Alternating Direction Method of Multipliers for Quantization

Tianjian Huang* Prajwal Singhania'

Maziar Sanjabit
tianjian@usc.edu prajwall210@gmail.com maziars@fb.com

Pabitra Mitra'
pabitra@gmail.com

Meisam Razaviyayn*
razaviya@usc.edu

*University of Southern California
fIndian Institute of Technology Kharagpur
tFacebook Al

Abstract

Quantization of the parameters of machine
learning models, such as deep neural net-
works, requires solving constrained optimiza-
tion problems, where the constraint set is
formed by the Cartesian product of many sim-
ple discrete sets. For such optimization prob-
lems, we study the performance of the Al-
ternating Direction Method of Multipliers for
Quantization (ADMM-Q) algorithm, which is a
variant of the widely-used ADMM method
applied to our discrete optimization problem.
We establish the convergence of the iterates
of ADMM-Q to certain stationary points. In ad-
dition, our results shows that the Lagrangian
function of ADMM converges monotonically.
To the best of our knowledge, this is the
first analysis of an ADMM-type method for
problems with discrete variables/constraints.
Based on our theoretical insights, we develop
a few variants of ADMM-Q that can handle in-
exact update rules, and have improved per-
formance via the use of “soft projection” and
“injecting randomness” to the algorithm. We
empirically evaluate the efficacy of our pro-
posed approaches on two problem: 1) solving
quantized quadratic optimization problems
and 2) training neural networks. Our numer-
ical experiments shows that ADMM-Q outper-
forms other competing algorithms.

Proceedings of the 24" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

1 Introduction

The fields of machine learning and artificial intelli-
gence have experienced significant advancements in
recent years. Despite this rapid growth, the ex-
treme energy consumption of many existing machine
learning models prevents their use in low-power de-
vices. As a solution, quantized and binarized training
of these models have been proposed in recent years
Courbariaux et all [2015,12016], Rastegari et all [2016],
Szegedy et all [2013]. This procedure requires training
a machine learning model that has low training/test
error, and at the same time, low power/storage re-
quirement. More precisely, the parameters of the ma-
chine learning model must lie in a discrete set (e.g.
the weights of the neural network should be binary).
The goal is to improve the energy and storage effi-
ciency of the model by simplifying the required stor-
age/computation in the inference phase.

To obtain accurate quantized models, a wide range
of training techniques have been proposed. Among
them, Alternating Direction Method of Multipliers
(ADMM) has recently gained popularity and re-
sulted in training highly accurate machine learning
models with super low power consumption [Ye et al.
[2018, 12019], Yuan et all [2019H/a], Leng et all [201]],
Lin et all [2019], [Zhang et al! |2018§], [Liu et all [2020],
Ren et all [2019], [Li et all [2019]. Despite this empiri-
cal success, the theoretical understanding of ADMM
for solving discrete optimization problems, such as
training binarized neural networks, is almost non-
existent. As a first step toward better understanding
the behavior of this algorithm in solving discrete prob-
lems, in this paper we aim at studying the behavior of
the ADMM algorithm in discrete optimization through
answering the following simple yet fundamental ques-
tions:

Brief Problem Description. Assume ADMM algo-
rithm is applied to a nonconvex discrete optimization

Alternating Direction Method of Multipliers for Quantization

problem such as training binarized/quantized neural
networks.

e Is ADMM guaranteed to improve the objective
function over the iterates? Can we end up at a
point that is worse than the initial point?

e What can we say about the “limit points” of the
iterates generated by the ADMM algorithm in this
discrete context?

e Can ADMM tolerate inexact, randomized, or
stochastic computations?

e Is ADMM better than simple algorithms such as
projected gradient descent when applied to this
discrete problem?

The answer to the above fundamental questions is non-
trivial. This lack of understanding is due to the non-
monotonic behavior of the objective function through
ADMM iterates as well as the highly fragile relations
between the primal and dual variables in this discrete
optimization setting. In this paper, we (partially) an-
swer the above questions by first showing that the
ADMM-Q algorithm, which is a variant of ADMM in
discrete setting, indeed improves the objective over
iterations. We analyze the limit points of the iter-
ates generated by ADMM-Q and show that every limit
point of the iterates satisfies certain stationarity prop-
erty. Then, we extend our analysis to inexact and
randomized update rules that happen in many prac-
tical problems such as training binarized neural net-
works. Finally, we evaluate the performance of ADMM-Q
and its extensions in our numerical experiments. The
goal of our numerical experiments is not to obtain the
best performance in a particular application or exist-
ing benchmark problems, but instead to better under-
stand the behavior of ADMM-Q method. Notice that
ADMM-Q has already been used in other papers and its
efficiency (combined with other training heuristics) has
been established in the literature for different prob-
lems [Leng et all [2018], [Lin et all [2019], [Yuan et al.
[2019b/a]. Moreover, to obtain a better understand-
ing of ADMM-Q, we avoid using heuristics such as
Straight-through Estimators, scaling factor, not bina-
rizing last layer, playing with the architecture, which
has been used in other papers [Bengio et al. [2013],
Rastegari et all [2016], Darabi et all |2018], Tang et al.
[2017]. While these heuristics (combined with exact
tuning of many parameters) can significantly improve
the performance of the method, they make the scien-
tific study of the core ADMM-Q algorithm almost impos-
sible by bringing a lot of other not well-understood
approaches to the table. Thus, in our numerical exper-
iments, instead of aiming for the best possible perfor-
mance, obtained by using multiple heuristics, we only

focus on the empirical performance of the core quanti-
zation algorithm.

1.1 State of the art

This paper studies the behavior of the ADMM algo-
rithm when applied to nonconvex discrete optimiza-
tion problems. This is closely tied to the previous
studies on the ADMM algorithm and training quan-
tized machine learning models. Here we briefly review
some of the existing works in each of these two cate-
gories:

Quantized machine learning models. In recent
years, there have been numerous works on the quan-
tization of machine learning models—specifically neu-
ral networks. One of the first works towards this was
BinaryConnect [Courbariaux et all [2015] which used
the “Straight Through Estimator” (STE) Bengio et al.
[2013] to provide a “from-scratch” training method
with binary weights. BinaryNet |Courbariaux et al.
[2016] extended upon this idea to binarize both weights
and activations, replacing complex convolutions with
simpler bit-wise operations and significantly reducing
the computational complexity. These works performed
very well on smaller datasets like MNIST, SVHN and
CIFAR-10, and provided an important direction for
compression of neural networks. However, their per-
formance on ImageNet Deng et al! [2009] classifica-
tion was poor. XNOR-Net [Rastegari et all [2016] was
one of the first works to improve binarized CNNs
for ImageNet classification by using scaling factors,
that trade-off compression with accuracy. DoReFa-
Net |Zhou et all [2016] further extended the idea of
binarization (using the sign function) to gradients as
well. They also generalized the method to create net-
works with arbitrary bit-widths for weights, activa-
tions and gradients. ABC-Net LLin et all [2017] im-
proved upon the ideas from XNOR-Net by using mul-
tiple binary weights to approximate the full precision
weights (instead of scaling factors) and using multiple
binary activations. These changes showed that perfor-
mance like that of XNOR-Net can be achieved with-
out the scaling factors. [Tang et all [2017] introduced
seemingly small but impacting changes to improve ac-
curacy, one of which was the use of a regularization
function: |1 — W?| that carried on to further works.
BNN-+ Darabi et al! [2018] brought about yet another
performance boost by careful regularization strategies
and replacing the plain STE with a “SignSwish” ac-
tivation, a modified version of the Swish-like activa-
tion|[Ramachandran et all [2017]. [Yin et all [2019] pro-
vide key theoretical justification to the use of STE by
showing a positive correlation between the true and
the estimated “coarse” gradient obtained through STE
chain rule.

T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

ADMM algorithm. ADMM is an optimization al-
gorithm that combines the decomposability of dual as-
cent with the the superior convergence guarantees of
the method of multipliers. The algorithm, which is be-
lieved to be first introduced by |Glowinski and Marroco
[1975] and |Gabay and Mercier [1976], can be shown to
be equivalent to the Douglas-Rachford splitting algo-
rithm [Douglas and Rachford [1956]. Boyd et all [2011]
provides a comprehensive overview of the method. Re-
cently, ADMM has sparked the interests of many re-
searchers due to its simplicity, theoretical convergence
rates, and parallelization capabilities. The extensi-
bility of ADMM to inexact proximal updates and
non-convex problems make it appealing for a lot of
problems in machine learning. [Hong et all [2016] is
perhaps the first work that extended the analysis of
ADMM to nonconvex problems and showed its conver-
gence to first-order stationary points. This analysis
is later strengthened in Hong et all [2018] by show-
ing the convergence of ADMM iterates to second-
order stationary points. Another interesting work
by Wang et all [2019h] analyzed the convergence of
ADMM for nonconvex and possibly nonsmooth objec-
tives and showed that ADMM, applied to many sta-
tistical problems, is guaranteed to converge. In the
optimization society, the behavior of ADMM when
applied to problems with nonconvex objective func-
tions have also been studied in other regimes such as
multiaffine constraints |Gao et all [2020], dynamically
changing convex constraints|Zhang et al) [2020], finite-
sum objective functions, inexact and asynchronous
update rules [Hong [2017|, [Zhang and Lud [2018], to
name just a few. [Wang and Banerjed [2014]| general-
izes ADMM to Bregman ADMM (BADMM), which al-
lows the choice of different Bregman divergences to ex-
ploit the structure of problems. ADMM has also been
used as heuristics to solve mixed-integer quadratic
programming. [Takapoui et al! [2020] proposed an
ADMM based algorithm approximately solving con-
vex quadratic functions over the intersection of affine
and separable constraints. The Deep Learning commu-
nity has been no exception to this increased interest in
ADMM. Wang et all [2019a] provided global conver-
gence guarantees for an ADMM-based optimizer for
deep neural networks. [Ye et all [2018] used ADMM to
devise an effective weight-pruning technique in DNNs
for better compression.

With the rising interest in quantization for neural net-
work compression, several works have tried ADMM-
based approaches. [Leng et all |2018] were among
the first to use an ADMM formulation for weight
quantization (not activations) and demonstrated ex-
tremely superior results on ImageNet classification.
Zhang et all |2018] proposed a systematic DNN weight
pruning framework using ADMM. [Ye et all [2019],

Lin et al! [2019], |Zhang et al. |2018] extended the
work |[Zhang et al. [2018] by proposing a progressive
multi-step approach that not only leads to a better
performance, but also can be applied to weight bina-
rization. TP-ADMM [Yuan et all [2019b] used pow-
erful practical improvements to break the training
procedure into optimized stages and extend the for-
mulation for binarizing both weights and activations
with the state of the art results. [Liu et all [2020]
proposed an automatic structured pruning framework,
adopting ADMM based algorithm, which boosted
the compression ratio to an even higher level. Sev-
eral works investigated the implementation of ADMM
based weight pruning algorithms on hardware level.
Yuan et all [2019a], [Ren et all |2019] explored the
idea of algorithm-hardware co-design framework us-
ing ADMM. [Liet all [2019] showed ADMM based
weight pruning achieved significant storage/memory
reduction and speedup in mobile devices with negli-
gible accuracy degradation. In spite of these promis-
ing empirical results, the theoretical understanding of
ADMM with respect to quantization is still close to
non-existent.

2 Problem Formulation

Consider the following discrete optimization problem:

. an} S RY

(1)
where A is a discrete subset of R?. One approach for
solving this problem is to sweep across all values in A
and find the optimum point. While this approach re-
sults in finding the global optimal solution(s), it is not
practical in the quantization procedures of machine
learning models. In particular, in this application, the
set A is a discrete grid defined over the space of neural
network parameters. Hence, n = |A| is exponential in
the dimension d and it is computationally impossible
to sweep over all values of A. While the size of the
set A can be very large, we make an assumption that
the projection to the set A can be done efficiently. To
state our assumption clearly, let us formally define the
projection operator followed by two clarifying exam-
ples.

min f(z), st. zeA={ay,az,.
x

Definition 2.1. For any finite set A, the projec-
tion of a point xz, defined as Pa(zx), is a point x, =
argminge 4 |z — al?. If the set argminge |z — a|? is
non-singleton, we choose an element in the set with the
smallest lexicographical valud.

*We can break the tie in different ways. We can also pick
one of the points in the set arg minge 4 ||z — al|* uniformly
at random. This choice will make our results to hold with
probability one.

Alternating Direction Method of Multipliers for Quantization

Assumption 2.2. Projection to the set A can be done
in a computationally efficient manner.

Example 2.3. Suppose A = {—1,+1}¢ in @) with
|A| = 2¢. One can verify that Pa(x) = sign(z) =
(T1,...,%q) € R where T; = +1 if x; = 0 and T; = —1
if x; < 0. Thus, despite the exponential size of the set
A, the projection operator can be computed efficiently.

Example 2.4. Assume A = {x € Z? | a < = < b}
with a,b € R and 7 being the set of integer numbers.
Due to the Cartesian product structure of the set A,
one can verify that Pa(x) = (Z1,...,ZTq) with T; = b;
if ©; > b, Ty = a; if ©; < a;, and T; = round(x;)
if a; < x; < b;. Thus, the projection operator can be
computed efficiently despite the exponential size of A.

The above two examples are the constraint sets that ap-
pear in the quantization/binarization of machine learn-
ing models. Next, we describe the ADMM algorithm
for solving optimization problem ().

3 Alternating Direction Method of
Multipliers for Quantization
(ADMM-Q)

3.1 Review of ADMM

ADMM aims at solving linearly constrained optimiza-
tion problems of the form

min h(w) + g(z) st. Aw+ Bz =c¢,

)

where w € R",z € R*%, ¢ € R¥, A € R"%, and
B e R¥*42 By forming the augmented Lagrangian
function

L(w,z,A) = h(w) + g(2) + A\, Aw + Bz — ¢)
+ £l 4w+ Bz — 3,

each iteration of ADMM applies alternating minimiza-
tion to the primal variables and gradient ascent to the
dual variables. More precisely, at iteration r, ADMM
uses the update rules:

Primal Update: w"™! = argmin £(w, 2", \"), (2)

2T = argmin L(w" !, 2, \")
z

Dual Update:

As discussed in section [LI] this algorithm has been
well-studied for continuous optimization. Next, we dis-
cuss how this algorithm can be used in the discrete
optimization problem ().

)\r+1 =\ +p(AU)T+1 + Bzr+1 —C).

3.2 Description of ADMM-Q

In order to apply ADMM algorithm to the quantiza-
tion problem (), we first re-write () as

mmin f(x) +Za(y) s.t.

where T4(y) =0if y € A, and Z4(y) = +0 if y ¢ A.
Following the steps of regular ADMM in section [3.1]
we can update the primal and dual variables alternat-
ingly. The resulting algorithm, which is called Alter-
nating Direction Method of Multipliers for Quantiza-
tion (ADMM-Q), is summarized in Algorithm [Il The de-
tails of the derivation of this algorithm can be found in
appendix [Al Step @ in this algorithm requires solving
an unconstrained optimization problem. In our setting,
as we will see later, when p is chosen large enough, the
function £(z,y"*!, \") is strongly convex in 2. Thus
solving this problem is assumed to be possible for now.
We later relax step [to inexact update rule.

Algorithm 1 ADMM-Q

1: Input: Constant p > 0; initial points z° = y° € A,
A0 e R4

2: forr=0,1,2,... do

3: Update y: y "1 =Py(a" +p~tA")

4: Update z: 2" = argmin, £(z,y" 1, \")

5. Update \: N1 =\ 4+ p(a"tt — gyt

6: end for

3.3 Convergence Analysis of ADMM-Q

In order to analyze the behavior of ADMM-Q, we make
the following assumptions on f:

Assumption 3.1. The function f is lower bounded
on A. That is, —0 < fmin = minge 4 f(a).

Assumption 3.2. The function f is differentiable and
its gradient is Ly—Lipschitz, i.e.,

IVf(z) = VWl < Lele —yl, Yo,y e R

Assumption 3.3. There exist a constant p = 0 such
that f is p-weakly convez, i.e. f(x)+ 4|z|* is convea.

When f is twice continuously differentiable, it is easy
to verify that u < Ly. However, defining these two
constants separately will allow us to get tighter bounds
for the cases that these two constants are different.
Let us also state a few useful lemmas that will help
us understand the behavior of ADMM-Q. The proofs of
these lemmas are relegated to appendix [Bl

Lemma 3.4. If p > Ly, we have L(a",y",\") >
f‘(yr) =2 fmin, Vr=1

T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Lemma 3.5. Define o(p) = p — p. We have
E(l,r+1’ yr+17)\M»l) _ ‘C(xrvyr,)\r)

<(rzd - T e P)

This lemma states that by choosing p large enough

so that p~'L} — # < 0, we ensure the decrease of

the augmented Lagrangian function at each iterationl.
This property combined with Lemma [3.4] implies that
flym) < L™y, A7) < L(2°,9°,2\°) = f(y°). That is,
ADMM-Q cannot output a point worse than the initial
point. Next, we use these lemmas to analyze the limit-
ting behavior of the iterates of ADMM-Q. To do that, let
us first define the following stationarity concept.

Definition 3.6. We say a point T is a p—stationary
point of the optimization problem () if

T € argmin |a — (Z — p~ 'V £(T))].
acA

In other words, the point T cannot be locally improved
using projected gradient descent with step-size p~!.
Unlike the usual definitions of stationarity for convex
constraints, our definition of stationarity depends on
the constant p. Denoting the set of p-stationary solu-
tions with 7, it is easy to see that 7, < 7,, when
p1 < p2. Thus, in general we would want to have p
as small as possible. The following lemma justifies the
definition of p-stationary.

Lemma 3.7. Assume x* is an optimal solution to
problem (0l), then z* is a p-stationary point for any
p=Ly.

Our p-stationarity definition (Definition B0) is a nat-
ural extension of the continuous setting. It is also
closely related to stationarity defined in proximal
gradient methods, e.g., see Drusvyatskiy and Lewis
[2018], [Kadkhodaie et all [2014], in particular when
the proximal operator is associated with an indicator
function. Note that, our p-stationary definition is a
non-trivial necessary condition for optimality. Also
when p < Ly, such stationary points may not exist.
See Example in appendix Bl

Remark 3.8. Because of the fact that Definition [7.0
is a natural extension of the continuous case, it is
straightforward to prove the convergence of Projected
Gradient Descent (PGDE algorithm to such stationary
set; see appendiz[D for more details.

"When f is convex, u = 0 and hence o(p) = p. Thus
choosing p > +/2L; suffices to ensure the decrease of the
augmented Lagrangian function. For the general noncon-
vex twice differentiable functions, choosing p > 2L; will
imply that pflL?- — o) < 0, and hence the decrease is
guaranteed by Lemma

tEach step of PGD comprises of performing a gradient

step and then projecting to the feasible set.

Theorem 3.9. Assume that f satisfies Assump-
tions[31], and[3.3. Assume further that p is chosen
large enough so that pflLfc — # < 0. Let (Z,7,N)
be a limit point of the ADMM-Q algorithm. Then T is a
p—stationary point of the optimization problem ().

Remark 3.10. The previous convergence results for
non-conver ADMM, |Li and Pong [2015], do not apply
to our specific setting. For our problem (), the sta-
tionarity notion defined in equation (4) of\Li_and Pong
[2013] is satisfied for every feasible point since the
sub-differential set of every feasible point contains 0
(when the feasible set is discrete and finite size). Thus,
any feasible point is a stationary point according to
the stationary notion in|Li_and Pong [2015] (see equa-
tion (4)). Thus the convergence results and inequalities
in [Li_and Pong, 12014, Theorem 1] would be vacuous
m our setting.

Remark 3.11. The convergence results presented in
Wang et _all [20198] do not apply to our setting. This
is due to the fact that |\Wang et all [20198] uses Lip-
schitz sub-minimization paths assumption (Assump-
tion A3). If we specialize their assumption to our
setting, their assumption requires that the mappings
H(u) = argmin,, f(z) + Za(y) s.t. y = v and F(u) =
argmin, f(z) s.t. y = u are well-defined and Lips-
chitz continuous. Clearly, Both of these assumptions
do not hold in our setting due to non-convezxity (and
disconnected nature) of the set A. Moreover, regard-
ing global convergence, Theorem 1 and 2 inWang et al.
[20191] use KL condition (after introducing indicator
functions). These assumptions also do not hold in our
setting.

While Theorem [establishes the convergence
of ADMM-Q, this algorithm is far from its inexact ver-
sion implemented in practice. Next, we analyze the
inexact version of ADMM-Q which is used most often in
practice and in particular in training binarized neural
networks.

4 Inexact ADMM-Q (I-ADMM-Q)

Updating the variable z in ADMM-Q requires finding the
minimizer of £(-,y" 1, \"); see step Hin Algorithm [
Although L£(-,y" 1, \") is strongly convex when p > p,
finding the exact minimizer might not be practically
possible. In practice, we apply iterative methods such
as (stochastic) gradient descent to obtain an approxi-
mate solution "1 ~ argmin, £(z,y" 1, \"). In this
section, we show that ADMM-Q algorithm converges un-
der such an inexact update rule. More precisely, in-
stead of the exact update rule in step d of Algorithm [T}

Alternating Direction Method of Multipliers for Quantization

we choose a y—approximate point 2" +! that satisfies

Ja™** = 2l < ymin {Ja7 =y 27— 2T,
5

—~
~~

for some positive constant -y. Here z7+! =

arg min, £(z,y" "1, A\") is the exact minimizer. The re-
sulting inexact ADMM algorithm, dubbed I-ADMM-Q,
is summarized in Algorithm[Pl Notice that when v = 0,
this inexact algorithm reduces to the exact ADMM-Q al-
gorithm.

Algorithm 2 I-ADMM-Q

1: Input: Constants p,y > 0; initial points 2° =
e A \eR?

2: for r=0,1,2,... do

3: Update y: y" ™ = Pg(a" + p~1\7)

4: Update z by finding a point z"+!
ing (B)

5: Update \: X1 = X" 4 p(z7 1 — ¢yt

6: end for

satisfy-

Similar inexactness measures have previously been
used in the literature; see, e.g., [Lietall [2018],
Reddi et all |2016]. Notice that since L(z,y,A) is
strongly convex in z, gradient descent algorithm
requires only O(log(1/v)) iterations to find a ~-
approximate solution. Hence, in practice, we do not
need to run many iterations of gradient descent. Next,
we present our convergence result for I-ADMM-Q.

Theorem 4.1. Assume that [satisfies Assump-
tions[3 1), [T2 and[Z3. Also assume that the iterates of
I-ADMM-Q are bounded, and the constant p and vy are
chosen such that

2L% +8(p + Ly)*y? L2+ Ly) = (1 =9)(p)
p 2

<0,

with o(p) = p — . Then, for any limit point (Z, 7, \)
of the iterates, T is a p—stationary point of ().

One can verify that the inequality above always holds
for p = 6Ly and v < 0.1. However, depending on
various trade-offs, we may choose different values of v
and p.

Remark 4.2. In practice, checking condition (B
may be impossible since x7T1 is not known exactly.
To resolve this issue, notice that the strong convex-
ity of L(,y" 1, \") implies that o(p)|z — 25H| <
IV L(z,y,\)|. Hence, we can use the following check-
able sufficient condition instead of (B):

vaﬁ(xr-&-l’ yr+17)\7‘) H

< pymin {la" =y 2" — 27}

5 Injecting Randomness to the
Algorithm

The analyses in the previous sections only show that
the algorithm converges to a stationary solution of
the form defined in Definition As mentioned ear-
lier, our stationary set includes more points as p in-
crease. Thus, to obtain a point satisfying stronger sta-
tionary condition, we need to pick the smallest possi-
ble p. However, reducing the value of p beyond certain
value results in instability and divergence in ADMM-Q,
as suggested by our theory and numerical experiments.
Another approach that has been utilized in practice
to escape spurious stationary solutions is the use of
randomness,/noise in the algorithm Jin et all [2017],
Lu et al! [2019h], Xu et al. [2018], |Allen-Zhu and Li
[2018], [Barazandeh and Razaviyayn [201§|, [Lu et all
[2019a]. In order to inject randomness to our algo-
rithm, we propose the following step at each itera-
tion r: draw a set of (potentially correlated) Bernoulli
random variables m” = {m], mj,...,m}}. Each m],
corresponds to the coordinate ¢ in vector y with
Prob(y] = 1) = p > 0. Then, we update y; in itera-
tion r if and only if m] = 1. This variant of ADMM-Q,
which we denote by ADMM-R, is presented in Algo-
rithm Bl The convergence result of this algorithm is
stated in Theorem 5.1l The proof of this result follows
the same steps as in the ones in Theorem [B.9] and
hence we omit the proof here.

Algorithm 3 ADMM-R
1: Input: Constants p,y > 0; initial points 2° =
y° € A, A% e R% the sequence {pl};, > a > 0.
2: for r=0,1,2,... do
3: Generate m: m” = {m},m},...,mj}
4: Compute §: "1 = Pa(z” + p~ A7)
5 Update y: y/ ™! = mfy}-”l + (I —ml)yr,

(3

Vie1,....d

6 Update z: 2"t! = argmin, £(x,y" ", \")
7: Update \: \"Tt =\ + p(a"t1 — ¢+
8: end for

r+1

Theorem 5.1. Assume that the constraint set A in ()
is a Cartesian product of simple coordinate-wise sets of
scalers. Then, under the same set of assumptions as
i Theorem [3.9, every iterate of the ADMM-R algorithm
is a p-stationary point of (D).

Notice that the convergence of this algorithm requires
that the set A to be of the Cartesian product form.
This assumption is necessary since the coordinates of
y is updated separately; see [Powell [1973], Bertsekas
[1997], Razaviyayn et all [2013] for necessity of such an
assumption in the presence of coordinate-wise update
rule. Having said that, the constraint sets in the quan-
tization context satisfy this assumption as illustrated

T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

in Example 2-3] and Example 2.4

6 ADMM-Q with Soft Projection (ADMM-S)

Step Blin ADMM-Q algorithm requires projection to the
discrete set A. Such a projection is non-continuous
which may result in instabilities in the algorithm. As
a solution, we can use “soft projection” in ADMM al-
gorithm. To obtain such soft projections, we start by
replacing the indicator function Z4(+) in the objective
function with a soft indicator function defined below.

Definition 6.1. Given a finite set A € R?, we define
the Soft Indicator Function S5 : R? — R as

Sa(x) = min|z — alz.
ae A

Replacing the indicator function Z4(-) with the soft
indicator function S4 in @), we obtain
min f(z) + BSaly) st. x=y,
xr
where 8 > 0 is some given constant. Following the
steps of ADMM, we obtain the ADMM algorithm with
soft projections (ADMM-S), which is summarized in Al-

gorithm [l The details of the derivation of this algo-
rithm is summarized in appendix [El

Algorithm 4 ADMM-S
1: Input: Constant p > 0, 3 > 0; initial points 20 =
e A \0eR?
2: for r=20,1,2,... do
3: Compute: z"+! "+ p AT,
Pa(z" 1) and zg = 27 — 2L
Update y:

r+1

>

, 7B <zl

s P > |22
6 Update z: 27! = argmin,, £(z,y" "1, \")
7: Update \: X1 = \" 4 p(z7 1 — ¢yt

8: end for

z
errl _ uzd‘|2

o

r+1

As shown in appendix [E] this algorithm coincides with
ADMM-Q if 3 is chosen large enough. However, for small
values of p, this algorithm results in a different trajec-
tory. In this case, while the iterates of the algorithm
does not necessarily converge to the set A, the y it-
erates are kept close to set A. Moreover, as shown
in appendix [E] the augmented Lagrangian function is
monotonically decreasing and it converges. Finally, we
would like to mention that similar hard and soft indi-
cators have been used before for sparse signal recovery
through soft and hard thresholding operators [Donoha
[1995], Blumensath and Davied [2008].

7 Numerical Experiments

We empirically evaluate the performance of the pro-
posed algorithms in the following two problems: 1)
Solving quadratic optimization problems with integer
constraints. 2) Training quantized neural networks.
The link to code is available in appendix [Hl

7.1 Numerical Experiment on Quadratic
Optimization with Integer Constraints

In this experiment, we use the presented algorithms
(ADMM-Q and its variants) to solve the optimization
problem

1
min §TQ +b'z st xe A=0ZY (6)
xz

for some given @ € R**? b e R? and v € Z*. Here,
the constraint set enforces that the solution should be
an integer number which is a multiple of v. We gener-
ate matrix () via the equation @ = QTQ+qq", where
Qi; ~ N(0,1), g; ~ N(0,0’;), 1 <1,j <d. Note that
the Lipschitz constant of the objective function (pa-
rameter Ly in the previous sections) can be adjusted
through changing O’é. We compare the performance of
projected gradient gradient descent (PGD), GD+Proj,
ADMM-Q, ADMM-S, and ADMM-R for different values of
d and Ug (see appendix [[] for more details). The
PGD algorithm is defined through the iterative update
rule 27T = Py (2" — p~tV f(2")). The “GD+Proj” al-
gorithm, runs gradient descent to find the global op-
timum of unconstrained problem, then it projects the
final solution onto the feasible set A.

For each problem instance, we run each algorithm ini-
tialized at the same random point for 30,000 iterations
(except 100,000 iterations for PGD to make sure it is
convergent). The best objective value over the last 50
iterations of the algorithm will be recorded as the re-
sult of each run. We repeated this procedure for 50
different initilizations, and compute the median, 25%
quartile and 75% quartile over 50 runs. We use the
best hyper-parameter for each algorithm by median,
and report the median, 25% quartile and 75% quar-
tile. The list of hyper parameters used can be found
in appendix [El

Results. We only report our results for (v,d, ag) =
(8,16,30) here. More simulations can be found in
appendix [Fl Figure [[shows the performance of the
studied algorithms for five different problem instances.
Each point on x-axis represents one problem instance;
and y-axis is the final obtained objective value. As ex-
pected, ADMM-Q outperforms PGD and GD-+Proj with
large margins. We also observe that both ADMM-S and
ADMM-R have better median final objective values than
ADMM-Q. In addition, the final objective value has a

Alternating Direction Method of Multipliers for Quantization

1000 A 9 /(zapmu-q)
Y @ Jlzaoww-s) T
0 -
[} K2
T T '?' r
0 1 4
1000 9 flzapmm-Q)
o E $ f (rADMM R)
Y
0 1 1
50000 A & Jlraomi-g)
I I/ TPCD
e 3 o
0 1 2 3 4
R
100000 $ flzapmv-Q)
® /=GDiProj)
e o & o 3
0 1 2 3 4
Figure 1: Performance of ADMM-Q, ADMM-S,

ADMM-R and PGD on different problem instances

smaller variance in these two algorithms. More im-
portantly, the median tends to overlap with the 25%
quantile, i.e., the objective of at least 25 runs are al-
most the same as the minimum objective over 50 runs.

To better understand the performance gap between
different algorithm for the same initialization, we con-
ducted one additional experiment: we generated 5 in-
stance of) and b, and for each instance we ran 50
different random initialization, resulting in 250 total
runs. We recorded the final objective value by each
algorithm. Then we computed the differences between
the objective values obtained by two algorithms for the
same initialization. We plot the histograms of these
differences in Figure[2l In this plot, f(zapmm_q) denotes
the final objective value obtained by ADMM-Q algorithm
(similar notation is used for other algorithms). Our
histogram plot suggests that ADMM-S and ADMM-R out-
perform ADMM-Q for almost all 250 runs. It also shows
that PGD performs much worse than ADMM-Q or its
variants. We also observe that ADMM-R slightly outper-
forms ADMM-S.

7.2 Neural Network Binarization

While ADMM algorithm has been extremely successful
in binarization and pruning of neural networks|Ye et _al.
[2018, 12019], Yuan et all [2019HJa], Leng et all [201]],
Lin et all [2019], [Zhang et al! [2018], [Liu et all [2020],

=
ey
St

00 1 — f Zppmy-q) — f(zADMM-S)
75
50
25
0 ; |
—480 480 960
125 A
100 {1 =3 f(@apmu-q) — fl@pap)
75
50
0
2400000 —300000 —200000 —100000
125 A
100 = f(zapm-q) — f(zaDMM-R)
75
50
25
0 . =
—480 960
125 1
1004 =3 f(zapmm- s f(xppMM-R)
75
50
25
0 e .
—480 0 480 960

Figure 2: Histogram of the difference of obtained ob-
jective values for different algorithm pairs

Ren et al) [2019], [Li et all [2019], most of these works
combine ADMM with other heuristics. To understand
the behavior of the ADMM algorithm (independent
of other heuristics), here we study the performance
of pure ADMM-Q and its variants (with no additional
heuristics) when used for binarizing neural networks
trained on MNIST and CIFAR-10 datasets.

7.2.1 MNIST

The MNIST dataset [LeCun et al! |[1998] consists of
28 x 28 arrays of grayscale pixel images classified into
10 handwritten digits. It includes 60,000 training im-
ages and 10,000 testing images. The task here is to
train a binary-weighted classifier to recognized hand
written digits, which can be formulated as

mm —Zé

where (z;,y;) is the i-th training sample; x; is the in-
put image; y; is the label; W represents the weights of
the network. The work in [Courbariaux et all [2015]
used “Straight Through Estimator” to binarize the
network and reached the accuracy level of the full-
precision network. We repeat the experiment with
the same network as|Courbariaux et al! [2015] and ap-
ply ADMM-Q and its variants. Similar to the quadratic
case, we also compare the performance with PGD and
GD+Proj. We conduct two sets of experiments: with
pretraining and without pretraining. To the best of our

FWiz:),m:) st. We{=1,+1}* (1)

T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

Algorithm Accuracy
BinaryConnect? 98.71%
Full Precision 98.87 + 0.04%
GD-+Proj 74.92 + 4.83%
PGD 92.73 + 0.23%
ADMM-Q 98.21 + 0.16%
ADMM-R 97.78 £+ 0.23%
ADMM-8 98.21 + 0.07%

Table 1: Testing accuracies for MNIST dataset

knowledge, all the ADMM-based approaches [Ye et al.
[2018, 12019], [Yuan et all [2019HJd], [Leng et al! [2018],
Lin et al! [2019], [Zhang et al! |2018§], [Liu_ et all [2020],
Ren et all |2019], [Liet all |2019] start from a pre-
trained full-precision network. However, in order to
solely study the performance of ADMM-based meth-
ods (and not additional modules around it), we avoid
using pre-training in some of our experiments. We
also did not use any popular heuristics and we relies
on implementing our plain ADMM-based algorithms.

To remove the effect of random initialization, we run
each algorithm for 5 times and record the mean and
standard deviation of the testing accuracy. For algo-
rithms with pre-training, we pre-train the model with
full precision and then apply the algorithm. Training
parameters and network structures be found in Table
and Table B in the appendix. Adam optimizer is used
for all algorithms. Note that in step Bl of algorithm [T],
it is required to solve a minimization problem, which is
not always tractable in practice. Thus, here we apply
5 epochs of Adam update on W.

Results. Table [[shows that plain ADMM-Q and
its variants have comparable results with BinaryCon-
nect |Courbariaux et all [2015]. Binarizing the weights
saves the storage as much as 96.78% (See Table [3).
One substantial difference between |Courbariaux et al.
[2015] and the proposed work is that we do not use
any heuristics and the proposed algorithm enjoys the-
oretical guarantees. Note that for ADMM-Q without
pre-training, we fix a value of p and keep it until
the end of the training process. We observed that
one can indeed use “scheduling” for parameter p, i.e.,
increasing it gradually, to shorten the training time.
It is worth mentioning that pre-training (with non-
binarized weights) in fact further improves the perfor-
mance of ADMM-based methods (see appendix [G)).

7.2.2 CIFAR-10

The CIFAR-10 dateset Krizhevsky et all [2009] is a col-
lection of images widely used to train machine learning

$BinaryConnect [Courbariaux et all [2015]

Algorithm Accuracy
Progressive DNNY 93.53%
Full Precision 93.06%
GD | Proj 9.86%
PGD 63.53%
ADMM-Q 82.74%
ADMM-R 84.87%
ADMM-S 84.72%

Table 2: Testing accuracies for CIFAR-10 dataset

Full-precision ~ Binary
MNIST 140.55 MB 4.53 MB
CIFAR-10 53.53 MB 1.72 MB

Table 3: The storage savings of binarized neural net-
works

models. It consists of 32 x 32 sized RGB images clas-
sified into 10 mutually exclusive categories: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The dataset consists of 50,000 training images
and 10,000 testing images. Similar to the MNIST ex-
periments, the task is to build a binary-weighted net-
work for classifying the images.

We repeat run our algorithms to train neural networks
on CIFAR-10 dataset with and without pretraing. For
this experiment, we use Resnet-18 [He et all [2016] ar-
chitecture. The hyper-parameters used in our experi-
ments are summarized in Table[I0l Adam optimizer is
used for all algorithms; We apply 25 epochs of Adam
updates on W to solve the minimization problem in
step Bl of algorithm [l

Results. Table 2] shows the results of the experi-
ments on CIFAR-10. Binarizing the weights saves
the storage of up to 96.79% (See Table B]). Progres-
sive DNN [Ye et all [2019] is the state-of-the-art result
which has multiple re-training heuristics involved. One
thing worth mentioning here is that we do not use
any heuristics. We only use diminishing step-size and
increasing rho during the training procedure which
is standard. We can see that without pretraining,
the results of ADMM-type algorithm are much better
than PGD which is consistent with the observations
in MNIST and quadratic experiments. ADMM-R and
ADMM-S slightly outperform ADMM-Q. Pretraining can
further improve the performances of ADMM-type al-
gorithms, making them comparable with the full-
precision network (see appendix [G]).

TProgressive DNN [Ye et all [2019]

Alternating Direction Method of Multipliers for Quantization

Acknowledgments

The authors would like to thank Mingyi Hong (Uni-
versity of Minnesota) for the fruitful discussions and
invaluable comments that improved the quality of this

paper.

References

Z. Allen-Zhu and Y. Li. Neon2: Finding local minima
via first-order oracles. In Advances in Neural Infor-
mation Processing Systems, pages 3716-3726, 2018.

B. Barazandeh and M. Razaviyayn. On the behavior of
the expectation-maximization algorithm for mixture
models. In 2018 IEEE Global Conference on Signal
and Information Processing (GlobalSIP), pages 61—
65. IEEE, 2018.

Y. Bengio, N. Léonard, and A. Courville. Estimat-
ing or propagating gradients through stochastic neu-
rons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

D. P. Bertsekas. Nonlinear programming. Journal
of the Operational Research Society, 48(3):334-334,
1997.

T. Blumensath and M. E. Davies. Iterative threshold-
ing for sparse approximations. Journal of Fourier
analysis and Applications, 14(5-6):629-654, 2008.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed optimization and statistical learn-
ing via the alternating direction method of multipli-
ers. Foundations and Trends®) in Machine learning,
3(1):1-122, 2011.

M. Courbariaux, Y. Bengio, and J.-P. David. Bina-
ryconnect: Training deep neural networks with bi-
nary weights during propagations. In Advances in

neural information processing systems, pages 3123—
3131, 2015.

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv,
and Y. Bengio. Binarized neural networks: Train-
ing deep neural networks with weights and acti-
vations constrained to+ 1 or-1. arXiv preprint
arXw:1602.02830, 2016.

S. Darabi, M. Belbahri, M. Courbariaux, and V. P. Nia.
Bnn+: Improved binary network training. arXiv
preprint arXiv:1812.11800, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In 2009 IEEFE conference on computer
viston and pattern recognition, pages 248-255. leee,
2009.

D. L. Donoho. De-noising by soft-thresholding. IEEE
transactions on information theory, 41(3):613-627,
1995.

J. Douglas and H. H. Rachford. On the numerical so-
lution of heat conduction problems in two and three

space variables. Transactions of the American math-
ematical Society, 82(2):421-439, 1956.

D. Drusvyatskiy and A. S. Lewis. Error bounds,
quadratic growth, and linear convergence of proxi-
mal methods. Mathematics of Operations Research,
43(3):919-948, 2018.

D. Gabay and B. Mercier. A dual algorithm for the
solution of nonlinear variational problems via finite
element approximation. Computers & mathematics
with applications, 2(1):17-40, 1976.

W. Gao, D. Goldfarb, and F. E. Curtis. Admm for
multiaffine constrained optimization. Optimization
Methods and Software, 35(2):257-303, 2020.

R. Glowinski and A. Marroco. Sur l'approximation,
par éléments finis d’ordre un, et la résolution, par
pénalisation-dualité d’une classe de problémes de
dirichlet non linéaires. ESAIM: Mathematical Mod-
elling and Numerical Analysis-Modélisation Mathé-
matique et Analyse Numérique, 9(R2):41-76, 1975.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

M. Hong. A distributed, asynchronous, and incremen-
tal algorithm for nonconvex optimization: an admm
approach. IEEE Transactions on Control of Net-
work Systems, 5(3):935-945, 2017.

M. Hong, Z.-Q. Luo, and M. Razaviyayn. Convergence
analysis of alternating direction method of multipli-

ers for a family of nonconvex problems. STAM Jour-
nal on Optimization, 26(1):337-364, 2016.

M. Hong, M. Razaviyayn, and J. Lee. Gradient primal-
dual algorithm converges to second-order stationary
solution for nonconvex distributed optimization over
networks. In International Conference on Machine
Learning, pages 2009-2018, 2018.

C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I.
Jordan. How to escape saddle points efficiently.
In Proceedings of the 84th International Conference
on Machine Learning-Volume 70, pages 1724-1732.
JMLR. org, 2017.

M. Kadkhodaie, M. Sanjabi, and Z.-Q. Luo. On the lin-
ear convergence of the approximate proximal split-
ting method for non-smooth convex optimization.
Journal of the Operations Research Society of China,
2(2):123-141, 2014.

A. Krizhevsky, G. Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recog-

T. Huang, P. Singhania, M. Sanjabi, P. Mitra, M. Razaviyayn

nition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin. Extremely
low bit neural network: Squeeze the last bit out with
admm. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence, 2018.

G. Li and T. K. Pong. Global convergence of split-
ting methods for nonconvex composite optimization.
SIAM Journal on Optimization, 25(4):2434-2460,
2015.

H. Li, N. Liu, X. Ma, S. Lin, S. Ye, T. Zhang, X. Lin,
W. Xu, and Y. Wang. Admm-based weight pruning
for real-time deep learning acceleration on mobile
devices. In Proceedings of the 2019 on Great Lakes
Symposium on VLSI, pages 501-506, 2019.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Tal-
walkar, and V. Smith. Federated optimiza-
tion in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 2018.

S. Lin, X. Ma, S. Ye, G. Yuan, K. Ma, and Y. Wang.
Toward extremely low bit and lossless accuracy
in dnns with progressive admm. arXiv preprint
arXiw:1905.00789, 2019.

X. Lin, C. Zhao, and W. Pan. Towards accurate binary
convolutional neural network. In Advances in Neu-
ral Information Processing Systems, pages 345-353,
2017.

N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye.
Autocompress: An automatic dnn structured prun-
ing framework for ultra-high compression rates. In
AAAI pages 4876-4883, 2020.

S. Lu, M. Hong, and Z. Wang. Pa-gd: On the conver-
gence of perturbed alternating gradient descent to
second-order stationary points for structured non-
convex optimization. In International Conference
on Machine Learning, pages 4134-4143, 2019a.

S. Lu, M. Razaviyayn, B. Yang, K. Huang, and
M. Hong. Snap: Finding approximate second-
order stationary solutions efficiently for non-convex
linearly constrained problems. arXiv preprint
arXw:1907.04450, 2019b.

M. J. Powell. On search directions for minimization
algorithms. Mathematical programming, 4(1):193—
201, 1973.

P. Ramachandran, B. Zoph, and Q. V. Le.
ing for activation functions.
arXiv:1710.05941, 2017.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
Xnor-net: Imagenet classification using binary con-
volutional neural networks. In Furopean conference
on computer vision, pages 525-542. Springer, 2016.

Search-
arXiv preprint

M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified
convergence analysis of block successive minimiza-
tion methods for nonsmooth optimization. SIAM
Journal on Optimization, 23(2):1126-1153, 2013.

S. J. Reddi, J. Konetny, P. Richtarik, B. Poczos,
and A. Smola. Aide: Fast and communication
efficient distributed optimization. arXiv preprint
arXiv:1608.06879, 2016.

A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin,
and Y. Wang. Admm-nn: An algorithm-hardware
co-design framework of dnns using alternating di-
rection methods of multipliers. In Proceedings of
the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 925-938, 2019.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing prop-
erties of neural networks, 2013.

R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad.
A simple effective heuristic for embedded mixed-

integer quadratic programming. International Jour-
nal of Control, 93(1):2-12, 2020.

W. Tang, G. Hua, and L. Wang. How to train a
compact binary neural network with high accuracy?
In Thirty-First AAAI conference on artificial intel-
ligence, 2017.

H. Wang and A. Banerjee. Bregman alternating di-
rection method of multipliers. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 27, pages 2816-2824. Cur-
ran Associates, Inc., 2014.

J. Wang, F. Yu, X. Chen, and L. Zhao. Admm for effi-
cient deep learning with global convergence. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 111-119, 2019a.

Y. Wang, W. Yin, and J. Zeng. Global convergence of
admm in nonconvex nonsmooth optimization. Jour-
nal of Scientific Computing, 78(1):29-63, 2019b.

Y. Xu, R. Jin, and T. Yang. First-order stochastic al-
gorithms for escaping from saddle points in almost
linear time. In Advances in Neural Information Pro-
cessing Systems, pages 5530-5540, 2018.

S. Ye, T. Zhang, K. Zhang, J. Li, K. Xu, Y. Yang,
F. Yu, J. Tang, M. Fardad, S. Liu, et al. Progressive
weight pruning of deep neural networks using admm.
arXiw preprint arXiv:1810.07378, 2018.

S. Ye, X. Feng, T. Zhang, X. Ma, S. Lin, Z. Li, K. Xu,
W. Wen, S. Liu, J. Tang, et al. Progressive dnn com-
pression: A key to achieve ultra-high weight pruning

and quantization rates using admm. arXiv preprint
arXiw:1903.09769, 2019.

Alternating Direction Method of Multipliers for Quantization

P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, and J. Xin.
Understanding straight-through estimator in train-
ing activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

G. Yuan, X. Ma, C. Ding, S. Lin, T. Zhang, Z. S. Jalali,
Y. Zhao, L. Jiang, S. Soundarajan, and Y. Wang.
An ultra-efficient memristor-based dnn framework
with structured weight pruning and quantization
using admm. In 2019 IEEE/ACM International
Symposium on Low Power FElectronics and Design
(ISLPED), pages 1-6. IEEE, 2019a.

Y. Yuan, C. Chen, X. Hu, and S. Peng. Tp-admm:
An efficient two-stage framework for training bi-
nary neural networks. In International Conference

on Neural Information Processing, pages 580-588.
Springer, 2019b.

J. Zhang and Z.-Q. Luo. A proximal alternating
direction method of multiplier for linearly con-
strained nonconvex minimization. arXiv preprint

arXiv:1812.10229, 2018.

T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Far-
dad, and Y. Wang. A systematic dnn weight prun-
ing framework using alternating direction method of
multipliers. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 184-199,
2018.

Y. Zhang, E. Dall’Anese, and M. Hong. Online
proximal-admm for time-varying constrained con-
vex optimization. arXiv preprint arXiv:2005.03267,
2020.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou.
Dorefa-net: Training low bitwidth convolutional

neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

	Introduction
	State of the art

	Problem Formulation
	Alternating Direction Method of Multipliers for Quantization (ADMM-Q)
	Review of ADMM
	Description of ADMM-Q
	Convergence Analysis of ADMM-Q

	Inexact ADMM-Q (I-ADMM-Q)
	Injecting Randomness to the Algorithm
	ADMM-Q with Soft Projection (ADMM-S)
	Numerical Experiments
	Numerical Experiment on Quadratic Optimization with Integer Constraints
	Neural Network Binarization
	MNIST
	CIFAR-10

