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A More notation

We introduce some additional notation to be used in the Appendix. Denote y∗ = (f∗(x1), · · · , f∗(xn))> as the
the vector of underlying function’s functional values at sample points. Let Ir(x) = I{w>r x ≥ 0} and

z(x) =
1√
m

 a1I1(x)x
...

amIm(x)x

 ∈ Rmd×1. (A.1)

Thus, Z(k) = (z(x1), ...,z(xn))|W=W (k). When the context is clear, we omit the dimension and write Id as I.

B Proof of Lemma 3.1

We will use the following lemma, which states the Mercer decomposition of h as in (3.2).

Lemma B.1 (Mercer decomposition of NTK h). For any s, t ∈ Sd−1, we have the following decomposition of
the NTK,

h(s, t) =

∞∑
k=0

µk

N(d,k)∑
j=1

Yk,j(s)Yk,j(t),

where Yk,j , j = 1, ..., N(d, k) are spherical harmonic polynomials of degree k, and the non-negative eigenvalues µk
satisfy µk � k−d, and µk = 0 if k = 2j + 1 for k ≥ 2.

The proof of Lemma B.1 is similar to the proof of Proposition 5 in Bietti and Mairal [2019]. The difference is
that the Proposition 5 in Bietti and Mairal [2019] considers the kernel function

h1(s, t) = 4h(s, t) +

√
1− (s>t)2

π
,

and we only need to consider the kernel function h(s, t). A generalization of Proposition 5 in Bietti and Mairal
[2019] can be found in Theorem 3.5 of Cao et al. [2019].

Note that in the proof of Lemma B.1,

N(d, j) =
2j + d− 2

j

(
j + d− 3
d− 2

)
=

Γ(j + d− 2)

Γ(d− 1)Γ(j)
,

where Γ is the Gamma function. By the Stirling approximation, we have Γ(x) ≈
√

2πxx−1/2e−x. Therefore, we
have the number N(d, j) is equivalent to jd−2. Thus, by Lemma B.1, the j-th eigenvalue λj can be denoted by

λj = µl, for
l−1∑
i=1

N(d, 2i) ≤ j <
l∑
i=1

N(d, 2i),

which can be approximated by λj � µl, for (2l − 2)d−1 ≤ j < (2l)d−1. By Lemma B.1, we have µl � l−d, which
implies λj � j−

d
d−1 .
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C Proof of Theorem 3.2

Let G be a metric space equipped with a metric dg. The δ-covering number of the metric space (G, dg), denoted
by N(δ,G, dg), is the minimum integer N so that there exist N distinct balls in (G, dg) with radius δ, and the
union of these balls covers G. Let H(δ,G, dg) = logN(δ,G, dg) be the entropy of the metric space (G, dg). We first
present an upper bound on the entropy of the metric space (N , ‖·‖∞), where the proof can be found in Appendix
F.

Lemma C.1. Let N be the reproducing kernel Hilbert space generated by the NTK h defined in (3.2), equipped
with norm ‖·‖N . The entropy H(δ,N (1), ‖·‖∞) can be bounded by

H(δ,N (1), ‖·‖∞) ≤ A0δ
− 2(d−1)

d , (C.1)

where N (1) = {f : f ∈ N , ‖f‖N ≤ 1}, and A0 > 0 is a constant not depending on δ.

For the regression problem, consider a general penalized least-square estimator

f̂ := argmin
f∈N

(
1

n

n∑
i=1

(yi − f(xi))
2 + λ2

nI
v(f)

)
,

where λn > 0 is the smoothing parameter and I : N → [0,∞) is a pseudo-norm measuring the complexity. We
use the RKHS norm ‖f‖N in our case. Let ‖·‖n denote the empirical norm. The following lemma establishes the
rate of convergence for the estimator f̂ .

Lemma C.2 (Lemma 10.2 in van de Geer [2000]). Assume Gaussian noises and entropy bound H(δ,N (1), ‖·‖n) ≤
Aδ−α for some constants A > 0 and 0 < α < 2. If v ≥ 2α

2+α , I(f∗) > 0 and

λ−1
n = OP

(
n1/(2+α)

)
I(2v−2α+vα)/2(2+α)(f∗).

Then we have ∥∥∥f̂ − f∗∥∥∥
n

= OP(λn)Iv/2(f∗)

and I(f̂) = OP(1)I(f∗).

To bound the difference between empirical norm and L2 norm, we utilize the following lemma. For a class of
functions F , define for z > 0

J∞(z,F) := C0 inf
δ>0

[
z

∫ 1

δ/4

√
H∞(uz/2,F)du+

√
nδz

]
.

Lemma C.3 (Theorem 2.2 in van de Geer [2014]). Let

R := sup
f∈F
‖f‖2 , K := sup

f∈F
‖f‖∞

Then, for all t > 0, with probability at least 1− exp[−t],

sup
f∈F

∣∣∣∣‖f‖2n − ‖f‖22∣∣∣∣/C1 ≤
2RJ∞(K,F) +RK

√
t√

n
+

4J2
∞(K,F) +K2t

n

where C1 > 0 is some constant not depending on n.

Proof of Theorem 3.2. Consider our estimator f̂ as in (3.4), in which case, v = 2 and I(f) is the RKHS norm
of f . Since ‖f‖n ≤ ‖f‖∞, Lemma C.1 indicates that α = 2(d− 1)/d < 2. By choosing λn � n−d/(4d−2), which
corresponds to µ � n(d−1)/(2d−1) in (3.3), Lemma C.2 yields that∥∥∥f̂ − f∗∥∥∥2

n
= OP(n−d/(2d−1)) and

∥∥∥f̂∥∥∥2

N
= OP(1).
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Now we use Lemma C.3 to obtain a bound on
∥∥∥f̂ − f∗∥∥∥

2
. First consider {f − f∗ : f ∈ N (1)}, where N (1) = {f ∈

N , ‖f‖N ≤ 1}. Thus, we haveK,R = O(1). By the entropy bound in Lemma C.1, we have J∞(z,N (1)) ≤ 2C0z
1/d.

Therefore, Lemma C.3 yields

sup
f∈N (1)

∣∣∣∣‖f − f∗‖2n − ‖f − f∗‖22∣∣∣∣ = OP

(√
1

n

)
.

Combined with
∥∥∥f̂ − f∗∥∥∥2

n
= OP(n−d/(2d−1)), we can conclude that for any t > 0 large enough,

∥∥∥f̂ − f∗∥∥∥2

2
=

O(
√
t/n) with probability at least 1− exp(−t). Utilizing Lemma C.3 again with R = O(

√
t/n) we have for some

C > 0,

P

(
sup

f∈G(R)

∣∣∣∣‖f − f∗‖2n − ‖f − f∗‖22∣∣∣∣ ≤ Ct

n

)
≥ 1− e−t,

where G(R) := {f ∈ N (1) : ‖f − f∗‖2 ≤ R}. Notice that f̂ ∈ G(R) with probability at least 1 − exp(−t).

Therefore,
∥∥∥f̂ − f∗∥∥∥2

2
= O(n−d/(2d−1) + t/n) with probability at least 1− 2 exp(−t).

D Proofs of main theorems in Section 4

For brevity, let f̂k = fW (k),a. For two positive semidefinite matrices A and B, we write A ≥ B to denote that
A−B is positive semidefinite and A > B to denote that A−B is positive definite. This partial order of positive
semidefinite matrices is also known as Loewner order. We focus on the L2 loss of our estimator f̂k after k GD
updates. Let f̃ denote the kernel regression solution with kernel h(·, ·) that interpolates all {(xi, f∗(xi))}ni=1, i.e.,

g(x) = h(x,X)(H∞)−1y∗. (D.1)

We first provide some lemmas used in this section. The proofs of lemmas are presented in Appendix F. Lemma
D.1 states some basic inequalities that are also used in the proof of Theorem 5.1. Lemma D.2 provides the
convergence rate of interpolant using NTK. Lemmas D.3 can be found in Arora et al. [2019]. Lemma D.4 is
implied by the proof in Arora et al. [2019]. Lemma D.5 provides some bounds on the related quantities used in
the proofs of Theorems 4.1 and 5.2. Lemma D.6 provide some properties of Loewner order.

Lemma D.1. Let µ be as in Theorem 3.2. Then we have

h(s, s)− h(s,X)(H∞)−1h(X, s) ≥ 0,∫
x∈Ω

h(x,X)(H∞ + µI)−2h(X,x)dx =OP(n−
d

2d−1 ),∫
x∈Ω

h(x,x)− h(x,X)(H∞)−1h(X,x)dx =OP(n−
1

2d−1 ),

where h(x,X) = (h(x,x1), ..., h(x,xn)) and h(X,x) = h(x,X)>.

Lemma D.2. Assume the true function f∗ ∈ N with finite RKHS norm, then g(x) defined (D.1) satisfies

‖g − f∗‖2 = OP

(
n−1/2

)
.

Lemma D.3 (Lemma C.1 in Arora et al. [2019]). If λ0 = λmin(H∞) > 0, m = Ω
(

n6

λ4
0τ

2δ3

)
and η = O

(
λ0

n2

)
,

with probability at least 1− δ over the random initialization, we have

‖wr(k)−wr(0)‖2 ≤ R0, ∀ r ∈ [m],∀ k ≥ 0,

where R0 =
4
√
n‖y−u(0)‖2√

mλ0
.
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Lemma D.4 (Arora et al. [2019]). Denote ui(k) = fW (k),a(xi) to be the network’s prediction on the i-th input
and let u(k) = (u1(k), ..., un(k))> ∈ Rn denote all n predictions on the points x1, ...,xn at iteration k. We have

u(k)− y = (I − ηH∞)k(u(0)− y) + e(k)

where

‖e(k)‖2 = O

(
k

(
1− ηλ0

4

)k−1
ηn5/2 ‖y − u(0)‖22√

mλ0τδ

)
.

Lemma D.5. With probability at least 1− δ, we have

(a) ‖Z(k)−Z(0)‖F = O

(
n3/4‖y−u(0)‖1/22√

m1/2λ0τδ

)
;

(b) ‖H(0)−H∞‖F = O

(
n
√

log(n/δ)√
m

)
;

(c)
∥∥z0(·)>Z(0)− h(·,X)

∥∥
2

= O

(√
n
√

log(n/δ)√
m

)
;

(d)
∥∥z0(·)>vec(W (0))

∥∥
2

= O
(
τ
√

log(1/δ)
)
.

Lemma D.6 (Properties of Loewner order). For two positive semi-definite matrices A and B,

(a). Suppose A is non-singular, then A ≥ B ⇐⇒ λmax(BA−1) ≤ 1 and A > B ⇐⇒ λmax(BA−1) > 1, where
λmax(·) denotes the maximum eigenvalue of the input matrix.

(b). Suppose A, B and Q are positive definite, A and B are exchangeable, then A ≥ B =⇒ AQA ≥ BQB.

D.1 Proof of Theorem 4.1

For notational simplification, we use f̂k = fW (k),a. Define

f̃k(x) = vec(W (k))>z0(x), (D.2)

where z0(x) = z(x)|W=W (0). Then we can write the following decomposition

f̂k − f∗ = (f̂k − f̃k) + (f̃k − g) + (g − f∗) = ∆1 + ∆2 + ∆3, (D.3)

where g is as in (D.1).

Before the proof, we provide a road map of this proof. We first show that ‖∆1‖2 and ‖∆3‖2 are small. We then
show the term ‖∆2‖2 can be large if the iteration number is too small or too large. Intuitively, if the iteration
number if too small, the resulting estimator f̃k is not well-trained. On the other hand, if the iteration number is
too large, then the resulting estimator f̃k could be over-fitted. In either case, the error term ‖∆2‖2 is large.

It follows from Lemma D.2 that

‖∆3‖2 = OP

(√
1

n

)
. (D.4)

For ∆1, under the assumptions of Lemma D.3, with high probability, we have ‖wr(k)−wr(0)‖2 ≤ R0. Thus, for
fixed x, we have

|wr(k)>x−wr(0)>x| ≤ ‖wr(k)−wr(0)‖2 ‖x‖2 ≤ R0.

Define event

Br(x) = {|wr(0)>x| ≤ R0},∀r ∈ [m].
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If I{Br(x)} = 0, then we have Ir,k(x) = Ir,0(x), where Ir,k(x) = I{wr(k)>x ≥ 0}. Therefore, for any fixed x, we
have

|f̂k(x)− f̃k(x)| =

∣∣∣∣∣ 1√
m

m∑
r=1

ar(Ir,k(x)− Ir,0(x))wr(k)>x

∣∣∣∣∣
=

∣∣∣∣∣ 1√
m

m∑
r=1

arI{Br(x)}(Ir,k(x)− Ir,0(x))wr(k)>x

∣∣∣∣∣
≤ 1√

m

m∑
r=1

I{Br(x)}|wr(k)>x|

≤ 1√
m

m∑
r=1

I{Br(x)}
(
|wr(0)>x|+ |wr(k)>x−wr(0)>x|

)
≤ 2R0√

m

m∑
r=1

I{Br(x)}

Recall that ‖x‖2 = 1, which implies that wr(0)>x is distributed as N(0, τ2). Therefore, we have

E[I{Br(x)}] = P
(
|wr(0)>x| ≤ R0

)
=

∫ R0

−R0

1√
2πτ

exp

{
− u2

2τ2

}
du ≤ 2R0√

2πτ
.

By Markov’s inequality, with probability at least 1− δ, we have

m∑
r=1

I{Br(x)} ≤ 2mR0√
2πτδ

.

Thus, we have

‖∆1‖2 ≤
2R0√
m

∥∥∥∥∥
m∑
r=1

I{Br(·)}

∥∥∥∥∥
2

≤ 4
√
mR2

0√
2πτδ

= O

(
n ‖y − u(0)‖22√

mτλ2
0δ

)
. (D.5)

Next, we evaluate ∆2. Recall that the GD update rule is

vec(W (j + 1)) = vec(W (j))− ηZ(j)(u(j)− y), j ≥ 0.

Applying Lemma D.4, we can get

vec(W (k))− vec(W (0))

=

k−1∑
j=0

(vec(W (j + 1))− vec(W (j)))

=−
k−1∑
j=0

ηZ(j)(u(j)− y)

=

k−1∑
j=0

ηZ(j)(I − ηH∞)j(y − u(0))−
k−1∑
j=0

ηZ(j)e(j)

=

k−1∑
j=0

ηZ(0)(I − ηH∞)j(y − u(0)) +

k−1∑
j=0

η(Z(j)−Z(0))(I − ηH∞)j(y − u(0))−
k−1∑
j=0

ηZ(j)e(j)

=

k−1∑
j=0

ηZ(0)(I − ηH∞)j(y − u(0)) + ζ(k).
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For the first term of ζ(k), applying Lemma D.5 (a), with probability at least 1− δ, we get∥∥∥∥∥∥
k−1∑
j=0

η(Z(j)−Z(0))(I − ηH∞)j(y − u(0))

∥∥∥∥∥∥
2

≤
k−1∑
j=0

O

(
n3/4 ‖y − u(0)‖1/22√

m1/2λ0τδ

)
η ‖I − ηH∞‖j2 ‖(y − u(0))‖2

≤O

(
n3/4 ‖y − u(0)‖3/22√

m1/2λ0τδ

)
k−1∑
j=0

η(1− ηλ0)j

=O

(
n3/4 ‖y − u(0)‖3/22

m1/4τ1/2λ
3/2
0 δ1/2

)
.

Denote that zi(j) = z(xi)|W=W (j). By (A.1), we have ‖zi(j)‖2 ≤ 1. Thus,

‖Z(j)‖F =

(
n∑
i=1

‖zi(j)‖22

) 1
2

≤
√
n ,∀ j ≥ 0. (D.6)

For the second term of ζ(k), we have∥∥∥∥∥∥
k−1∑
j=0

ηZ(j)e(j)

∥∥∥∥∥∥
2

≤
k−1∑
j=0

η ‖Z(j)‖F ‖e(j)‖2

≤
k−1∑
j=0

η
√
nO

(
j

(
1− ηλ0

4

)j−1
ηn5/2 ‖y − u(0)‖22√

mτλ0δ

)

=O

(
n3 ‖y − u(0)‖22√

mλ3
0τδ

)
.

Therefore,

‖ζ(k)‖2 = O

(
n3/4 ‖y − u(0)‖3/22

m1/4τ1/2λ
3/2
0 δ1/2

)
+O

(
n3 ‖y − u(0)‖22√

mλ3
0τδ

)
. (D.7)

Define Gk =
∑k−1
j=0 η(I − ηH∞)j . Recalling that y = y∗ + ε, for fixed x, we have

f̃k(x)− g(x) =z0(x)>vec(W (k))− h(x,X)(H∞)−1y∗

=z0(x)>
[
Z(0)Gk(y − u(0)) + ζ(k) + vec(W (0))

]
=
[
h(x,X)(Gk − (H∞)−1)y∗ + h(x,X)Gkε

]
+
[
z0(x)>Z(0)− h(x,X)

]
Gky

+
[
z0(x)>vec(W (0)) + z0(x)>ζ(k)− z0(x)>Z(0)Gku(0)

]
=∆21(x) + ∆22(x) + ∆23(x). (D.8)

Using Lemma D.5 (c), we can bound ∆22 as

‖∆22‖2 ≤
∥∥z0(x)>Z(0)− h(x,X)

∥∥
2
‖Gky‖2

≤O

(√
n
√

log(n/δ)√
m

)∥∥(H∞)−1y
∥∥

2

=O

(√
n
√

log(n/δ) ‖y‖2√
mλ0

)
. (D.9)
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Since the i-th coordinate of u(0) is

ui(0) = z0(xi)
>vec(W (0)) =

m∑
r=1

arw(0)>xiI{w(0)>xi},

where ar ∼ unif{1,−1} and w(0)>xi ∼ N(0, τ2), it is easy to prove that ui(0) has zero mean and variance τ2. This
implies E[‖u(0)‖22] = O(nτ2). By Markov’s inequality, with probability at least 1−δ, we have ‖u(0)‖2 = O

(√
nτ
δ

)
.

Similar to (D.6), we can obtain ‖Z(0)‖F = O(
√
n). Thus,

|z0(x)>Z(0)Gku(0)| ≤ ‖z0(x)‖2 ‖Z(0)‖F ‖Gku(0)‖2 ≤
√
n
∥∥(H∞)−1u(0)

∥∥
2

= O

(
nτ

λ0δ

)
. (D.10)

Combining Lemma D.5 (d), (D.7) and (D.10), we obtain

‖∆23‖2 ≤
∥∥z0(·)>vec(W (0))

∥∥
2

+ ‖z0(·)‖2 ‖ζ(k)‖2 +
∥∥z0(·)>Z(0)Gku(0)

∥∥
2

=O
(
τ
√

log(1/δ)
)

+O

(
n3/4 ‖y − u(0)‖3/22

m1/4τ1/2λ
3/2
0 δ1/2

)
+O

(
n3 ‖y − u(0)‖22√

mλ3
0τδ

)
+O

(
nτ

λ0δ

)

=O

(
n3/4 ‖y − u(0)‖3/22

m1/4τ1/2λ
3/2
0 δ1/2

)
+O

(
n3 ‖y − u(0)‖22√

mλ3
0τδ

)
+O

(
nτ

λ0δ

)
. (D.11)

By (D.3) and (D.8), we can rewrite f̂k − f∗ as

f̂k − f∗ = ∆21 + (∆1 + ∆3 + ∆22 + ∆23) := ∆21 + Ξ,

Next we show that the expected value of ‖Ξ‖22 over noise, Eε ‖Ξ‖22, is small. Note that we have

Eε ‖y‖22 = Eε ‖y∗ + ε‖22 ≤ 2y∗>y∗ + 2Eεε>ε = O(n). (D.12)

By Markov’s inequality, with probability 1− δ over random initialization, we have

Eε ‖y − u(0)‖2 ≤
(
Eε ‖y − u(0)‖22

) 1
2

≤

(
3EW (0),a

[
u(0)>u(0) + y∗>y∗ + Eεε>ε

]
δ

) 1
2

=O

(√
n(1 + τ2)

δ

)
= O

(√
n

δ

)
, (D.13)

where the last equality of D.13 is because τ2 . 1. By (D.4), (D.5), (D.9), (D.11), (D.12) and (D.13), Eε ‖Ξ‖22
can be upper bounded as

Eε ‖Ξ‖22 ≤4Eε(‖∆1‖22 + ‖∆3‖22 + ‖∆22‖22 + ‖∆23‖22)

=Eε

[
O

(
n2 ‖y − u(0)‖42

mτ2λ4
0δ

2

)
+O

(
1

n

)
+O

(
n log(n/δ) ‖y‖22

mλ2
0

)]
+ 4Eε ‖∆23‖22

≤O
(

n4

mτ2λ4
0δ

4

)
+O

(
1

n

)
+O

(
n2 log(n/δ)

mλ2
0δ

)
+O

(
n2τ2

λ2
0δ

2

)
+

+ Eε

[
O

(
n3/2 ‖y − u(0)‖32

m1/2τλ3
0δ

)
+O

(
n6 ‖y − u(0)‖42

mτ2λ6
0δ

2

)]

=O

(
n4

mτ2λ4
0δ

4

)
+O

(
1

n

)
+O

(
n2 log(n/δ)

mλ2
0δ

)
+O

(
n2τ2

λ2
0δ

2

)
+O

(
n3

√
mτλ3

0δ
5/2

)
+O

(
n8

mτ2λ6
0δ

4

)

=O

(
1

n

)
+O

(
n2τ2

λ2
0δ

2

)
+

poly
(
n, 1

λ0
, 1
δ

)
m

1
2 τ

.
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In the following, we will evaluate ∆21 and discuss how the iteration number k would affect the L2 estimation

error
∥∥∥f̂k − f∗∥∥∥2

2
.

Case 1: The iteration number k cannot be too small By taking expectation of ‖∆21‖22 over the noise,
we have

Eε ‖∆21‖22 =

∫
x∈Ω

h(x,X)
[
(H∞)−1 −Gk)y∗y∗>((H∞)−1 −Gk) +G2

k

]
h(X,x)dx

=

∫
x∈Ω

h(x,X)(H∞)−1Mk(H∞)−1h(X,x)dx,

where

Mk =(I − ηH∞)kS(I − ηH∞)k + (I − (I − ηH∞)k)2

=[(I − ηH∞)k − (S + I)−1](S + I)[(I − ηH∞)k − (S + I)−1] + I − (S + I)−1 (D.14)

and S = y∗y∗>. If k ≥ C0

(
logn
ηλ0

)
for some constant C0 > 1, we have

(I − ηH∞)k ≤ (1− ηλ0)kI ≤ exp{−ηλ0k}I ≤ exp{−C0 log n}I =
1

nC0
I,

Since 1 + ‖y∗‖22 ≤ C1n for some constant C1, we have

λmax

(
1

nC0
(S + I)

)
=

1 + ‖y∗‖22
nC0

≤ C1

nC0−1
< 1.

By Lemma D.6 (a), we have

(I − ηH∞)k ≤ 1

nC0
I < (S + I)−1.

Therefore, we have

(S + I)−1 − (I − ηH∞)k ≥ (S + I)−1 − 1

nC0
I,

where (S + I)−1 − (I − ηH∞)k and (S + I)−1 − n−C0I are positive definite matrices. It is also obvious that the
two matrices are exchangeable. By Lemma D.6 (b) and (D.14), we have

Mk ≥
(

1− 1

nC0

)2

I +
1

n2C0
S.

Then we have

Eε ‖∆21‖22 ≥
(

1− 1

nC0

)2

I1 +
1

n2C0
I2 ≥ c0I1

where c0 ∈ (0, 1) is a constant,

I1 =

∫
h(x,X)(H∞)−2h(X,x)dx, and I2 =

∫
[h(x,X)(H∞)−1y∗]2dx.

By the Cauchy-Schwarz inequality, we have

Eε
∥∥∥f̂k − f∗∥∥∥2

2
=Eε ‖∆21 + Ξ‖22

≥1

2
Eε ‖∆21‖22 − Eε ‖Ξ‖22

≥c0
2
I1 −O

(
1

n

)
−O

(
n2τ2

λ2
0δ

2

)
−

poly
(
n, 1

λ0
, 1
δ

)
m

1
2 τ

. (D.15)
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Let τ ≤ C3
λ0δ
n

∥∥(H∞)−1h(X, ·)
∥∥

2
for some constant C3 > 0 such that the third term of (D.15) is bounded by

c0
4

∥∥(H∞)−1h(X, ·)
∥∥2

2
. Therefore, Eε

∥∥∥f̂k − f∗∥∥∥2

2
can be lower bounded as

Eε
∥∥∥f̂k − f∗∥∥∥2

2
≥ C∗1

∥∥(H∞)−1h(X, ·)
∥∥2

2
−O

(
1

n

)
, (D.16)

where C∗1 > 0 is a constant. Note that I1 is Eε
∥∥∥f̂∞ − g∗∥∥∥2

2
, where g∗ ≡ 0 and f̂∞ is the interpolated estimator

of g∗, as in Theorem 4.2. Therefore, by Theorem 4.2, there exists a constant c1 such that Eε
∥∥∥f̂∞ − g∗∥∥∥2

2
≥ c1,

which implies I1 ≥ c1. Taking n large enough such that the second term in (D.16) is smaller than C∗1 c1, we finish
the proof of the case that k is large.

Case 2: The iteration number k cannot be too large We can rewrite ∆21 as

∆21 =h(x,X)Gk(y∗ + ε)− h(x,X)(H∞)−1y∗

=∆∗21 − h(x,X)(H∞)−1y∗.

Since

Gk =

k−1∑
j=0

η(I − ηH∞)j =

k−1∑
j=0

η

n∑
i=1

(1− ηλi)jviv>i ≤ ηkI,

we have

Eε ‖∆∗21‖
2
2 =

∫
x∈Ω

h(x,X)Gk(S + I)Gkh(X,x)dx

≤η2k2

∫
x∈Ω

h(x,X)(S + I)h(X,x)dx

=η2k2

(∫
x∈Ω

[
h(x,X)y∗

]2
dx+ ‖h(·,X)‖22

)
=O

(
η2k2n2

)
.

Therefore,

Eε
∥∥∥f̂k − f∗∥∥∥2

2
=Eε

∥∥∆∗21 + Ξ− h(·,X)(H∞)−1y∗
∥∥2

2

≥1

2

∥∥h(·,X)(H∞)−1y∗
∥∥2

2
− Eε ‖∆∗21 + Ξ‖22

≥1

2

∥∥h(·,X)(H∞)−1y∗
∥∥2

2
− 2Eε ‖∆∗21‖

2
2 − 2Eε ‖Ξ‖22

≥1

2

∥∥h(·,X)(H∞)−1y∗
∥∥2

2
−O

(
η2k2n2

)
−O

(
1

n

)
−O

(
n2τ2

λ2
0δ

2

)
−

poly
(
n, 1

λ0
, 1
δ

)
m

1
2 τ

. (D.17)

Let k ≤ C1

(
1
ηn

)
for some constant C1 > 0 such that the the second term of (D.17) can be bounded by

1
8

∥∥h(·,X)(H∞)−1y∗
∥∥2

2
. Let τ ≤ C2

(
δλ0

n

)
for some constant C2 > 0 such that the fourth term in (D.17) can

be bounded by 1
8

∥∥h(·,X)(H∞)−1y∗
∥∥2

2
. Note that we can also choose m such that the fifth term in (D.17) is

bounded by 1
8

∥∥h(·,X)(H∞)−1y∗
∥∥2

2
. Therefore, we have

Eε
∥∥∥f̂k − f∗∥∥∥2

2
≥C∗2

∥∥h(·,X)(H∞)−1y∗
∥∥2

2
−O

(
1

n

)
≥C∗3 ‖f∗‖

2
2 −O

(
1

n

)
, (D.18)

where the last inequality is because of Lemma D.2, and C∗2 > 0 is a constant. By taking n large enough such that
the second term in (D.18) is smaller than C∗3 ‖f∗‖

2
2 /2, we finish the proof.
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D.2 Proof of Theorem 4.2

Let’s first introduce the GD update for the kernel ridge regression. By the representer theorem [Kimeldorf and
Wahba, 1971], the kernel estimator can be written as

f̂(x) =

n∑
i=1

ωih(x,xi) := h(x,X)ω,

where ω = (ω1, . . . , ωn) is the coefficient vector. Consider using the squared loss

Φ(ω) =
1

2

n∑
i=1

(f̂(xi)− yi)2.

Let ωk be the ω at the k-th GD iteration and choose ω0 = 0. Then, the GD update rule for estimating ω can be
expressed as

ωk+1 = ωk − η
(
(H∞)2ω −H∞y

)
(D.19)

In the formulation of the stopping rule, two quantities play an important role: first, the running sum of the
step sizes αj :=

∑j
i=0 ηi, and secondly, the eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0 of the empirical kernel matrix

H∞, which are computable from the data. Recall the definition of the optimal stopping time k∗ as in (4.2). The
following lemma establishes the L2 estimation results for f̂k∗ for kernels with polynomial eigendecay.

Lemma D.7 (Corollary 1 in Raskutti et al. [2014]). Suppose that variables {xi}ni=1 are sampled i.i.d. and the
kernel class N satisfies the polynomial eigenvalue decay λj . j−2ν for some ν > 1/2. Then there is a universal
constant C such that

E
∥∥∥f̂k∗ − f∗∥∥∥2

2
≤ C

(
σ2

n

) 2ν
2ν+1

.

Moreover, if λj � j−2ν for all j = 1, 2, . . ., then for all iterations k = 1, 2, . . .,

E
∥∥∥f̂k∗ − f∗∥∥∥2

2
≥ σ2

4
min

{
1,

(αk)
1
2ν

n

}
.

By Lemma 3.1, apply Lemma D.7 with 2ν = d/(d− 1) and the running sum of the step sizes αk = kη gives the
convergence rate.

Moreover, if k → ∞, i.e., interpolation of training data, the lower bound result in Lemma D.7 implies
E
∥∥fT̂ − f∗∥∥2

2
& σ2 that doesn’t converge to 0.

E Proofs of main theorems in Section 5

E.1 Proof of Theorem 5.1

Let uD(l) = (uD,1(l), ..., uD,n(l))> ∈ Rn be the predictions on the points x1, ...,xn using the modified GD at the
k-th iteration. The idea of the proof is to establish a relationship between y − uD(l) and y − uD(l + 1) for all
l = 0, 1, ..., so that we can obtain a relationship between uD(l+ 1) and uD(0). Based on this relationship, we can
show that uD(l + 1) is close to H∞(CµI +H∞)−1y, which is f̂ .

Consider event

Air = {∃w ∈ Rd :
∥∥w − (1− η2µ)kwr(0)

∥∥
2
≤ R, I{x>i wr(0) ≥ 0} 6= I{x>i w ≥ 0}},

where R will be determined later. Set Si = {r ∈ [m] : I{Air} = 0} and S⊥i = [m]\Si. Then Air happens if and
only if |wr(0)>xi| < R/(1− η2µ)k. By concentration inequality of Gaussian, we have P(Air) = P(|wr(0)>xi| <
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R/(1− η2µ)k ≤ 2R√
2πτ(1−η2µ)k

. Thus, it follows the union bound inequality that with probability at least 1− δ we
have

n∑
i=1

|S⊥i | ≤
CmnR

δ(1− η2µ)k
, (E.1)

where C is a positive constant.

We first study the difference between two predictions uD(l + 1) and uD(l). For any i ∈ [n], we have

uD,i(l + 1)− (1− η2µ)uD,i(l) =
1√
m

m∑
r=1

ar(σ(wD,r(l + 1)>xi)− (1− η2µ)σ(wD,r(l)
>xi))

=
1√
m

∑
r∈S⊥i

ar(σ(wD,r(l + 1)>xi)− (1− η2µ)σ(wD,r(l)
>xi))

+
1√
m

∑
r∈Si

ar(σ(wD,r(l + 1)>xi)− (1− η2µ)σ(wD,r(l)
>xi))

=I1,i(l) + I2,i(l). (E.2)

The first term I1,i(l) can be bounded by

I1,i(l) =
1√
m

∑
r∈S⊥i

ar(σ(wD,r(l + 1)>xi)− (1− η2µ)σ(wD,r(l)
>xi))

≤ 1√
m

∑
r∈S⊥i

∣∣(wD,r(l + 1)− (1− η2µ)wD,r(l))
>xi

∣∣
≤ 1√

m

∑
r∈S⊥i

‖wD,r(l + 1)− (1− η2µ)wD,r(l)‖2

=
1√
m

∑
r∈S⊥i

∥∥∥∥∥∥ η1√
m
ar

n∑
j=1

(uD,j(l)− yj)Ir,j(l)xj

∥∥∥∥∥∥
2

≤η1

m

∑
r∈S⊥i

n∑
j=1

|uD,j(l)− yj |

≤η1
√
n|S⊥i |
m

‖uD(l)− y‖2 . (E.3)

In (E.3), the second and the last inequalities are by the Cauchy-Schwarz inequality. The second term I2,i(l) can
be bounded by

I2,i(l) =
1√
m

∑
r∈Si

ar(σ(wD,r(l + 1)>xi)− (1− η2µ)σ(wD,r(l)
>xi))

=
1√
m

∑
r∈Si

arIr,i(l)(wD,r(l + 1)− (1− η2µ)wD,r(l))
>xi

=− 1√
m

∑
r∈Si

arIr,i(l)

 η1√
m
ar

n∑
j=1

(uD,j(l)− yj)Ir,j(l)xj

> xi
=− η1

m

n∑
j=1

(uD,j(l)− yj)x>j xi
∑
r∈Si

Ir,i(l)Ir,j(l)

=− η1

n∑
j=1

(uD,j(l)− yj)Hij(l) + I3,i(l), (E.4)
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where

I3,i(l) =
η1

m

n∑
j=1

(uD,j(l)− yj)x>j xi
∑
r∈S⊥i

Ir,i(l)Ir,j(l).

The term I3,i(l) in (E.4) can be bounded by

|I3,i(l)| ≤

∣∣∣∣∣∣η1

m

n∑
j=1

(uD,j(l)− yj)x>j xi
∑
r∈S⊥i

Ir,i(l)Ir,j(l)

∣∣∣∣∣∣
≤η1

m
|S⊥i |

n∑
j=1

|uD,j(l)− yj |

≤η1
√
n|S⊥i |
m

‖uD(l)− y‖2 . (E.5)

Plugging (E.3) and (E.4) into (E.2), we have

uD,i(l + 1)− (1− η2µ)uD,i(l) = −η1

n∑
j=1

(uD,j(l)− yj)Hij(l) + I1,i(l) + I3,i(l),

which leads to

uD(l + 1)− (1− η2µ)uD(l) = −η1H(l)(uD(l)− y) + I(l), (E.6)

where I(l) = (I1,1(l) + I3,1(l), ..., I1,n(l) + I3,n(l))>. By the triangle inequality, we have

‖uD(l + 1)− (1− η2µ)uD(l)‖2 ≤‖η1H(l)(uD(l)− y)‖2 + ‖I(l)‖2 . (E.7)

By (E.1), (E.3), and (E.5), the term ‖I(l)‖2 in (E.7) can be bounded by

‖I(l)‖2 ≤
n∑
i=1

|I3,i(l)|+ |I1,i(l)| ≤
n∑
i=1

2η1
√
n|S⊥i |
m

‖uD(l)− y‖2

≤2η1
√
n

m

CmnR

δ(1− η2µ)k
‖uD(l)− y‖2 =

2Cη1n
3/2R

δ(1− η2µ)k
‖uD(l)− y‖2 . (E.8)

Gershgorin’s theorem [Varga, 2010] implies

λmax(H(l)) ≤ max
j

n∑
i=1

Hij(l) ≤ n.

Therefore, the term ‖η1H(l)(uD(l)− y)‖2 in (E.7) can be bounded by

‖η1H(l)(uD(l)− y)‖2 ≤ η1λmax(H(l)) ‖uD(l)− y‖2 ≤ η1n ‖uD(l)− y‖2 . (E.9)

By (E.7) and (E.8), ‖y − uD(l + 1)‖2 can be bounded by

‖y − uD(l + 1)‖22 = ‖y − (1− η2µ)uD(l)‖22 − 2(y − (1− η2µ)uD(l))>(uD(l + 1)− (1− η2µ)uD(l))

+ ‖uD(l + 1)− (1− η2µ)uD(l)‖22
= ‖y − (1− η2µ)uD(l)‖22 + 2η1(y − (1− η2µ)uD(l))>H(l)(uD(l)− y)

− 2η1(y − (1− η2µ)uD(l))>I(l) + ‖uD(l + 1)− (1− η2µ)uD(l)‖22
=T1 + T2 + T3 + T4. (E.10)

The first term T1 can be bounded by

T1 = ‖y − (1− η2µ)uD(l)‖22
=η2

2µ
2 ‖y‖22 + (1− η2µ)2 ‖y − uD(l)‖22 + 2η2µ(1− η2µ)y>(y − uD(l))

≤(η2
2µ

2 + η2µ) ‖y‖22 + (1 + η2µ)(1− η2µ)2 ‖y − uD(l)‖22 . (E.11)
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The second term T2 can be bounded by

T2 =2η1(y − (1− η2µ)uD(l))>H(l)(uD(l)− y)

=2η1(1− η2µ)(y − uD(l))>H(l)(uD(l)− y) + 2η1η2µy
>H(l)(uD(l)− y)

=− 2η1(1− η2µ)(y − uD(l))>H(l)(y − uD(l)) + 2η1η2µy
>H(l)(uD(l)− y)

≤4η1η2µn ‖y‖22 + 4η1η2µn ‖uD(l)− y‖22 . (E.12)

Using (E.8), the third term T3 can be bounded by

T3 =− 2η1(y − (1− η2µ)uD(l))>I(l)

=− 2η1(1− η2µ)(y − uD(l))>I(l) + 2η1η2µy
>I(l)

≤2η1(1− η2µ)
2Cη1n

3/2R

δ(1− η2µ)k
‖uD(l)− y‖2 + 4η1η2µ ‖y‖22 + 4η1η2µ ‖I(l)‖22

≤2η1(1− η2µ)
2Cη1n

3/2R

δ(1− η2µ)k
‖uD(l)− y‖22 + 4η1η2µ ‖y‖22 + 4η1η2µ

(
2Cη1n

3/2R

δ(1− η2µ)k

)2

‖uD(l)− y‖22 . (E.13)

The fourth term T4 can be bounded by

T4 = ‖uD(l + 1)− (1− η2µ)uD(l)‖22
≤2 ‖η1H(l)(uD(l)− y)‖22 + 2 ‖I(l)‖22

≤2η2
1n

2 ‖uD(l)− y‖22 + 2

(
2Cη1n

3/2R

δ(1− η2µ)k

)2

‖uD(l)− y‖22 . (E.14)

Plugging (E.11) - (E.14) into (E.10), we have

‖y − uD(l + 1)‖22
≤(η2

2µ
2 + η2µ) ‖y‖22 + (1 + η2µ)(1− η2µ)2 ‖y − uD(l)‖22 + 4η1η2µn ‖y‖22 + 4η1η2µn ‖uD(l)− y‖22

+ 2η1(1− η2µ)
2Cη1n

3/2R

δ(1− η2µ)k
‖uD(l)− y‖22 + 4η1η2µ ‖y‖22 + 4η1η2µ

(
2Cη1n

3/2R

δ(1− η2µ)k

)2

‖uD(l)− y‖22

+ 2η2
1n

2 ‖uD(l)− y‖22 + 2

(
2Cη1n

3/2R

δ(1− η2µ)k

)2

‖uD(l)− y‖22

=a1 ‖y‖22 + a2 ‖uD(l)− y‖22 , (E.15)

where

a1 =(η2
2µ

2 + η2µ) + 4η1η2µn+ 4η1η2µ ≤ 2η2µ+ 8η1η2µn,

a2 =(1 + η2µ)(1− η2µ)2 + 4η1η2µn+ 2η1(1− η2µ)
2Cη1n

3/2R

δ(1− η2µ)k

+ 4η1η2µ

(
2Cη1n

3/2R

δ(1− η2µ)k

)2

+ 2η2
1n

2 + 2

(
2Cη1n

3/2R

δ(1− η2µ)k

)2

≤1−
(
η2µ− 4η1η2µn− 2η1

2Cη1n
3/2R

δ(1− η2µ)k
− 2η2

1n
2

)
=1− ν0.

By the conditions imposed on η1, η2, µ,m, the dominating terms in a1 and ν0 are both η2µ. Thus a1 = o(1/n),
ν0 = o(1/n) and a1/ν0 = O(1). Using (E.15) iteratively, we have

‖y − uD(l + 1)‖22 ≤a1 ‖y‖22 + a2 ‖uD(l)− y‖22

≤... ≤
l∑
i=0

(1− ν0)i(a1 ‖y‖22) + (1− ν0)l+1 ‖y − uD(0)‖22 (E.16)

≤
a1 ‖y‖22
ν0

+ (1− ν0)l+1 ‖y − uD(0)‖22 . (E.17)
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By the modified GD rule, we have

wD,r(l + 1)− (1− η2µ)wD,r(l) =− η1√
m
ar

n∑
j=1

(uD,j(l)− yj)Ir,j(l)xj ,

which implies

‖wD,r(l + 1)− (1− η2µ)wD,r(l)‖2 ≤
η1
√
n√
m
‖uD(l)− y‖2 ≤

Cη1n√
m

(E.18)

for some constant C. Using (E.18) iteratively yields∥∥wD,r(l + 1)− (1− η2µ)l+1wD,r(0)
∥∥

2

≤‖wD,r(l + 1)− (1− η2µ)wD,r(l)‖2 +
∥∥(1− η2µ)wD,r(0)− (1− η2µ)l+1wD,r(l)

∥∥
2

≤Cη1n√
m

+ (1− η2µ)
∥∥wD,r(l)− (1− η2µ)lwD,r(0)

∥∥
2

≤... ≤
l∑
i=0

(1− η2µ)i
Cη1n√
m
≤ Cη1n

η2µ
√
m
. (E.19)

By similar approach as in the proof of Lemma C.2 of Du et al. [2018], we can show that with probability at least
1− δ with respect to random initialization,

‖Z(l)−Z(0)‖2F ≤
2nR√

2πτδ(1− η2µ)k
+
n

m
= O

(
η1n

2

(1− η2µ)kη2µ
√
mδ3/2τ

)
,∀l ∈ [k],

and

‖H(l)−H(0)‖F ≤
4n2R√

2πτ
+

2n2δ

m
= O

(
η1n

3

(1− η2µ)kη2µ
√
mδ3/2τ

)
,∀l ∈ [k].

By Lemma C.3 of Du et al. [2018], we have with probability at least 1− δ with respect to random initialization,

‖H(0)−H∞‖F = O

(
n
√

log(n/δ)√
m

)
. (E.20)

By (E.6), we have

uD(l + 1)− (1− η2µ)uD(l) =− η1H(l)(uD(l)− y) + I(l)

=− η1H
∞(uD(l)− y) + I(l)− η1(H(l)−H∞)(uD(l)− y),

which yields

uD(l + 1)−B = ((1− η2µ)I − η1H
∞) (uD(l)−B) + I(l)− η1(H(l)−H∞)(uD(l)− y), (E.21)

where

B = (η2µI + η1H
∞)−1η1H

∞y = η1H
∞(η2µI + η1H

∞)−1y. (E.22)

Iteratively using (E.21), we have

uD(l + 1)−B = ((1− η2µ)I − η1H
∞)

l+1
(uD(0)−B)

+

l∑
i=0

((1− η2µ)I − η1H
∞)

i
(I(l − i)− η1(H(l − i)−H∞)(uD(l − i)− y))

= ((1− η2µ)I − η1H
∞)

l+1
(uD(0)−B) + el, (E.23)
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where

el =

l∑
i=0

((1− η2µ)I − η1H
∞)

i
(I(l − i)− η1(H(l − i)−H∞)(uD(l − i)− y)). (E.24)

The term el can be bounded by

‖el‖2 =

∥∥∥∥∥
l∑
i=0

((1− η2µ)I − η1H
∞)

i
(I(l − i)− η1(H(l − i)−H∞)(uD(l − i)− y))

∥∥∥∥∥
2

≤
l∑
i=0

‖(1− η2µ)I − η1H
∞‖i2 (‖I(l − i)‖2 + η1 ‖H(l − i)−H∞‖2 ‖uD(l − i)− y‖2)

≤
l∑
i=0

(1− η2µ)iO

(
2Cη2

1n
5/2

η2µ
√
mδ3/2(1− η2µ)k

+
η2

1n
7/2

(1− η2µ)kη2µ
√
mδ2τ

)
=O

(
η2

1n
7/2

η2
2µ

2
√
mδ2(1− η2µ)kτ

)
. (E.25)

By (E.23) and taking l = k − 1, with probability at least 1 − δ with respect to the random initialization, the
difference uD(k)−B can be bounded by

‖uD(k)−B‖2 ≤
∥∥∥((1− η2µ)I − η1H

∞)
k

(uD(0)−B)
∥∥∥

2
+ ‖ek‖2

=O

(√
n(1− η2µ− η1λ0)k +

n7/2

µ2
√
mδ2(1− η2µ)kτ

)
=O

(√
n(1− η2µ)k +

n7/2

µ2
√
mδ2(1− η2µ)kτ

)
.

This implies that

‖uD(k)−B‖2 = OP

(√
n(1− η2µ)k +

n7/2

µ2
√
m(1− η2µ)kτ

)
.

By choosing m = poly(n, 1/τ, 1/λ0) such that n7/2

µ2
√
m(1−η2µ)kτ

≤
√
n(1− η2µ)k, we finish the proof of (5.3).

Now consider vec(WD(l + 1)). Direct calculation shows that

vec(WD(l + 1)) =(1− η2µ)vec(WD(l))− η1Z(l)(uD(l)− y)

=(1− η2µ)vec(WD(l))− η1Z(0)(uD(l)− y)− η1(Z(l)−Z(0))(uD(l)− y)

=(1− η2µ)l+1vec(WD(0))− η1Z(0)

l∑
i=0

(1− η2µ)i(uD(l − i)− y)

−
l∑
i=0

(1− η2µ)iη1(Z(l)−Z(0))(uD(l)− y). (E.26)

Plugging

uD(l + 1) = ((1− η2µ)I − η1H
∞)

l+1
(uD(0)−B) + el +B
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into (E.26), we have

vec(WD(l + 1))− (1− η2µ)l+1vec(WD(0))

=− η1Z(0)

l∑
i=0

(1− η2µ)i ((1− η2µ)I − η1H
∞)

l−i
(uD(0)−B)

− η1Z(0)

l∑
i=0

(1− η2µ)i(el−i−1 +B − y)−
l∑
i=0

(1− η2µ)iη1(Z(l)−Z(0))(uD(l)− y)

=η1Z(0)

l∑
i=0

(1− η2µ)i ((1− η2µ)I − η1H
∞)

l−i
η1H

∞(η2µI + η1H
∞)−1y

− η1Z(0)

l∑
i=0

(1− η2µ)i ((1− η2µ)I − η1H
∞)

l−i
uD(0)

− η1Z(0)

l∑
i=0

(1− η2µ)iel−i−1 − η1Z(0)

l∑
i=0

(1− η2µ)i(B − y)

−
l∑
i=0

(1− η2µ)iη1(Z(l)−Z(0))(uD(l)− y)

=E1 − E2 + E3 − T5 − E4. (E.27)

Let

Tl =

l∑
i=0

(1− η2µ)i ((1− η2µ)I − η1H
∞)

l−i

=(1− η2µ)l
l∑
i=0

(
I − η1

(1− η2µ)
H∞

)i
(E.28)

and

a1 =η1H
∞(η2µI + η1H

∞)−1y. (E.29)

The first term E1 can be bounded by

‖E1‖22 = ‖η1Z(0)Tla1‖22
=η2

1a
>
1 TlZ(0)>Z(0)Tla1

=η2
1a
>
1 TlH

∞Tla1 + η2
1a
>
1 Tl(H(0)−H∞)Tla1

=η2
1a
>
1 TlH

∞Tla1 + η2
1O

(
n
√

log(n/δ)√
m

)
a>1 T

2
l a1. (E.30)

By (E.28), we have

Tl =(1− η2µ)l
n∑
j=1

1− (1− η1
(1−η2µ)λj)

l+1

η1
(1−η2µ)λj

vjv
>
j �

(1− η2µ)l

η1λ0
I,

and

TlH
∞Tl =(1− η2µ)2l

n∑
j=1

(
1− (1− η1

(1−η2µ)λj)
2l+2

η1
(1−η2µ)λj

)2

λjvjv
>
j �

(1− η2µ)l+1

η2
1

(H∞)−1.

Therefore,

η2
1a
>
1 TlH

∞Tla1 ≤(1− η2µ)2l+2a>1 (H∞)−1a1,

η2
1O

(
n
√

log(n/δ)√
m

)
a>1 T

2
l a1 ≤O

(
n2(1− η2µ)2l

√
log(n/δ)√

mλ2
0

)
.
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Together with (E.30), we have

‖E1‖22 = (1− η2µ)2l+2a>1 (H∞)−1a1 +O

(
n2(1− η2µ)2l

√
log(n/δ)√

mλ2
0

)
. (E.31)

By similar approach, the second term E2 can be bounded by

‖E2‖22 =

∥∥∥∥∥η1Z(0)

l∑
i=0

(1− η2µ)i ((1− η2µ)I − η1H
∞)

l−i
uD(0)

∥∥∥∥∥
2

2

=η2
1uD(0)>T1(l)Z(0)>Z(0)T1(l)uD(0)

=η2
1uD(0)>T1(l)H∞T1(l)uD(0) + η2

1uD(0)>T1(l)(H(0)−H∞)T1(l)uD(0)

=(1− η2µ)2l+2uD(0)>(H∞)−1uD(0) +O

(
n2(1− η2µ)2l

√
log(n/δ)√

mλ2
0

)
. (E.32)

By (E.25), the third term E3 can be bounded by

‖E3‖22 =

∥∥∥∥∥η1Z(0)

l∑
i=0

(1− η2µ)iel−i−1

∥∥∥∥∥
2

2

=η2
1

(
l∑
i=0

(1− η2µ)iel−i−1

)>
H(0)

(
l∑
i=0

(1− η2µ)iel−i−1

)

=O

(
η6

1n
8

η6
2µ

6mδ4(1− η2µ)2kτ2

)
. (E.33)

The fourth term E4 can be bounded by

‖E4‖22 =

∥∥∥∥∥
l∑
i=0

(1− η2µ)iη1(Z(l)−Z(0))(uD(l)− y)

∥∥∥∥∥
2

2

=O

(
η3

1n
3

(1− η2µ)kη3
2µ

3
√
mδ3/2τ

)
. (E.34)

Note that

B − y =η1H
∞(η2µI + η1H

∞)−1y − y
=(η1H

∞ − η2µI − η1H
∞)(η2µI + η1H

∞)−1y

=− η2µ(η2µI + η1H
∞)−1y.

Therefore, the remaining term T5 can be bounded by

‖T5‖22 =

∥∥∥∥∥η1Z(0)

l∑
i=0

(1− η2µ)i(B − y)

∥∥∥∥∥
2

2

≤η2
1y
>(η2µI + η1H

∞)−1H∞(η2µI + η1H
∞)−1y

≤y>(η2µ/η1I +H∞)−1H∞(η2µ/η1I +H∞)−1y.

By the assumption that η2 � η1, the term T5 can be further bounded by

‖T5‖22 ≤y
>(CµI +H∞)−1H∞(CµI +H∞)−1y. (E.35)

The right-hand side of (E.35) is
∥∥∥f̂∥∥∥2

N
, where f̂ is defined in (3.4). The term

∥∥∥f̂∥∥∥2

N
can be bounded by some

constant as in Theorem 3.2. This also implies

a>1 (H∞)−1a1 = η2
1y
>(η2µI + η1H

∞)−1H∞(η2µI + η1H
∞)−1y = O(1). (E.36)
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Note also that

uD(0)>(H∞)−1uD(0) = O

(
nτ2

λ0

)
. (E.37)

By the assumptions of Theorem 5.1, plugging (E.30)-(E.37) into (E.27), and taking the iteration number at k, we
can conclude that

∥∥vec(WD(k))− (1− η2µ)kvec(WD(0))
∥∥2

2

=O((1− η2µ)2k) +O

(
n2(1− η2µ)2k−2

√
log(n/δ)√

mλ2
0

)

+O

(
nτ2

λ0
(1− η2µ)2k

)
+O

(
n2(1− η2µ)2k−2

√
log(n/δ)√

mλ2
0

)

+O

(
n8

µ6mδ4(1− η2µ)2kτ2

)
+O

(
n3

(1− η2µ)kµ3
√
mδ3/2τ

)
+O(1)

=O(1), (E.38)

where the last equality is because we can select some polynomials such that all the terms in (E.38) except the
O(1) term converge to zero, and exp(−2η2µk) ≤ (1− η2µ)k ≤ exp(−η2µk) for sufficiently large n. This finishes
the proof of (5.4) in Theorem 5.1.

E.2 Proof of Theorem 5.2

For notational simplification, we use f̂k = fW (k),a. Similar to the proof of Theorem 4.1, we define

f̃k(x) = vec(WD(k))>z0(x), (E.39)

where z0(x) = z(x)|WD=WD(0). Then we can write the following decomposition

f̂k(x)− f∗(x) =(f̂k(x)− f̃k(x)) + (f̃k(x)− f̂(x)) + (f̂(x)− f∗(x))

=∆1(x) + ∆2(x) + ∆3(x), (E.40)

where f̂ is as in (3.4). In the rest of the proof, we show ∆1(x), ∆2(x), and ∆3(x) are all small.

It follows from Theorem 3.2 that

‖∆3‖22 = OP

(
n−

d
2d−1

)
. (E.41)

Next, we consider ∆1. From (E.19), it can be seen that

∥∥wD,r(k)− (1− η2µ)kwD,r(0)
∥∥

2
≤ Cη1n

η2µ
√
m
. (E.42)

Define event

BD,r(x) = {|(1− η2µ)kwD,r(0)>x| ≤ R1},∀r ∈ [m],

where R1 = Cη1n
η2µ
√
m
. If I{BD,r(x)} = 0, then we have Ir,k(x) = Ir,0(x), where Ir,k(x) = I{wD,r(k)>x ≥ 0}.



Regularization Matters in Training Overparametrized Neural Networks

Therefore, for any fixed x,

|∆1(x)| = |f̂k(x)− f̃k(x)|

=

∣∣∣∣∣ 1√
m

m∑
r=1

ar(Ir,k(x)− Ir,0(x))wD,r(k)>x

∣∣∣∣∣
=

∣∣∣∣∣ 1√
m

m∑
r=1

arI{BD,r(x)}(Ir,k(x)− Ir,0(x))wD,r(k)>x

∣∣∣∣∣
≤ 1√

m

m∑
r=1

I{BD,r(x)}|wD,r(k)>x|

≤ 1√
m

m∑
r=1

I{BD,r(x)}
(
|(1− η2µ)kwD,r(0)>x|+ |wD,r(k)>x− (1− η2µ)kwr(0)>x|

)
≤ 2R1√

m

m∑
r=1

I{BD,r(x)}.

Note that ‖x‖2 = 1, which implies that wD,r(0)>x is distributed as N(0, τ2). Therefore, we have

E[I{BD,r(x)}] = P
(
|(1− η2µ)kwD,r(0)>x| ≤ R1

)
=

∫ R1/(1−η2µ)k

−R1/(1−η2µ)k

1√
2πτ

exp

{
− u2

2τ2

}
du ≤ 2R1√

2π(1− η2µ)kτ
.

By Markov’s inequality, with probability at least 1− δ, we have
m∑
r=1

I{BD,r(x)} ≤ 2mR1√
2π(1− η2µ)kτδ

.

Thus, we have with probability at least 1− δ,

‖∆1‖2 ≤
2R1√
m

∥∥∥∥∥
m∑
r=1

I{BD,r(·)}

∥∥∥∥∥
2

≤ 4
√
mR2

1√
2π(1− η2µ)kτδ

= O

(
n2

√
mλ2

0δ
2(1− η2µ)kτ

)
,

which implies

‖∆1‖2 = OP

(
n2

√
mλ2

0(1− η2µ)kτ

)
. (E.43)

Now we bound ∆2. Note that Define Gk =
∑k−1
j=0 η(I − ηH∞)j . Recalling that y = y∗ + ε, for fixed x, we have

∆2(x) =f̃k(x)− f̂(x)

=z0(x)>vec(WD(k))− h(x,X)(H∞ + η2µ/η1I)−1y

=z0(x)>E1 − z0(x)>E2 + z0(x)>E3 − z0(x)>T5 − z0(x)>E4

+ (1− η2µ)kz0(x)>vec(WD(0))− h(x,X)(H∞ + η2µ/η1I)−1y, (E.44)

where E1, E2, E3, T5, E4 are as in (E.27). Noting that ‖z0(x)‖2 = OP(1), we have that

|z0(x)>E1|2 ≤ ‖z0(x)‖22 ‖E1‖22 =OP((1− η2µ)2k) +OP

(
n2(1− η2µ)2k−2

√
log(n)√

mλ2
0

)
, (E.45)

|z0(x)>E2|2 ≤ ‖z0(x)‖22 ‖E2‖22 =OP

(
nτ2

λ0
(1− η2µ)2k

)
+OP

(
n2(1− η2µ)2k−2

√
log(n)√

mλ2
0

)
, (E.46)

|z0(x)>E3|2 ≤ ‖z0(x)‖22 ‖E3‖22 =OP

(
η6

1n
8

η6
2µ

6m(1− η2µ)2kτ2

)
, (E.47)

|z0(x)>E4|2 ≤ ‖z0(x)‖22 ‖E4‖22 =OP

(
n3

(1− η2µ)kµ3
√
mδ3/2τ

)
, (E.48)
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where (E.45) is because of (E.31) and (E.36), (E.46) is because of (E.32) and (E.37), (E.47) is because of (E.33),
and (E.48) is because of (E.34). By Lemma D.5 (d), the term (1 − η2µ)kz0(x)>vec(WD(0)) in (E.44) can be
bounded by ∥∥(1− η2µ)kz0(·)>vec(WD(0))

∥∥
2

= OP((1− η2µ)kτ). (E.49)

Define

B = η1H
∞(η2µI + η1H

∞)−1y.

Note that

B − y =η1H
∞(η2µI + η1H

∞)−1y − y
=(η1H

∞ − η2µI − η1H
∞)(η2µI + η1H

∞)−1y

=− η2µ(η2µI + η1H
∞)−1y.

Therefore, the remaining term in (E.44) −z0(x)>T5 − h(x,X)(H∞ + η2µ/η1I)−1y can be bounded by

− z0(x)>T5 − h(x,X)(H∞ + η2µ/η1I)−1y

=− z0(x)>Z(0)

k−1∑
i=0

η1(1− η2µ)i(B − y)− h(x,X)(H∞ + η2µ/η1I)−1y

=− z0(x)>Z(0)η1
1− (1− η2µ)k

η2µ
(B − y)− h(x,X)(H∞ + η2µ/η1I)−1y

=z0(x)>Z(0)η1(1− (1− η2µ)k)(η2µI + η1H
∞)−1y − h(x,X)(H∞ + η2µ/η1I)−1y

=(z0(x)>Z(0)− h(x,X))(H∞ + η2µ/η1I)−1y − η1(1− η2µ)kz0(x)>Z(0)(η2µI + η1H
∞)−1y. (E.50)

The first term in (E.50) can be bounded by∥∥(z0(·)>Z(0)− h(·,X))(H∞ + η2µ/η1I)−1y
∥∥

2

≤
∥∥(z0(·)>Z(0)− h(·,X))

∥∥
2

∥∥(H∞ + η2µ/η1I)−1y
∥∥

2

=OP

(
n
√

log(n)η1√
mη2µ

)
, (E.51)

where we utilize∥∥(H∞ + η2µ/η1I)−1y
∥∥2

2
= y>(H∞ + η2µ/η1I)−2y ≤ η2

1

η2
2µ

2
‖y‖22 = OP

(
η2

1

η2
2µ

2
n

)
,

and Lemma D.5 (c).

The second term in (E.50) can be bounded by∥∥(1− η2µ)kz0(·)>Z(0)(H∞ + η2µ/η1I)−1y
∥∥

2

≤(1− η2µ)k
∥∥(z0(·)>Z(0)− h(·,X))(H∞ + η2µ/η1I)−1y

∥∥
2

+ (1− η2µ)k
∥∥h(·,X)(H∞ + η2µ/η1I)−1y

∥∥
2

≤OP

(
n
√

log(n)η1√
mη2µ

)
+ (1− η2µ)k

∥∥h(·,X)(H∞ + η2µ/η1I)−1y
∥∥
N

=OP((1− η2µ)k), (E.52)

where the second inequality is because of (E.51) and the last equality is because of Theorem 3.2 and the assumption
η1 � η2. Plugging (E.45)-(E.52) to (E.44), we can conclude that

‖∆2‖2 = oP(n−
d

2d−1 ), (E.53)

by choosing k and m as in Theorem 5.2. Combining (E.43), (E.53), and (E.41) finishes the proof.
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F Proof of lemmas in the Appendix

F.1 Proof of Lemma B.1

The proof of Lemma B.1 mainly from Appendix C of Bietti and Mairal [2019] and Appendix D of Bach [2017],
with some modification.

We first review some background of spherical harmonic analysis [Atkinson and Han, 2012, Costas and Christopher,

2014]. Let Yk,j be the spherical harmonics of degree k on Sd−1, where N(p.k) = 2k+d−2
k

(
k + d− 3
d− 2

)
. Then

Yk,j is an orthonormal basis of L2(Sp−1, dξ), where dξ is the uniform measure on the sphere. Then we have

N(d,k)∑
j=1

Yk,j(s)Yk,j(t) = N(d, k)Pk(s>t), (F.1)

where Pk is the k-th Legendre polynomial in dimension d, given by

Pk(t) =(−1/2)k
Γ(d−1

2 )

Γ(k + d−1
2 )

(1− t2)(3−d)/2

(
d

dt

)k
(1− t2)k+(d−3)/2. (F.2)

The polynomials Pk are orthogonal in L2([−1, 1])dν, where the measure dν = (1− t2)(d−3)/2dt with Lebesgue
measure dt, and ∫

[−1,1]

P 2
k (t)(1− t2)(d−3)/2dt =

wd−1

wd−2

1

N(d, k)
, (F.3)

where wd−1 = 2πd/2

Γ(d/2) . Furthermore, it can be shown that [Atkinson and Han, 2012]

tPk(t) =
k

2k + d− 2
Pk−1(t) +

k + d− 2

2k + d− 2
Pk+1(t), (F.4)

for k ≥ 1, and for j = 0 we have tP0(t) = P1(t). This implies that for large k enough, we have

µk =
k

2k + d− 2
µ0,k−1 +

k + d− 2

2k + d− 2
µ0,k+1,

where µ0,k−1 and µ0,k+1 are as in Lemma 17 of Bietti and Mairal [2019]. By Lemma 17 of Bietti and Mairal
[2019], we have µ0,k � k−d for large k, if k = 1 mod 2. This finish the proof of Lemma B.1.

F.2 Proof of Lemma C.1

By Theorem 1 of Brauchart and Dick [2013] and Lemma B.1, we can see that the function space N is a subspace
of the Sobolev space Hs(Sd−1). Therefore, the entropy of N (1) can be bounded if the entropy of Hd/2(Sd−1)(1)
can be bounded. By Theorem 1.2 of Wang et al. [2014], we have that the k-th entropy number ek(T ) can be
bounded by k−d/(2(d−1)). This implies that

H(δ,N (1), ‖·‖L∞) ≤ Aδ−
2(d−1)
d .

F.3 Proof of Lemma D.1

The first inequality follows the fact that h is positive definite, which implies the inverse of(
h(s, s) h(X, s)
h(s,X) h∞

)
is positive definite. By block matrix inverse, we have the first inequality in Lemma D.1 holds.
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The second inequality and third inequality are direct results of Theorem 3.2 implies

Eε,X(‖ĝn − g∗‖22)

=

∫
Sd−1

(g∗(x)− h(x,X)(H∞ + µI)−1y∗)2 + h(x,X)(H∞ + µI)−2h(X,x)dx = OP(n−
d

2d−1 )

for any function g∗ with ‖g∗‖N ≤ 1. Then we have∫
Sd−1

h(x,X)(H∞ + µI)−2h(X,x)dx = OP(n−
d

2d−1 ),

which finishes the proof of the second equality. Let g∗(x) = h(s,x), then we have∫
Sd−1

(h(s,x)− h(x,X)(H∞ + µI)−1h(X, s))2dx = OP(n−
d

2d−1 ).

By the interpolation inequality, we have

h(s, s)− h(s,X)(H∞ + µI)−1h(X, s))

≤
∥∥h(s, ·)− h(·,X)(H∞ + µI)−1h(X, s))

∥∥
∞

≤C
∥∥h(s, ·)− h(·,X)(H∞ + µI)−1h(X, s))

∥∥1− d−1
d

2

∥∥h(s, ·)− h(·,X)(H∞ + µI)−1h(X, s)
∥∥ d−1

d

N

=OP(n−
1

2d−1 )(h(s, s) + h(s,X)(H∞ + µI)−1H∞(H∞ + µI)−1h(X, s))
d−1
d

≤OP(n−
1

2d−1 )(h(s, s) + h(s,X)(H∞)−1h(X, s))
d−1
d = OP(n−

1
2d−1 ),

where the last inequality follows the first inequality of Lemma D.1.

F.4 Proof of Lemma D.2

Given that g and f∗ have the same value at all xi’s, the empirical norm ‖g − f∗‖n = 0. Notice that both g and
f∗ are in the RKHS generated by the NTK h, denoted by N . Utilizing Lemma C.1 and C.3 similarly as in the
proof of Theorem 3.2, we have R,K = O(1) and J∞(z,N ) . z1/d, which leads to

sup
h∈G(R)

∣∣∣∣‖h‖2n − ‖h‖22∣∣∣∣ = OP

(√
1

n

)
,

where G(R) := {g ∈ N (1) : ‖g − g∗‖2 ≤ R}. Therefore, we can conclude that ‖g − f∗‖2 = OP(n−1/2).

F.5 Proof of Lemma D.5

The proof of (a) and (b) can be found in Arora et al. [2019].

For (c), the i-th coordinates of z0(x)>Z(0) and h(x,X) are

1

m

m∑
r=1

x>xiI{w>r (0)x ≥ 0}I{w>r (0)xi ≥ 0}, and Ew∼N(0,I)[x
>xiI{w>x ≥ 0}I{w>xi ≥ 0}],

respectively. ∀i ∈ [n], (z0(x)>Z(0))i is the average of m i.i.d. random variables, which have expectation hi(x,X)
and bounded in [0, 1]. For any fixed x, by Hoeffding’s inequality, with probability at least 1− δ∗,

|(z0(x)>Z(0))i − hi(x,X)| ≤
√

log(2/δ∗)

2m

holds. By defining δ = nδ∗ and applying a union bound over all i ∈ [n], with probability at least 1− δ, we have

∥∥z0(x)>Z(0)− h(x,X)
∥∥2

2
= O

(
n

log(2n/δ)

2m

)
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For (d), since

z0(x)>vec(W (0)) =
1√
m

m∑
r=1

arI{wr(0)>x ≥ 0}wr(0)>x

Define random variables Vr, r ∈ [m] as

Vr = arI{wr(0)>x ≥ 0}wr(0)>x

Since

wr(0)>x ∼ N(0, τ2) and ar ∼ unif{1,−1}.

It’s easy to prove that Vr, r ∈ [m] are i.i.d. with mean 0 and sub-Gaussian parameter τ . By Hoeffding’s inequality,
at fixed bx, with probability at least 1− δ, we have∣∣∣∣ 1√

m

m∑
r=1

Vr

∣∣∣∣ ≤ √2τ
√

log(2/δ).

Thus
∥∥z0(·)>vec(W (0))

∥∥
2

= O
(
τ
√

log(1/δ)
)
.

G More details and results for numerical experiments

Neural network setup The neural network used in all experiments is a 2-layer ReLU neural network with
m = 500 nodes in each hidden layer. All the weighs are initialized with the Glorot uniform initializer, also called
as Xavier uniform initializer [Glorot and Bengio, 2010], which is the default choice in the TensorFlow Keras
Sequential module. All the weights are trained by RMSProp [Hinton et al.] optimizer with the default setting,
e.g. learning rate of 0.001, etc. All ONN experiments are conducted using TensorFlow 2 with Python API.

G.1 Simulated Data

The learning rate for NTK+ES is η = 0.01 and the GD update rule is as specified in (D.19). In the `2-regularized
methods, the tuning parameter µ for each task is chosen by cross validation. The validation dataset is of size 100
that is also noiseless and follows the same generating mechanism as the test dataset. For NTK+`2, we use a grid
search of interval [0, 1] with µ = 0.01, 0.02, . . . , 1 and for ONN+`2, the µ candidates are 0.1, 0.2, . . . , 10. In both
cases, we observe that the optimal µ increases with the noise level σ. For f∗2 , we plot the chosen µ and k∗ for
NTK+`2 and NTK+ES respectively vs. σ. For each σ value, the reported value is the average of 100 replications.
The results are shown in Figure 3.

Figure 1 clearly demonstrates that ONN and NTK do not recover the true function well. As is explained in the
paper, without regularization, overfitting the training data is harmful for the L2 estimation. To illustrate this
point, we show the trained estimators of f∗2 for all the methods in Figure 4 when σ = 0.1.
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Figure 3: Left: Cross-validation of µ in NTK+`2 for fitting f∗2 when σ = 0.1. The horizontal axis is values of µ
(100 points from 0.01 to 1) and the vertical axis is the validation mean squared error. The cross-validated µ in
this case is 0.13. Right: Optimal stopping time k∗ in NTK+ES and cross-validated µ in NTK+`2 for fitting f∗2
are shown vs. σ. The optimal GD stopping time decrease with noise level while the best µ increases with σ.

Figure 4: Visualizations for the trained estimators of NTK (top left), NTK+`2 (bottom left), ONN (top right)
and ONN+`2 (bottom right). Training data are plotted as red dots. The green surface is the estimator and the
grey surface is the true function f∗2 . Both surfaces are approximated by grid points (i/100, j/100) for i, j from
−100 to 100. As can be seen in the top row, without regularization, the estimators overfit training data. The
fitted estimators are very rough and don’t recover the true function well.
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G.2 MNIST

For images 5 and 8, the training and test split are the default.3 We change label 5 and 8 to −1 and 1
respectively. No further pre-processing is done to the dataset. For NTK+ES, the learning rate is η = 0.0001
and the GD update rule is as specified in (D.19). To account for the high data dimension, we divide the
NTK matrix H∞ by d. For the ONN+`2 and NTK+`2, we choose µ by cross-validation and the candidates
are µ = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000 for ONN+`2 and µ = 1, 2, 3, . . . , 100 for NTK+`2. The
training/validation split is 80%/20% for cross-validation so the actual training data size is 9107 for all methods
(ONN, NTK and NTK+ES do not use the validation dataset). The cross-validated µ for ONN+`2 and optimal
stopping time k∗ for NTK+ES are shown in Figure 5, together with the cross-validation results specifically for
σ = 1.

Figure 5: Left: Cross-validation result for µ in ONN+`2 when σ = 1 (with extra µ candidates of 300 and 400). In
the range of µ = 5 to µ = 1000, we can clearly see a V-shape and the best µ in this case is 200. Right: Optimal
stopping time k∗ in NTK+ES and cross-validated µ in ONN+`2 for MNIST dataset are shown vs. σ. The optimal
stopping time decreases with noise level while the best µ increases with σ.

3http://yann.lecun.com/exdb/mnist/
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