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A PROOFS OF MAIN THEOREMS

A.1 Proof of Theorem 1

We fix t = t(n,λ) > 0 to a positive value depending on λ and n that will be determined later. We define the
following events:

1. For i ∈ [n], Bi is the event that K\i is non-singular and

yiy
T

\iK
−1
\i Z\iΛzi ≥ 1.

2. For i ∈ [n], Si is the event that K\i is singular.

3. S is the event that K is singular.

4. B := S ∪
⋃n
i=1(Bi ∪ Si).

Additionally, we define the event Ei(t), for every i ∈ [n] and a given t > 0, that K\i is non-singular and∥∥∥ΛZT

\iK
−1
\i y\i

∥∥∥2

2
≥ 1

t
.

Note that if the event B does not occur, then ZΛZT is non-singular, each K\i is non-singular, and

yiy
T

\iK
−1
\i Z\iΛzi < 1, for all i = 1, . . . , n.

Hence, by Lemma 1, if B does not occur, then every training example is a support vector.

So, it suffices to upper-bound the probability of the event B. We bound Pr(B) as follows:

Pr(B) ≤ Pr(S) +

n∑
i=1

Pr(Bi ∪ Si)

= Pr(S) +

n∑
i=1

(
Pr((Bi ∩ Sc

i ∩ Ei(t)c) ∪ (Si ∩ Ei(t)c)) + Pr((Bi ∪ Si) ∩ Ei(t))
)

≤ Pr(S) +

n∑
i=1

(
Pr(Bi | Sc

i ∩ Ei(t)c) Pr(Sc
i ∩ Ei(t)c) + Pr(Si ∩ Ei(t)c) + Pr((Bi ∪ Si) ∩ Ei(t))

)
≤ Pr(S) +

n∑
i=1

(
Pr(Bi | Sc

i ∩ Ei(t)c) + Pr(Si) + Pr(Ei(t))
)
. (7)

Above, the first two inequalities follow from the union bound, and the rest uses the law of total probability.

We first upper bound the probability of the singularity events in the following lemma.

Lemma 2. We have

max{Pr(S),Pr(S1), . . . ,Pr(Sn)} ≤ 2 · 9n · exp

(
−c ·min

{
d2

v2
,
d∞
v

})

where c > 0 is the universal constant in the statement of Lemma 8.

Proof. It suffices to bound Pr(S), since each K\i is a principal submatrix of K, and hence λmin(K\i) ≥ λmin(K)
for all i ∈ [n]. Observe that

ZΛZT =

d∑
j=1

λjvjv
T

j
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where vj is the jth column of Z. Recall that the columns of Z are independent, and so these vectors satisfy the
conditions of Lemma 8. Moreover, since ZΛZT is positive semi-definite, its singularity would require∥∥ZΛZT − ‖λ‖1I

∥∥
2
≥ ‖λ‖1.

The probability of this latter event can be bounded by Lemma 8 with τ = ‖λ‖1, thereby giving the claimed
bound on Pr(S). This completes the proof of the lemma.

The next lemma upper bounds the probability of the event Bi conditioned on the non-singularity event Si and
the complement of the event Ei(t).
Lemma 3. For any t > 0,

Pr(Bi | Sc
i ∩ Ei(t)c) ≤ 2 exp

(
− t

2v

)
.

Proof. Let B′i be the event that K\i is non-singular and∣∣yT

\iK
−1
\i Z\iΛzi

∣∣ = max
{
−yT

\iK
−1
\i Z\iΛzi, y

T

\iK
−1
\i Z\iΛzi

}
≥ 1.

Since |yi| = 1, it follows that Bi ⊆ B′i, so

Pr(Bi | Sc
i ∩ Ei(t)c) ≤ Pr(B′i | Sc

i ∩ Ei(t)c).

Conditional on the event Sc
i ∩ Ei(t)c, we have that K\i is non-singular and ‖ΛZT

\iK
−1
\i y\i‖

2
2 ≤ 1/t. Since zi is

independent of {(zj , yj) : j 6= i}, it follows that

yT

\iK
−1
\i Z\iΛzi = (ΛZT

\iK
−1
\i y\i)

Tzi

is (conditionally) sub-Gaussian with parameter at most v · ‖ΛZT

\iK
−1
\i y\i‖

2
2 ≤ v/t. Then, the standard sub-

Gaussian tail bound gives us

Pr
(
Bi | Sc

i ∩ Ei(t)c
)
≤ Pr

(
B′i | Sc

i ∩ Ei(t)c
)
≤ 2 exp

(
− t

2v

)
.

This completes the proof of the lemma.

Finally, the following lemma upper bounds the probability of the event Ei(t) for t := d∞/2n.

Lemma 4.

Pr(Ei(d∞/(2n))) ≤ 2 · 9n−1 · exp

(
−c ·min

{
d2

4v2
,
d∞
v

})

where c > 0 is the universal constant from Lemma 8.

Proof. Let E ′i(t) be the event that

λmin(K\i) ≤ n‖λ‖∞t.

Under Sc
i , the matrix K\i is non-singular. We get

‖ΛZT

\iK
−1
\i y\i‖

2
2 ≤ ‖Λ

1/2‖2op‖Λ
1/2ZT

\iK
−1
\i y\i‖

2
2

= ‖λ‖∞yT

\iK
−1
\i Z\iΛZ

T

\iK
−1
\i y\i

≤ n‖λ‖∞ sup
u∈Rn−1:‖v‖2=1

uTK−1
\i u

=
n‖λ‖∞

λmin(K\i)
.
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It follows that Ei(t) ⊆ E ′i(t). Observe that for t := d∞/(2n), the event E ′i(t) is that where

λmin(K\i) ≤
1

2
‖λ‖1.

Therefore (as in the proof of Lemma 2), Lemma 8 with τ = ‖λ‖1/2 implies that

Pr(E ′i(d∞/(2n))) = Pr

(
λmin(K\i) ≤

1

2
‖λ‖1

)
≤ 2 · 9n−1 · exp

(
−c ·min

{
d2

4v2
,
d∞
v

})
.

This completes the proof of the lemma.

Plugging the probability bounds from Lemma 2, Lemma 3 and Lemma 4 (with t = d∞/(2n)) into Eq. (7)
completes the proof of Theorem 1.

A.2 Proof of Theorem 2

The proof follows a similar sequence of steps to that of Theorem 1 with slight differences in the events that we
condition on. We first observe that 1√

d
zi | (Z\i,y\i) is a uniformly random unit vector in Sd−1 restricted to the

subspace orthogonal to the row space of Z\i. That is, it has the same (conditional) distribution as Biui, where:

1. Bi is a d× (n− d+ 1) matrix whose columns form an orthonormal basis for the orthogonal complement of
Z\i’s row space;

2. ui is a uniformly random unit vector in Sd−n.

As before, for every i ∈ [n], we define the event Bi that K\i is non-singular and

yiy
T

\iK
−1
\i Z\iΛzi ≥ 1.

The Haar measure ensures that the matrices Z and Z\i always have full row rank. Therefore, because Λ � 0,
the matrices K and K\i are always non-singular. So we do not need to worry about singularity (c.f. the events
S and Si). We accordingly consider the event B :=

⋃n
i=1 Bi. As before, we also define the event Ei(t) for every

i ∈ [n] and a given t > 0, that

‖BT

iΛZ
T

\iK
−1
\i y\i‖

2
2 ≥

d− n+ 1

d
· 1

t
.

By the union bound, we get

Pr(B) ≤
n∑
i=1

Pr(Bi)

≤
n∑
i=1

Pr(Bi | Ei(t)c) + Pr(Ei(t)),

and so we need to upper bound the probabilities Pr(Bi | Ei(t)c) and Pr(Ei(t)) for every i ∈ [n].

The following lemma upper bounds Pr(Bi | Ei(t)c), and is analogous to Lemma 3 in the proof of Theorem 1.

Lemma 5. For any t > 0, we have

Pr(Bi|Ei(t)c) ≤ 2 exp (−t) .
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Proof. First, as discussed above, we have

Pr
(
yiy

T

\iK
−1
\i Z\iΛzi ≥ 1

)
= Pr

(√
d · yiyT

\iK
−1
\i Z\iΛBiui ≥ 1

)
≤ Pr

(√
d
∣∣(BT

iΛZ
T

\iK
−1
\i y\i)

Tui
∣∣ ≥ 1

)
.

Moreover, ui is independent of Z\i, and as established in Lemma 9, the random vector ui is sub-Gaussian with

parameter at most O(1/(d − n + 1)). Therefore,
√
d · (BT

iΛZ
T

\iK
−1
\i y\i)

Tui is conditionally sub-Gaussian with

parameter at most d
d−n+1 ·‖B

T

iΛZ
T

\iK
−1
\i y\i‖

2
2 ≤ 1

t . Here, the last inequality follows because we have conditioned

on Ei(t)c. Therefore, the standard sub-Gaussian tail bound gives us

Pr
(
Bi | Ei(t)c

)
≤ 2 exp (−t) .

The next lemma upper bounds Pr
(
Ei(t)

)
for t := d−n+1

d · d∞2n , and is analogous to Lemma 4 in the proof of
Theorem 1.

Lemma 6. We have

Pr

(
Ei
(
d− n+ 1

d
· d∞

2n

))
≤ exp (−c1 · d) + 2 · 9n · exp

(
−c2 ·min{d2, d∞}

)
where c1 > 0 and c2 > 0 are universal constants.

Proof. We get

‖BT

iΛZ
T

\iK
−1
\i y\i‖

2
2 ≤ ‖B

T

i‖22 · ‖ΛZ
T

\iK
−1
\i y\i‖

2
2

= ‖ΛZT

\iK
−1
\i y\i‖

2
2

≤ n‖λ‖∞
λmin(K\i)

,

where we used the fact thatBi has orthonormal columns, and the last inequality follows by an identical argument
to the proof of Lemma 4. We will show in particular that

Pr

(
λmin(K\i) ≥

1

2
‖λ‖1

)
≥ 1− exp(−c1 · d)− 2 · 9n−1 · exp(−c2 ·min{d2, d∞}). (8)

Given Eq. (8), we can complete the proof of Lemma 6. This is because we get

‖BT

iΛZ
T

\iK
−1
\i y\i‖

2
2 ≤

2n‖λ‖∞
‖λ‖1

=
2n

d∞
=
d− n+ 1

d
· 1

t

for

t :=
d− n+ 1

d
· d∞

2n
.

We complete the proof by proving Eq. (8). Let S ∈ Rm×d be a random matrix with iid standard Gaussian
entries with m := n− 1, and let the singular value decomposition of S be S = V ΛSU

T where V ∈ Rm×m and
U ∈ Rd×m are orthonormal matrices. Then, it is well-known that

√
d ·U T follows the same distribution as Z\i,

and hence λmin(K\i) has the same distribution as d · λmin(UTΛU). Moreover,

d · λmin(U TΛU) = min
v∈Rn,‖v‖2=1

vTΛ−1
S V

TV ΛSU
TΛUΛSV

TV Λ−1
S v

≥ d

‖ΛS‖2op

· min
v∈Rn,‖v‖2=1

vTSΛSTv

=
d

‖ΛS‖2op

· λmin(SΛST).
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By classical operator norm tail bounds on Gaussian random matrices (e.g., Vershynin, 2010, Corollary 5.35),
we note that ‖ΛS‖22 ≤ 3

2d with probability at least 1 − exp(−c1 · d). Now, we note that the matrix SΛST :=∑d
j=1 λjsjs

T
j where the sj ’s are iid standard Gaussian random vectors in Rn. So, we directly substitute Lemma 8

with τ := 1
4‖λ‖1, and get λmin(SΛST) ≥ 3

4‖λ‖1 with probability at least 1 − 2 · 9m · exp(−c2 · min{d2, d∞}).
Putting both of these inequalities together directly gives us Eq. (8) with the desired probability bound, and
completes the proof.

Finally, putting the high probability statements of Lemma 5 and Lemma 6 together completes the proof of
Theorem 2.

A.3 Proof of Theorem 3

By Lemma 1, our task is equivalent to lower-bounding the probability that there exists i ∈ [n] such that

yiy
T

\i (Z\iZ
T

\i)
−1
Z\izi ≥ 1. This event is the union of n (possibly overlapping) events, and hence its probability

is at least the probability of one of the events, say, the first one:

Pr
(
∃i ∈ [n] s.t. yiy

T

\iK
−1
\i Z\izi ≥ 1

)
≥ Pr

(
y1y

T

\1K
−1
\1 Z\1z1 ≥ 1

)
.

Because z1 is a standard Gaussian random vector independent of Z\1, the conditional distribution of

y1y
T

\1K
−1
\1 Z\1z1 | Z\1 is Gaussian with mean zero and variance σ2 := ‖ZT

\1K
−1
\1 y\1‖

2
2. Therefore, for any

t > 0, we have

Pr
(
y1y

T

\1K
−1
\1 Z\1z1 ≥ 1

)
= E

[
Pr
(
σg ≥ 1 | σ

)]
(where g ∼ N(0, 1), g ⊥⊥ σ)

= E
[
Φ
(
−1/σ

)]
≥ E

[
Φ
(
−1/σ

)
| σ2 ≥ 1/t

]
Pr
(
σ2 ≥ 1/t

)
≥ Φ(−

√
t) · Pr(E1(t)),

where Φ is the standard Gaussian cumulative distribution function, and E1(t) is the event that

σ2 = y\1K
−1
\1 Z\1Z

T

\1K
−1
\1 y\1 = y\1K

−1
\1 y\1 ≥

1

t

(as in the proofs of Theorem 1 and Theorem 2). We now lower-bound the probability of E1(t). Observe that the
(n − 1) × (n − 1) random matrix K\1 = Z\1Z

T

\1 follows a Wishart distribution with identity scale matrix and
d degrees-of-freedom. Moreover, by the rotational symmetry of the standard Gaussian distribution, the random
variable yT

\1K
−1
\1 y\1 has the same distribution as that of (

√
n− 1e1)TK−1

\1 (
√
n− 1e1) = (n− 1)eT

1K
−1
\1 e1. It is

known that 1/eT
1K
−1
\1 e1 follows a χ2 distribution with d− (n− 2) degrees-of-freedom; we denote its cumulative

distribution function by Fd−n+2. Therefore,

Pr(E1(t)) = Fd−n+2(t(n− 1)).

So, we have shown that

Pr
(
y1y

T

\1K
−1
\1 Z\1z1 ≥ 1

)
≥ sup

t≥0
Φ(−
√
t) · Fd−n+2(t(n− 1)).

For t := d−n+4+2
√
d−n+2

n−1 , we obtain Fd−n+2(t) ≥ 1 − 1/e by a standard χ2 tail bound (Laurent and Massart,
2000, Lemma 1). In this case, we obtain

Pr
(
y1y

T

\1K
−1
\1 Z\1z1 ≥ 1

)
≥ Φ

−
√
d− n+ 4 + 2

√
d− n+ 2

n− 1

 · (1− 1

e

)
(9)

as claimed.
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B ANISOTROPIC VERSION OF THEOREM 3

Below, we give a version of Theorem 3 that applies to certain anisotropic settings, depending on some conditions
on λ.

Theorem 4. There are absolute constants c > 0 and c′ > 0 such that the following hold. Let the training data
(x1, y1), . . . , (xn, yn) follow the model from Section 2.2, with z1, . . . ,zn being iid standard Gaussian random
vectors in Rd, and y1, . . . , yn ∈ {±1} being arbitrary but fixed (i.e., non-random) values. Assume d > n and that
there exists k ∈ N and b > 1 such that k < (n− 1)/c and∑d

j=k+1 λj

λk+1
≤ b(n− 1)

where λ1 ≥ λ2 ≥ · · · ≥ λd. Then the probability that at least one training example is not a support vector is at
least

c′ · Φ

(
−
√

2cb2(n− 1)

k + 1

)
·
(

1− 10e−(n−1)/c
)
,

where Φ is the standard Gaussian cumulative distribution function.

Note that the probability bound in Theorem 4 is at least a positive constant for sufficiently large n provided
that the (k, b) obtained as a function of λ satisfy k + 1 ≥ c′′b2(n− 1) for some absolute constant c′′ > 0.

Proof. The proof begins in the same way as in that of Theorem 3. Using the same arguments, we obtain the
following lower bound:

Pr
(
∃i ∈ [n] s.t. yiy

T

\iK
−1
\i Z\iΛzi ≥ 1

)
≥ Pr

(
y1y

T

\1K
−1
\1 Z\1Λz1 ≥ 1

)
≥ Φ(−

√
t) · Pr(E1(t)) (10)

where E1(t) is the event that ∥∥∥ΛZT

\1K
−1
\1 y\1

∥∥∥2

2
≥ 1

t
.

We next focus on lower-bounding the probability of E1(t). (This part is more involved than in the proof of
Theorem 3.) Observe that the (rotationally invariant) distribution of Z\1 is the same as that of QZ\1, where

Q is a uniformly random (n− 1)× (n− 1) orthogonal matrix independent of Z\1. Therefore, ΛZT

\1K
−1y\1 has

the same distribution as

Λ(QZ\1)T(QZ\1ΛZ
T

\1Q
T)−1y\1 = ΛZT

\1Q
TQ(Z\1ΛZ

T

\1)−1QTy\1

=
√
n− 1ΛZT

\1K
−1
\1 u

where u := QTy\1/
√
n− 1 is a uniformly random unit vector, independent of Z\1. Letting M := ΛZT

\1K
−1
\1 ,

we can thus lower-bound the probability of E1(t) using

Pr(E1(t)) = Pr
(
‖
√
n− 1Mu‖22 > 1/t

)
≥ Pr

(
‖
√
n− 1Mu‖22 > 1/t | tr (M TM) ≥ 2/t

)
· Pr

(
tr (M TM) ≥ 2/t

)
. (11)

We lower-bound each of the probabilities on the right-hand side of Eq. (11).

We begin with the first probability in Eq. (11), which we handle for arbitrary t > 0. By the Paley-Zygmund
inequality, we have

Pr

(
‖
√
n− 1Mu‖22 >

1

2
E
[
‖
√
n− 1Mu‖22

]
| Z\1

)
≥ 1

4
·
E
[
‖
√
n− 1Mu‖22

]2
E
[
‖
√
n− 1Mu‖42

] . (12)
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Since
√
n− 1u is isotropic, we have

E
[
‖
√
n− 1Mu‖22 | Z\1

]
= (n− 1) tr (M TME

[
uuT

]
) = tr (M TM) .

Furthermore, by Lemma 9,

E
[
‖
√
n− 1Mu‖42 | Z\1

]
≤ C tr (M TM)

2

for some universal constant C > 0. Therefore, plugging back into Eq. (12), we obtain

Pr

(
‖
√
n− 1Mu‖22 >

1

2
tr (M TM) | Z\1

)
≥ 1

4
· tr (M TM)

2

C tr (M TM)
2 =

1

4C
.

Thus we also have the following for arbitrary t > 0:

Pr
(
‖
√
n− 1Mu‖22 > 1/t | tr (M TM) ≥ 2/t

)
≥ 1

4C
. (13)

We next consider the second probability in Eq. (11), namely Pr (tr (M TM) ≥ 2/t). Recall that we assume there
exists k < (n− 1)/c and b > 1 such that ∑d

j=k+1 λj

λk+1
≤ b(n− 1). (14)

We claim that for t := 2cb2(n−1)
k+1 ,

Pr

(
tr (M TM) ≥ 2

t

)
≥ 1− 10e−(n−1)/c. (15)

Indeed, this claim follows from Lemma 16 of (Bartlett et al., 2020), where their matrix C is our matrix M TM ,
except our matrix is (n− 1)× (n− 1) instead of n× n, and their matrix Σ is our matrix Λ; see the definitions
in their Lemma 8. The universal constant c > 0 in their lemma is the same as ours, and Eq. (14) is precisely
their condition rk(Σ) < b(n− 1) (with the same k and b). Therefore, the conclusion of their lemma implies, in
our notation, that with probability at least 1− 10e−(n−1)/c,

tr (M TM) ≥ k + 1

cb2(n− 1)
=

2

t
.

This proves the claimed probability bound.

We conclude from Eq. (10), Eq. (11), Eq. (13), and Eq. (15), that the probability that at least one training
example is not a support vector is bounded below by

Φ

(
−
√

2cb2(n−1)
k+1

)
· 1

4C
·
(

1− 10e−(n−1)/c
)

as claimed.

C TIGHTNESS OF ARGUMENT IN THEOREM 3

We show below that our bound on Pr (y1y
T

\1K
−1
\1 Z\1z1 ≥ 1) from the proof of Theorem 3 is essentially tight. This

means that in order to improve our converse result, we cannot only improve our bound on the aforementioned
probability. It seems important to be able to handle simultaneously the conditions corresponding to multiple
training examples, which our present arguments do not do. In particular, resolving this gap would require
reasoning about whether the indicator random variables, that the conditions are violated, are highly correlated
or not. If they are, we should expect the phase transition to happen at d ∼ n (as predicted by the converse); if
they are not, we should expect the phase transition to happen at d ∼ n log n (as predicted by the upper bound).
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Carrying over the notation from the proof above, we have the following upper-bound:

Pr
(
y1y
>
\1K

−1
\1 Z\1z1 ≥ 1

)
= E

(
Φ
(
−1/σ

))
≤ inf
t>0

{
Φ(−
√
t) + Pr

(
E1(t)

)}
.

The last step follows by the law of total probability, and noting that Φ(−x) is a decreasing function in x as well
as being bounded above by one. We will bound the second term for a suitable choice of t. Recall that E1(t) is
the event that

σ2 = y>\1K
−1
\1 y\1 ≥

1

t
.

Observe that σ2 ≤ n−1
λmin(K\1) , where the (n − 1) × (n − 1) random matrix K\1 = Z\1Z

T

\1 follows a Wishart

distribution with identity scale matrix and d degrees of freedom. Directly quoting (Vershynin, 2018, Theorem
5.32), we get

Pr
(
λmin(K\1) ≤ (

√
d−
√
n− δ)2

)
≤ e−δ

2/2.

for any value of δ such that 0 < δ <
√
d−
√
n. Therefore,

Pr

(
σ2 ≥ n− 1

(
√
d−
√
n− δ)2

)
≤ Pr

(
λmin(K\1) ≤ (

√
d−
√
n− δ)2

)
≤ e−δ

2/2.

Assuming d > 4n, we set δ :=
√
n and t := (

√
d−2
√
n)2

n−1 , and obtain

Pr
(
y1y
>
\1K

−1
\1 Z\1z1 ≥ 1

)
≤ Φ(−

√
t) + Pr(E1(t))

≤ Φ

(
−
√
d− 2

√
n√

n− 1

)
+ e−n/2,

which can be directly compared to Eq. (9).

D PROBABILISTIC INEQUALITIES

Lemma 7. Let M ∈ Rn×n be a symmetric matrix, and let N be an ε-net of Sn−1 with respect to the Euclidean
metric for some ε < 1/2, Then

‖M‖2 ≤
1

1− 2ε
max
u∈N

|uTMu|.

Proof. See (Vershynin, 2010, Lemma 5.4).

Lemma 8. There is a universal constant c > 0 such that the following holds. Let λ1, . . . , λd > 0 be given. Let
v1, . . . ,vd be independent random vectors taking values in Rn such that, for some v > 0,

E(vj) = 0, E(vjv
T

j) = In, E(exp(uTvj)) ≤ exp(v‖u‖22/2) for all u ∈ Rn

for all j = 1, . . . , d. For any τ > 0,

Pr


∥∥∥∥∥∥

d∑
j=1

λjvjv
T

j − ‖λ‖1In

∥∥∥∥∥∥
2

≥ τ

 ≤ 2 · 9n · exp

−c ·min

{
τ2

v2‖λ‖22
,

τ

v‖λ‖∞

} .

where ‖λ‖1 :=
∑d
j=1 λj, ‖λ‖22 :=

∑d
j=1 λ

2
j , and ‖λ‖∞ := maxj∈[d] λj.
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Proof. Let N be an (1/4)-net of Sn−1 with respect to the Euclidean metric. A standard volume argument of
Pisier (1999) allows a choice of N with |N | ≤ 9n. By Lemma 7, we have for any t > 0,

Pr


∥∥∥∥∥∥

d∑
j=1

λjvjv
T

j − ‖λ‖1In

∥∥∥∥∥∥
2

≥ τ

 ≤ Pr

max
u∈N

∣∣∣∣∣
d∑
j=1

λj(u
Tvj)

2 − ‖λ‖1

∣∣∣∣∣ ≥ τ/2
 .

Next, observe that for any u ∈ Sn−1, the random variables uTv1, . . . ,u
Tvd are independent random variables,

each with mean-zero, unit variance, and sub-Gaussian with parameter v. By the Hanson-Wright inequality
of Rudelson and Vershynin (2013) and a union bound, there exists a universal constant c > 0 such that, for any
unit vector u ∈ Sn−1 and any τ > 0,

Pr

max
u∈N

∣∣∣∣∣
d∑
j=1

λj(u
Tvj)

2 − ‖λ‖1

∣∣∣∣∣
2

≥ τ/2

 ≤ 2 · 9n · exp

−c ·min

{
τ2

v2‖λ‖22
,

τ

v‖λ‖∞

} .

The claim follows.

Lemma 9. Let θ be a uniformly random unit vector in Sm−1. For any unit vector u ∈ Sm−1, the random
variable uTθ is sub-Gaussian with parameter v = O(1/m). Moreover, for any matrix M ∈ Rm×m, we have

E
[
‖Mθ‖42

]
≤ C

m2
tr (M TM)

2

where C > 0 is a universal constant.

Proof. Let L be a χ random variable with m degrees-of-freedom, independent of θ, so the distribution of z := Lθ

is the standard Gaussian in Rm. Let µ := E[L] = E[L | θ] =
√

2Γ((m+1)/2)
Γ(m/2) = Ω(

√
m). By Jensen’s inequality,

for any t ∈ R,

E
[
exp(tuTθ)

]
= E

exp

((
t

µ
u

)T (
E[L | θ]θ

))
≤ E

exp

((
t

µ
u

)T

(Lθ)

)
= E

exp

((
t

µ
u

)T

z

)
= exp

(
t2

2µ2

)
.

It follows that uTθ is sub-Gaussian with parameter v = 1/µ2 = O(1/m).

Similarly, again by Jensen’s inequality,

µ4 · E
[
‖Mθ‖42

]
= E

[
E[L | θ]4‖Mθ‖42

]
≤ E

[
L4‖Mθ‖42

]
= E

[
‖Mz‖42

]
.

Furthermore, a direct computation shows that

E
[
‖Mz‖42

]
= 2 tr ((M TM)2) + tr (M TM)

2

≤ 3 tr (M TM)
2
.

The conclusion follows since µ4 = Ω(m2).


