
T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Supplementary Materials:
Alternating Direction Method of Multipliers for Quantization

A On the update rules of ADMM-Q

Consider the following optimization problem mentioned in section 3.2:

min
x

fpxq ` IApyq s.t. x “ y.

Following the steps of regular ADMM in section 3.1, we have:

Lpx, y, λq fi fpxq ` IApyq ` xλ, x ´ yy `
ρ

2
}x ´ y}2

2
,

In regular ADMM, the order of updating variables does not matter for convergence. When we extend its use
to quantization, we update y, x and λ in sequence at each iteration, which is convenient for analyzing its
convergence.

Primal Update: yr`1 “ argmin
y

Lpxr, y, λrq, xr`1 “ argmin
x

Lpy, xr`1, λrq

Dual Update: λr`1 “ λr ` ρpxr`1 ´ yr`1q.

The update rule of x and λ is clear. We only derive the update rule of y here:

yr`1 “ argmin
y

Lpxr, y, λrq

“ argmin
y

fpxrq ` IApyq ` xλr, xr ´ yy `
ρ

2
}xr ´ y}2

2

“ argmin
y

IApyq ` xλr, xr ´ yy `
ρ

2
}xr ´ y}2

2

“ argmin
y

IApyq ` xλr, xr ´ yy `
ρ

2
}xr ´ y}2

2

“ argmin
y

IApyq ` }y ´ xr ´ ρ´1λr}2
2

“ PApxr ` ρ´1λrq

(8)

B Proofs in Section 3.3

Lemma B.1. For any r ě 1 we have λr “ ´∇xfpxrq.

Proof. based on the algorithm updates and the optimality condition for xr`1 we can easily verify that:

∇xfpxr`1q ` λr ` ρpxr`1 ´ yr`1qloooooooooooomoooooooooooon
λr`1

“ 0.

Lemma 3.4. If ρ ě Lf , we have Lpxr, yr, λrq ě fpyrq ě fmin, @r ě 1.

Proof. Note that based on Lemma B.1, we have

Lpxr, yr, λrq “ fpxrq ` x∇fpxrq, yr ´ xry `
ρ

2
}xr ´ yr}2

ě fpyrq ě fmin (9)

where the last two inequalities are due to Assumptions 3.2 and 3.1, respectively.



Alternating Direction Method of Multipliers for Quantization

Lemma 3.5. Define σpρq fi ρ ´ µ. We have

Lpxr`1, yr`1, λr`1q ´ Lpxr, yr, λrq ď

ˆ
ρ´1Lf

2 ´
σpρq

2

˙ ››xr`1 ´ xr
››2 . (10)

Proof. Let us re-write (10) as

Lpxr`1, yr`1, λr`1q ´ Lpxr, yr, λrq “ Lpxr`1, yr`1, λr`1q ´ Lpxr`1, yr`1, λrqlooooooooooooooooooooooooomooooooooooooooooooooooooon
pAq

`Lpxr`1, yr`1, λrq ´ Lpxr, yr, λrqloooooooooooooooooooomoooooooooooooooooooon
pBq

.

We want to show that pAq ` pBq ď 0. First of all note that

pAq “ xλr`1, xr`1 ´ yr`1y ´ xλr, xr`1 ´ yr`1y “ ρ´1
››λr`1 ´ λr

››2 .

By the optimality condition of xr`1, we have:

∇xfpxr`1q ` λr ` ρpxr`1 ´ yr`1qloooooooooooomoooooooooooon
λr`1

“ 0,

showing that ∇xfpxr`1q “ ´λr`1, or ∇xfpxrq “ ´λr.

Furthermore, by the lipschitz assumption of fp¨q, we have
››∇xfpxr`1q ´ ∇xfpxrq

››2 ď Lf
2

››xr`1 ´ xr
››2, showing

that ››λr`1 ´ λr
››2 ď Lf

2
››xr`1 ´ xr

››2 .

Therefore,

pAq ď ρ´1Lf
2

››xr`1 ´ xr
››2 .

On the other hand:

pBq “ Lpxr`1, yr`1, λrq ´ Lpxr, yr, λrq

“ Lpxr`1, yr`1, λrq ´ Lpxr, yr`1, λrq ` Lpxr, yr`1, λrq ´ Lpxr, yr, λrqlooooooooooooooooooomooooooooooooooooooon
ď0

ď Lpxr`1, yr`1, λrq ´ Lpxr, yr`1, λrq

ď ´
σpρq

2

››xr`1 ´ xr
››2 ,

where σpρq is the strong convex modulus of Lp¨, yr`1, λrq (note that σpρq “ ρ ´ µ).

Example B.2. Consider the optimization problem minxPZ
1

2
px2 ´ xq. It is easy to verify that a ρ-stationary

point does not exist for ρ “ 1

2
ă Lf “ 1.

Lemma 3.7. Assume x‹ is the global optimal solution to problem (1), then x‹ is ρ-stationary for any ρ ě Lf .

Proof. Assume the contrary that x‹ is not ρ-stationary. By Definition 3.6, x‹ R argminaPA
ρ
2

}a´x‹`ρ´1∇fpx‹q}2.
Expanding the objective and adding the constant term fpx‹q ´ 1

2ρ
}∇fpx‹q}2 implies that

x‹ R argmin
aPA

´
pfpa;x‹q :“ fpx‹q ` x∇fpx‹q, a ´ x‹y `

ρ

2
}a ´ x‹}2

¯
.

Since ρ ě Lf , we have fpaq ď pfpa;x‹q, @ a, according to the descent lemma. Moreover, there exists

a‹ P argminaPA
pfpa;x‹q by the compactness of A. Thus, fpa‹q ď pfpa‹;x‹q ă pfpx‹;x‹q “ fpx‹q, which con-

tradicts the optimality of x‹.



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Theorem 3.9. Assume px̄, ȳ, λ̄q is a limit point of the ADMM-Q algorithm. Then x̄ is a ρ–stationary point of the
optimization problem (1).

Proof. Consider a sub-sequence pxrt , yrt , λrtq, for t “ 0, ¨ ¨ ¨ which converges to px̄, ȳ, λ̄q. First of all
due to decrease lemma 3.5 and lower boundedness of augmented Lagrangian, Lemma 3.4, we know that
limtÑ8 }xrt`1 ´ xrt} “ 0. Thus,

lim
tÑ8

xrt`1 “ x̄ (11)

Now based on Lemma (B.1), we also know that

λ̄ “ lim
tÑ8

λrt “ lim
tÑ8

∇fpxrtq “ ∇fpx̄q (12)

lim
tÑ8

λrt`1 “ lim
tÑ8

∇fpxrt`1q “ ∇fpx̄q (13)

Thus, limtÑ8 λrt`1 “ λ̄.

Also, as A is finite, there exists a large enough T , such that yrt “ ȳ for t ě T . Again due to the fact that A is
finite, we can re-fine the sub-sequence such that yrt`1 “ ŷ. Thus, without loss of generality assume that these
two conditions hold, i.e. yrt “ ȳ and yrt`1 “ ŷ for all t for an appropriately refined sub-sequence. This means
that

ŷ P argmin
a

}a ´ pxrt ` ρ´1λrtq} (14)

Moreover, λrt`1 “ λrt ` ρpŷ ´ xrtq. Taking the limtÑ8 from both sides, we get

ŷ “ x̄. (15)

Combining the above with (14) we can easily see that

}x̄ ´ pxrt ` ρ´1λrtq} ď }ai ´ pxrt ` ρ´1λrtq}, i “ 0, ¨ ¨ ¨ , N (16)

Taking the limits limtÑ8 from both hand sides of the inequality for all the points ai we have

}x̄ ´ px̄ ` ρ´1λ̄q} ď }ai ´ px̄ ` ρ´1λ̄q}, i “ 0, ¨ ¨ ¨ , N. (17)

Thus,
x̄ P argmin

aPA
}a ´ px̄ ´ ρ´1

∇fpx̄qq}, (18)

where we used the fact that λ̄ “ ´∇fpx̄q.

C Convergence Analysis for I-ADMM-Q

In order to prove the main convergence results, we need a few definitions and helper lemmas. Throughout this
section we re-state all the theoretical results and prove them in the order we need them. For a reference of the
steps in the algorithm see Algorithm 2.

First, let us define:

er “ ∇xLpxr, yr, λr´1q “ ∇fpxrq ` λr´1 ` ρpxr ´ yrq “ ∇fpxrq ` λr (19)

Lemma C.1. Due to σpρq-strong convexity and pLf ` ρq-smoothness of Lp¨, yr, λr´1q, we know that

σpρq}xr ´ xr
‹} ď }er} ď pρ ` Lf q}xr ´ xr

‹} (20)

Moreover, due to strong convexity we also know that:

xer, xr ´ xr
‹y ě σpρq}xr ´ xr

‹}2 (21)

Lemma C.2. If ρ ě Lf and we also assume that the iterates xr stay bounded. Then there exists a non-negative
number D̄ s.t. }xr ´ yr} ď D̄. With this definition,

Lpxr, yr, λrq ě fmin ´ γpρ ` Lf qD̄2 (22)



Alternating Direction Method of Multipliers for Quantization

Proof. Note that

Lpxr, yr, λrq “ fpxrq ` xλr, xr ´ yry `
ρ

2
}xr ´ yr}2 (23)

“ fpxrq ` x∇fpxrq, yr ´ xry `
ρ

2
}xr ´ yr}2

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
ěfpyrq

`xer, xr ´ yry (24)

ě fpyrq ´ }er}}xr ´ yr} (25)

ě fmin ´ γpρ ` Lf qD̄2 (26)

where the last inequality is due to the assumptions and Lemma C.1.

Now let us prove sufficient decrease on L in each iteration.

Lemma C.3. Let the assumptions of Lemma C.2 be true. Also, define

α “

ˆ
2L2

f

ρ
`

4pρ ` Lf q2γ2

ρ
`

γ2pρ ` Lf q

2
´

p1 ´ γq2σpρq

2

˙
(27)

and β “
4pρ`Lf q2γ2

ρ
. Note that σpρq “ ρ ´ µ ě 0. Furthermore, assume that the parameters ρ and γ are chosen

such that α ` β ă 0. Then, have
lim
rÑ8

}xr`1 ´ xr} “ 0. (28)

Proof. Let us re-write (10) as

Lpxr`1, yr`1, λr`1q ´ Lpxr, yr, λrq “ Lpxr`1, yr`1, λr`1q ´ Lpxr`1, yr`1, λrqlooooooooooooooooooooooooomooooooooooooooooooooooooon
pAq

`Lpxr`1, yr`1, λrq ´ Lpxr, yr, λrqloooooooooooooooooooomoooooooooooooooooooon
pBq

.

We want to show that pAq ` pBq ď 0.

pAq “ xλr`1, xr`1 ´ yr`1y ´ xλr, xr`1 ´ yr`1y “ ρ´1
››λr`1 ´ λr

››2 .
Using our definitions, we have

pAq “ ρ´1}λr`1 ´ λr}2 (29)

“ ρ´1}∇fpxr`1q ´ ∇fpxrq ` er ´ er`1}2 (30)

ď
2

ρ

ˆ
}∇fpxr`1q ´ ∇fpxrq}2 ` }er`1 ´ er}2

˙
(31)

ď
2

ρ

ˆ
L2

f }xr`1 ´ xr}2 ` 2}er}2 ` 2}er`1}2
˙

(32)

ď
2

ρ

ˆ
L2

f }xr`1 ´ xr}2 ` 2pρ ` Lf q2γ2

ˆ
}xr`1 ´ xr}2 ` }xr ´ xr´1}2

˙˙
, (33)

where the last inequality is due to Lemma C.1 and the way xr is chosen in Algorithm 2.

On the other hand:

pBq “ Lpxr`1, yr`1, λrq ´ Lpxr, yr, λrq

“ Lpxr`1, yr`1, λrq ´ Lpxr, yr`1, λrq ` Lpxr, yr`1, λrq ´ Lpxr, yr, λrqlooooooooooooooooooomooooooooooooooooooon
ď0 (due to update of y)

ď Lpxr`1, yr`1, λrq ´ Lpxr, yr`1, λrq

“ Lpxr`1, yr`1, λrq ´ Lpxr`1

‹ , yr`1, λrqloooooooooooooooooooooooomoooooooooooooooooooooooon
ď

Lf `ρ

2
}xr`1´x

r`1

‹ }2

`Lpxr`1

‹ , yr`1, λrq ´ Lpxr, yr`1, λrqloooooooooooooooooooooomoooooooooooooooooooooon
ď´ σpρq

2
}xr`1

‹ ´xr}2

ď
Lf ` ρ

2
}xr`1 ´ xr`1

‹ }2 ´
σpρq

2
}xr`1

‹ ´ xr}2,



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Now note that }xr ´ xr`1

‹ } ě p1 ´ γq}xr`1 ´ xr} and }xr`1 ´ xr`1

‹ } ď γ}xr`1 ´ xr} because of the update rules
of Algorithm 2. Plugging in these, we get

pBq ď

ˆ
γ2pρ ` Lf q

2
´

p1 ´ γq2σpρq

2

˙
}xr`1 ´ xr}2 (34)

Now combining the inequalities for pAq and pBq, we have

Lpxr`1, yr`1, λr`1q ´ Lpxr, yr, λrq (35)

ď

ˆ
2L2

f

ρ
`

4pρ ` Lf q2γ2

ρ
`

γ2pρ ` Lf q

2
´

p1 ´ γq2σpρq

2

˙

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
α

}xr`1 ´ xr}2 `
4pρ ` Lf q2γ2

ρlooooooomooooooon
β

}xr ´ xr´1}2 (36)

Now for any T :

fmin ´ γpρ ` Lf qD̄2 ď LpxT`1, yT`1, λT`1q (37)

“ Lpx0, y0, λ0q `
Tÿ

r“0

Lpxr`1, yr`1, λr`1q ´ Lpxr, yr, λrq (38)

ď pα ` βq
T´1ÿ

r“0

}xr`1 ´ xr}2 ` α}xT`1 ´ xT }2 ` Lpx0, y0, λ0q (39)

ď pα ` βq
Tÿ

r“0

}xr`1 ´ xr}2 ` Lpx0, y0, λ0q, (40)

where the last inequality is due to the fact the β ě 0. Now if the parameters are chosen appropriately such that
α ` β ă 0, then the right hand side of the above inequality is decreasing as T increases, while the left hand side
is constant. Therefore, we have limTÑ8

řT
r“0

}xr`1 ´ xr}2 ă 8. Thus, limrÑ8 }xr`1 ´ xr} “ 0.

Theorem C.4. Assume that all the assumptions of Lemma C.3 is satisfied. Then, For any limit point px̄, ȳ, λ̄q
of the Algorithm 2, x̄ is a stationary solution of the problem.

Proof. Consider a sub-sequence pxrt , yrt , λrtq, for t “ 0, ¨ ¨ ¨ which converges to px̄, ȳ, λ̄q. First of all due to
Lemma C.3, we know that limtÑ8 }xrt`1 ´ xrt} “ 0 and limtÑ8 }xrt´1 ´ xrt} “ 0. Thus,

lim
tÑ8

xrt`1 “ x̄ & lim
tÑ8

xrt´1 “ x̄ (41)

Moreover, due to the updates of the algorithm

lim
tÑ8

}xrt`1 ´ xrt`1

‹ } ď lim
tÑ8

γ}xrt`1 ´ xrt} “ 0 & lim
tÑ8

}xrt ´ xrt
‹ } ď lim

tÑ8
γ}xrt ´ xrt´1} “ 0 (42)

Thus, limtÑ8 ert “ limtÑ8 ert`1 “ 0, which means

λ̄ “ lim
tÑ8

λrt “ ´ lim
tÑ8

p∇fpxrtq ´ ertq “ ´∇fpx̄q (43)

lim
tÑ8

λrt`1 “ ´ lim
tÑ8

p∇fpxrt`1q ´ ert`1q “ ´∇fpx̄q (44)

Thus, limtÑ8 λrt`1 “ λ̄.

Also, as A is finite, there exists a large enough T, such that yrt “ ȳ for t ě T . Again due to the fact that A is
finite, we can re-fine the sub-sequence such that yrt`1 “ ŷ. Thus, without loss of generality assume that these
two conditions hold, i.e. yrt “ ȳ and yrt`1 “ ŷ for all t for an appropriately refined sub-sequence. This means
that

ŷ P argmin
a

}a ´ pxrt ` ρ´1λrtq} (45)

Moreover, λrt`1 “ λrt ` ρpxrt`1 ´ ŷq. Taking the limtÑ8 from both sides, we get

ŷ “ x̄. (46)



Alternating Direction Method of Multipliers for Quantization

Combining the above with (45) we can easily see that

}x̄ ´ pxrt ` ρ´1λrtq} ď }ai ´ pxrt ` ρ´1λrtq}, i “ 0, ¨ ¨ ¨ , N (47)

Taking the limits limtÑ8 from both hand sides of the inequality for all the points ai we have

}x̄ ´ px̄ ` ρ´1λ̄q} ď }ai ´ px̄ ` ρ´1λ̄q}, i “ 0, ¨ ¨ ¨ , N. (48)

Thus,
x̄ P argmin

aPA
}a ´ px̄ ´ ρ´1

∇fpx̄qq}, (49)

where we used the fact that λ̄ “ ´∇fpx̄q.

D Convergence Analysis of PGD Algorithm

In this short section, we show that the convergence behavior of Projected Gradient Descent (PGD) algorithm
can also be analyzed using Definition 3.6. Each iteration of PGD is gradient descent followed by a projection to
the discrete set A. More precisely, PGD update rule is given by

xr`1 P PApxr ´ ρ´1
∇xfpxrqq (50)

Lemma D.1. Consider the PGD algorithm with the update rule xr`1 P PApxr ´ ρ´1∇xfpxrqq with ρ ě Lf .
Then, for any r ě 1 we have fpxrq ě fpxr`1q ě fmin.

Proof. By the update rule of PGD algorithm, we have:

xr`1 P argmin
aPA

}a ´ xr ` ρ´1
∇fpxrq}2

P argmin
aPA

fpa;xrq :“ fpxrq ` x∇fpxrq, a ´ xry `
ρ

2
}a ´ xr}2.

Since ρ ě Lf , we have fpa;xrq ě fpaq, @a. Hence fpxrq “ fpxr;xrq ě fpxr`1;xrq ě fpxr`1q.

Theorem D.2. Assume that f satisfies Assumptions 3.1, 3.2 and 3.3. Assume further that ρ is chosen large
enough so that ρ ě Lf . Let x̄ be a limit point of the PGD algorithm. Then x̄ is a ρ–stationary point of the
optimization problem (1).

Proof. By Lemma D.1 and compactness of A, we know the sequence fpxrq is bounded and monotone, and hence
convergent, i.e. limrÑ8 fpxrq “ sf . On the other hand, the continuity of fp¨q implies that:

Dtxrtu s.t. lim
tÑ8

xrt “ sx P A, lim
tÑ8

fpxrtq “ fpsxq.

Hence, limrÑ8 fpxrq “ fpsxq. Moreover, for any fixed a P A, we have

fpxrt`1q ď fpxrtq ` x∇fpxr
t q, a ´ xry `

ρ

2
}a ´ xrt}2.

Letting t Ñ 8, we obtain:

fpsxq ď fpsxq ` x∇fpsxq, a ´ sxy `
ρ

2
}a ´ sx}2,

which in turn implies that:

sx P argmin
aPA

fpsxq ` x∇fpsxq, a ´ sxy `
ρ

2
}a ´ sx}2

or equivalently,
sx P argmin

aPA
}a ´ sx ` ρ´1

∇fpsxq}2.

Hence, sx is a ρ-stationary point.



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

E On the update rules of ADMM-S and its behavior

The update rules of x and λ variables are similar to the ADMM-Q algorithm. Here we only present the y update
rule. Let us define β1 “ βρ´1, zr`1 “ xr ` ρ´1λr and rzr`1 “ PApzr`1q. Following the steps of regular ADMM,
the update rule of y can be written as

yr`1 “ argmin
y

Lpxr, y, λrq

“ argmin
y

fpxrq ` xλr, xr ´ yy `
ρ

2
}xr ´ y}2

2
` βSApyq

“ argmin
y

1

2
}y ´ xr ´ ρ´1λr}2 ` βρ´1

SApyq

“ argmin
y

1

2
}y ´ zr`1}2 ` β1}y ´ PApzr`1q}2

“ argmin
y

1

2
}y ´ zr`1}2 ` β1}y ´ rzr`1}2

(51)

If yr`1 ‰ rzr`1, then we can take the derivative of the above function and set it to 0 to get the update rule of y:

pyr`1 ´ zr`1q ` β1 yr`1 ´ rzr`1

}yr`1 ´ rzr`1}
2

“ 0

ùñ yr`1 “ zr`1 ` β1 rzr`1 ´ zr`1

}rzr`1 ´ zr`1}2

(52)

Now we need to find out when the solution is yr`1 “ rzr`1 and when it is given by equation (52). Using the
sub-gradient of the function }y ´ rzr`1}2 at the point y “ rzr`1, we obtain that

yr`1 “ rzr`1 if }rzr`1 ´ zr`1}2 ď β1

Combining this equation with (52), we obtain the following update rule for y:

yr`1 “

$
&
%

zr`1 `
β1przr`1 ´ zr`1q

}rzr`1 ´ zr`1}2
, β1 ď }rzr`1 ´ zr`1}2

rzr`1 , β1 ą }rzr`1 ´ zr`1}2

Notice that this update rule would keep yr`1 very close to the set A, especially when β is large. In fact in
the extreme case where β is large enough, i.e. when β1 “ β

ρ
ě supz }z ´ PApzq}, the update rule of y in

ADMM-S coincide with the update rule of y in ADMM-Q algorithm. Obviously due to the fact that yr is not in A,
we cannot expect the ADMM-S to converge to a stationary solution defined in Definition 3.6. But in what follows
we show that under assumptions similar to what we used for ADMM-Q , we can actually show that the Lagrangian
function converges in ADMM-S.

Most of the proofs follow the same steps as in the convergence analysis of ADMM-Q. Thus, they are mostly omitted
and we only focus on the overall steps and the results here. First of all it is easy to verify that the result of
Lemma B.1 is also true for ADMM-S, i.e. λr “ ´∇xfpxrq. Moreover, Let us assume that the yr iterates stay
bounded, i.e. yr P A1, where A1 is a compact set. Note that this is a reasonable assumption due to the proximity
of yr to the bounded set A. As f is continuous, we can assume there exists a fmin such that fpyq ě fmin for
all y P A1. Under these assumptions we have the following lemma, which states that the Lagrangian function is
lower bounded.

Lemma E.1. If ρ ě Lf , we have Lpxr, yr, λrq ě fpyrq ě fmin, @r ě 1.

The proof is similar to the proof of Lemma 3.4 and is omitted. Moreover, we have the following result which is
similar to Lemma 3.5 for ADMM-Q.

Lemma E.2. Define σpρq fi ρ ´ µ. We have

Lpxr`1, yr`1, λr`1q ´ Lpxr, yr, λrq ď pρ´1L2

f ´
σpρq

2
q

››xr`1 ´ xr
››2 . (53)



Alternating Direction Method of Multipliers for Quantization

Parameter Pairs
v d σ2

rq
8 8 30
8 16 30
8 32 30
8 64 30
8 16 10
8 16 50
8 16 70

Table 4: Parameter pairs used in the experiment

The proof of this lemma also follows the same arguments provided in the proof of Lemma 3.5. Based on these
two lemmas, we have that augmented Lagrangian function is decreasing and lower bounded when ρ is chosen
appropriately. Thus, it has to converge:

Proposition E.3. If ρ is chosen such that ρ´1L2

f ´ σpρq
2

<0, then Lpxr, yr, λrq is decreasing and lower bounded.
Thus, it converges.

F Simulations on Convex Quadratic Case

Recall in section 7, we solve the following problem:

min
x

1

2
xJQx ` bJx s.t. x P A fi vZd, (54)

for some given Q P R
dˆd, b P R

d, and v P Z
`. We generate matrix Q via the rule Q “ rQJ rQ ` rqrqJ, where

rQij „ Np0, 1q, rqi „ Np0, σ2

rq q, 1 ď i, j ď d. We follow the same procedure as discussed in section 7; see
Table 5 for the hyper-parameters used in ADMM-Q, ADMM-S and ADMM-R. We report the results for the following
combinations of v, d and σ2

rq as seen in Table 4.

Results. Most of the observations in section 7 carry over here regardless of the values of d and σ2

rq . More
precisely, ADMM-Q outperforms PGD and GD+Proj with large margins. Both ADMM-S and ADMM-R not only have
better median final objective values, but also smaller variance as compared with ADMM-Q. More importantly, the
median tends to overlap with the 25% quantile, see Figure 7. It means the objective of at least 25 runs are
exactly the same as the minimal objective over 50 runs. We also observe that ADMM-S or ADMM-R is not always
better than ADMM-Q. As we conduct more experiments, we observed cases that ADMM-S yields large objective value;
see, e.g., instance 3 in Figure 4, and compare with Figure 1. Having said that, we observe that ADMM-S and
ADMM-R outperform ADMM-Q in most instances.



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Figure 3: Performance of ADMM-Q, ADMM-S, ADMM-R and PGD on different problem instances with d “ 8, σ2

rq “ 30



Alternating Direction Method of Multipliers for Quantization

Figure 4: Performance of ADMM-Q, ADMM-S, ADMM-R and PGD on different problem instances with d “ 16, σ2

rq “ 30,
note the difference compared with Figure 1



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Figure 5: Performance of ADMM-Q, ADMM-S, ADMM-R and PGD on different problem instances with d “ 32, σ2

rq “ 30



Alternating Direction Method of Multipliers for Quantization

Figure 6: Performance of ADMM-Q, ADMM-S, ADMM-R and PGD on different problem instances with d “ 64, σ2

rq “ 30



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Figure 7: Performance of ADMM-Q, ADMM-S, ADMM-R and PGD on different problem instances with d “ 16, σ2

rq “ 10



Alternating Direction Method of Multipliers for Quantization

Figure 8: Performance of ADMM-Q, ADMM-S, ADMM-R and PGD on different problem instances with d “ 16, σ2

rq “ 50



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Algorithm Hyper-parameters

ADMM-Q None ρ “ 10´k, k P Z,´6 ď k ď 2

ADMM-S β “ 10´5, 10´4.5, 104, . . . , 104.5, 105 ρ “ 10´k, k P Z,´6 ď k ď 2

ADMM-R pri “ 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 ρ “ 10´k, k P Z,´6 ď k ď 2

Table 5: Hyper-parameters used for ADMM-Q, ADMM-S and ADMM-R

Figure 9: Performance of ADMM-Q, ADMM-S, ADMM-R and PGD on different problem instances with d “ 16, σ2

rq “ 70

G Simulations on Neural Networks

Table 6 shows the performance of different algorithms on MNIST dataset. It suggests pre-training (with non-
binarized weights) further improves the performance of ADMM-based methods. It is worth mentioning that,
with pre-training, ADMM-Q and its variants and even PGD algorithm are converging extremely fast, sometimes
within as few as 3 epochs. While in the presence of pre-training, and PGD and ADMM-based algorithms all
work reasonably well, PGD is much more sensitive to initialization. In particular, omitting the pre-training phase
drops the performance of PGD much more than the performance of ADMM-based methods. Table 7 shows the
results of the experiments on CIFAR-10 dataset. The observation is consistent with that from the MNIST dataset.
Pre-training significantly improves the performance of the binarized models including both ADMM-based and
PGD. Binarized models trained by ADMM-based algorithms with pre-training have comparable performance
with the full precision model.



Alternating Direction Method of Multipliers for Quantization

Algorithm Accuracy

BinaryConnect Courbariaux et al. [2015] 98.71%

Full Precision 98.87 ˘ 0.04%

GD+Proj 74.92 ˘ 4.83%

PGD 92.73 ˘ 0.23%

ADMM-Q 98.21 ˘ 0.16%

ADMM-R 97.78 ˘ 0.23%

ADMM-S 98.21 ˘ 0.07%

PGD with pre-training 98.55 ˘ 0.05%

ADMM-Q with pre-training 98.55 ˘ 0.04%

ADMM-R with pre-training 98.61 ˘ 0.06%

ADMM-S with pre-training 98.57 ˘ 0.04%

Table 6: Testing accuracies for MNIST dataset

Algorithm Accuracy

Progressive DNN Ye et al. [2019] 93.53%

Full Precision 93.06%

GD+Proj 9.86%

PGD 63.53%

ADMM-Q 81.18%

ADMM-R 84.87%

ADMM-S 84.72%

PGD with pre-training 90.47%

ADMM-Q with pre-training 90.42%

ADMM-R with pre-training 90.46%

ADMM-S with pre-training 90.42%

Table 7: Testing accuracies for CIFAR-10 dataset

Layer Type Shape

Dropout 0.2

Fully Connected ` BatchNorm ` ReLU 4096

Dropout 0.5

Fully Connected ` BatchNorm ` ReLU 4096

Dropout 0.5

Fully Connected ` BatchNorm ` ReLU 4096

Dropout 0.5

Fully Connected ` BatchNorm 10

Table 8: Model architecture for MNIST dataset.



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Algorithm Parameter

GD (+ Proj)
Learning rate 10´2 10´3

Epoch 80 40
Batch-size 512 512

PGD
Learning rate 10´2 10´3

Epoch 80 40
Batch-size 512 512

ADMM-Q

Learning rate 10´2 10´3

Epoch 80 40
Batch-size 512 512
ρ 10´5

ADMM-R

Learning rate 10´2 10´3

Epoch 80 40
Batch-size 512 512
ρ 10´5

pri 0.99

ADMM-S

Learning rate 10´2 10´3

Epoch 80 40
Batch-size 512 512
ρ 10´5

β 103

PGD with pre-training

Pre-training
Learning rate 10´2 10´3

Epoch 20 20
Batch-size 512 512

Binariztion
Learning rate 10´2 10´3

Epoch 20 20
Batch-size 512 512

ADMM-Q with pre-training

Pre-training
Learning rate 10´2 10´3

Epoch 20 20
Batch-size 512 512

Binariztion

Learning rate 10´2 10´3

Epoch 20 20
Batch-size 512 512
ρ 10´3

ADMM-R with pre-training

Pre-training
Learning rate 10´2 10´3

Epoch 20 20
Batch-size 512 512

Binariztion

Learning rate 10´2 10´3

Epoch 20 20
Batch-size 512 512
ρ 10´3

pri 0.3

ADMM-S with pre-training

Pre-training
Learning rate 10´2 10´3

Epoch 20 20
Batch-size 512 512

Binariztion

Learning rate 10´2 10´3

Epoch 20 20
Batch-size 512 512
ρ 10´3

β 103

Table 9: Training parameters for MNIST dataset.



Alternating Direction Method of Multipliers for Quantization

Algorithm Parameter

GD (+ Proj)
Learning rate 10´2 10´3 10´4

Epoch 100 100 100
Batch-size 512 512 512

PGD
Learning rate 10´3 10´3 10´3 10´3 10´4

Epoch 200 200 200 200 400
Batch-size 512 512 512 512 512

ADMM-Q

Learning rate 10´3 10´3 10´3 10´3 10´4

Epoch 200 200 200 200 400
Batch-size 512 512 512 512 512
ρ 10´5 10´4 10´3 10´2 10´2

ADMM-R

Learning rate 10´3 10´3 10´3 10´3 10´4

Epoch 200 200 200 200 400
Batch-size 512 512 512 512 512
ρ 10´5 10´4 10´3 10´2 10´2

pri 0.975

ADMM-S

Learning rate 10´3 10´3 10´3 10´3 10´4

Epoch 200 200 200 200 400
Batch-size 512 512 512 512 512
ρ 10´5 10´4 10´3 10´2 10´2

β 0.05ρ

PGD with pre-training

Pre-training
Learning rate 10´2 10´3 10´4

Epoch 100 100 100
Batch-size 512 512 512

Binariztion
Learning rate 10´3 10´4 10´5

Epoch 250 250 250
Batch-size 512 512 512

ADMM-Q with pre-training

Pre-training
Learning rate 10´2 10´3 10´4

Epoch 100 100 100
Batch-size 512 512 512

Binariztion

Learning rate 10´3 10´4 10´5

Epoch 250 250 250
Batch-size 512 512 512
ρ 0.05ρ

ADMM-R with pre-training

Pre-training
Learning rate 10´2 10´3 10´4

Epoch 100 100 100
Batch-size 512 512 512

Binariztion

Learning rate 10´3 10´4 10´5

Epoch 250 250 250
Batch-size 512 512 512
ρ 10´2

pri 0.975

ADMM-R with pre-training

Pre-training
Learning rate 10´2 10´3 10´4

Epoch 100 100 100
Batch-size 512 512 512

Binariztion

Learning rate 10´3 10´4 10´5

Epoch 250 250 250
Batch-size 512 512 512
ρ 10´2

β 0.02ρ

Table 10: Training parameters for CIFAR-10 dataset.



T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

H Link to the Code

Codes are available at https://github.com/optimization-for-data-driven-science/ADMM-Q.

https://github.com/optimization-for-data-driven-science/ADMM-Q

	On the update rules of ADMM-Q
	Proofs in Section 3.3

	Convergence Analysis for I-ADMM-Q
	Convergence Analysis of PGD Algorithm
	On the update rules of ADMM-S and its behavior
	Simulations on Convex Quadratic Case

	Simulations on Neural Networks
	Link to the Code




