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Figure 9: Comparison of the surrogate objective along with its basis functions after 5 total evaluations obtained
by 4 different methods. In the first and the third panel the target function is shown in blue, the evaluations are
the red points (which includes the same 5 random points for all methods), and the surrogate predictive mean is
shown in orange with two standard deviations in transparent light blue. The second and fourth panel show the
basis functions used to fit the surrogate model for given algorithm with colour representing its relative weight.

A Bayesian Linear Regression: extra material for Section 4.2

For the details omitted in Section 4.2, we continue with classical process of fitting Bayesian Linear regression
(BLR) using Empirical Bayes, where one fits this probabilistic model by firstly integrating out weights wnew,
which leads to the multivariate Gaussian model Normal(µ(xnew), σ2(xnew)) for the next input xnew of the new
task, whose mean and variance can be computed analytically (Bishop, 2006)
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where fnew = φz,b↓(xnew) and Knew = βnew(Φnew,b↓)
>Φnew,b↓ + Diag(αnew). We use this as the input to the

acquisition function, which decides the next point to sample. Before this step, we first need to obtain the
parameters. This model defines a Gaussian process, for which we can compute the covariance matrix in the
closed-form solution.
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thus the covariance matrix has the following form Σnew = Φnew,b↓Diag(αnew)−1(Φnew,b↓)
> + β−1newINnew . We

obtain {αnew,i}ri=1 and βnew by minimizing the negative log likelihood of our model has, up to constant factors in
the following form
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for which we use L-BGFS algorithm as this method is parameter-free and does not require to tune step size,
which is a desired property as this procedure is run in every step of BO. In order to speed up optimization and
obtain linear scaling in terms of evaluation, one needs to include extra modifications, starting with decomposition
of the matrix (Φnew,b↓)

>(Φnew,b↓) + 1/βnew Diag(αnew) as LnewL
>
new using Cholesky. This decomposition exists
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since (Φnew,b↓)
>(Φnew,b↓) + 1/βnew Diag(αnew) is always positive definite, due to semi-positive definiteness of

(Φnew,b↓)
>(Φnew,b↓) and positive diagonal matrix 1/βnew Diag(αnew). Final step is to use Weinstein–Aronszajn

identity, and Woodbury matrix inversion identity, which implies that our objective can be rewritten to the the
equivalent form
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which leads to overall complexity O(d2 max{Nnew, d}), which is linear in number of evaluations of the function
fnew.
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