions, we obtain

q"(0;) = N(6;, %)), (15)
0; = s5.3;X] x;, (16)
5 = (s XTX; +(S:) 7, (17)
where
Sy, = diag (71,7, ) - (18)

Update equation of ¢(7)
From (13), the update equation of ¢(7) is
Ing* (1) = Eqe,,a,) P(x;|X;, 60;)p(0;]7;)p(0;|c;)] + const. (19)

From the model assumption, without loss of generality, we can assume that ¢(7;) is decomposed as

m j

q(r;) = [[ a(75.)- (20)
i=1
By arranging the terms in (19) that include 7;;, we obtain

q" (1) = GIG (<ij,i> (030) ;) ; (21)



where GZG(a, b, p) denotes the generalized inverse Gaussian distribution, whose probability density function is
given by

. B (a/b)P/? P _ax+bx*1
plaianbp) = e (), (22)

where K, is a modified Bessel function of the second kind. To update ¢(6;) and ¢(c;), we need the expected
values (7;;) and <’7'J7i1>. They are given by

Update equation of ¢(«)
From (13), the update equation of ¢(e) is
In g (@) = Eq(r) [p(rlc)p(cx; 7, )] + const. (25)

As in the case for 7;, we can assume that ¢(o;) is decomposed as

(J(Oéj) = ﬂQ(Oéj,i)- (26)

By arranging the terms in (25) that include «; ;, we obtain

i'(05) = 64 (ot 1w ), (27)

where GA(k, V) is the gamma distribution, whose probability density function is given by

K

p(z; K, v) = Flsz) T lemve, (28)

To update ¢(7), we need the expected value («; ;). It is given by

(a.0) = (5 +1) <y+ <T’2>) (29)
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