
Learning User Preferences in Non-Stationary Environments

Supplementary Material: Learning User Preferences in
Non-Stationary Environments

A Typical Values of the Parameters in Assumptions A1–A3

In this section, we provide two examples for which we derive the typical values of the various parameters in
Assumptions A1–A3.

Example 2. Consider the noiseless case where ∆ = 1/2. In this case, the users’ ratings are deterministic
given their user-types. Accordingly we generate K d-dimensional binary vectors {bi}Ki=1 by randomly drawing d
statistically independent Bernoulli(1/2) random variables, for each user-type. Here d ≤ M is some parameter.
Then, the preference vector of any user in the ` user-type (i.e., T`) will be the concatenation of b` with M − d
statistically independent Bernoulli(1/2) random variables. To wit, the preference vector of user u ∈ T` is pu =
[b`; eu], where eu is a binary vector whose M − d elements are statistically independent Bernoulli(1/2) random
variables. Now, for any two users u and v from different user-types, it should be clear that the inner product
1
M 〈2pu−1, 2pv−1〉 is merely a sum of M Rademacher random variables normalized by M. Accordingly, a standard
concentration inequality on sum of Rademacher random variables tell us that the value of this inner product is

in the interval [−Θ(
√

log M
M),Θ(

√
log M
M)], with probability at least 1− poly(M−1). Therefore, for the incoherence

condition to hold with high probability we need γ1 > Θ(
√

log M
M). On the other hand, if u and v are from the same

user-type, the inner product of the first d items is maximal (i.e., unity) by construction. Therefore, using the

same arguments it can be shown that the value of the above inner product is at least d
M −Θ(

√
(M−d) log(M−d)

M2) ≥
d
M−Θ(

√
log M
M), with high probability. This implies that the coherence condition holds if γ2 ≤ d

M−Θ(
√

(M−d) log M
M2).

When d = M, which means that users of the same user-type have exactly the same preference vectors and therefore
γ2 can get as large as 1. Otherwise, there is a certain payment depending on how similar the preference vectors
are, controlled by d. Finally, the typical value of µ is clearly around 1/2 with high probability.

Example 3. We generalize the previous example. Consider the case where each entry of the d-dimensional
vectors {b`}K`=1 is 1

2 + ∆ with probability µ and 1
2 − ∆ with probability 1 − µ, for a fixed ∆. Then, as in

the previous example, the preference vector of user u ∈ T` is pu = [b`; eu], where eu is now a random vector
whose M − d elements are statistically independent, and each element is either 1

2 + ∆ with probability µ and
1
2 − ∆ with probability 1 − µ. Then, using the same arguments as in the previous example, it can be shown
that if users u and v are of different user types, then the incoherence condition holds with high probability when

γ1 > (1− 2µ)2 + Θ(
√

log M
M). On the other hand, if users u and v are of the same user type, then the coherence

condition holds with high probability when γ2 ≤ d
M − (1− 2µ)2 −Θ(

√
(M−d) log(M−d)

M2).

B Proof of Theorem 1

To prove Theorem 1, we establish first a few accompanying results. We start with the following lemma which
bounds the probability that user of different (same) type have the same response. For this lemma, we assume
that users cannot change their type over time, and denote the type of user u ∈ [N] by Tu.

Lemma 1 (Same Response Lemma). Consider the latent source model and the incoherence Assumption A3.
Let ` be an item chosen uniformly at random from [M]. Then, the probability that two users u and v rate ` in
the same way is:

P [Ru` = Rv`|Tu 6= Tv] ≤ 2γ1∆2 +
1

2
, (6)

for users of different types, and,

P [Ru` = Rv`|Tu = Tv] ≥ 2γ2∆2 +
1

2
, (7)

for users of the same type.

Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

Proof. Notice that for two users u and v belonging to different user groups, the probability in question is

P [Ru` = Rv`|Tu 6= Tv] =
1

M

M∑
i=1

[pu,ipv,i + (1− pu,i)(1− pv,i)]

=
1

M

M∑
i=1

[
(2pu,i − 1)(2pv,i − 1)

2
+

1

2

]
=

1

M
〈2pu − 1, 2pv − 1〉+

1

2

≤ 2γ1∆2 +
1

2
,

where the inequality follows from the incoherence Assumption A3. Similarly, for two users of the same type,

P [Ru` = Rv`|Tu = Tv] =
1

M
〈2pu − 1, 2pv − 1〉+

1

2

≥ 2γ2∆2 +
1

2
,

where, again, the inequality follows from the coherence Assumption A3.

The following lemma gives a condition on the number of random recommendations needed for the cosine-similarity
test to output the correct clustering with high probability, assuming that no variations happened during the
test. We establish a few notations. Let Ttest ⊆ [M] be a set of L items chosen uniformly at random from M. Let
Yu,v ∈ {0, 1} be a binary variable indicating whether (u, v) are in the same cluster or not, for u, v ∈ [N]. Using
the responses {Ru,i}u∈[N],i∈Ttest , we would like to infer the values of Yu,v for all u, v ∈ [N]. For any pair of distinct
users u, v ∈ [N], let Xu,v be the random variable corresponding to the number of items for which u and v had
the same responses. Finally, we let

Ŷu,v =

{
1, if Xu,v ≥ λ · L
0, otherwise,

(8)

for some λ ≥ 0. We have the following result.

Lemma 2. Consider the latent source model and the incoherence Assumption A3. Let δ ∈ (0, 1). For any

L ≥ 2 log(3N2/δ)
∆4(γ2−γ1)2 , Tstatic, and any λ ∈ [λ−, λ+] with λ− = 2γ1∆2 + 1

2 +
√

2
L log(3N2/δ) and λ+ = 2γ2∆2 + 1

2 −√
2
L log(3N2/δ), the test in (8) discriminates between Yu,v = 0 and Yu,v = 1, for any pair of users u, v ∈ [N],

with probability at least 1− δ/3.

Proof. First, it is clear that Lemma 1 implies that

E [Xu,v|Yu,v = 0] ≤ L
(

2γ1∆2 +
1

2

)
,

E [Xu,v|Yu,v = 1] ≥ L
(

2γ2∆2 +
1

2

)
.

Then, we note that Xu,v is a sum of L random variables in [−1, 1], drawn without replacement from [M]. Ac-
cordingly, Hoeffding’s inequality gives,

P [Xu,v ≥ λ− · L|Yu,v = 0] ≤ exp

[
− (λ− · L− E [Xu,v|Yu,v = 0])

2

2L

]
(9)

≤ exp

[
−
(
λ− − 2γ1∆2 − 1

2

)2
2

L

]
, (10)

and

P [Xu,v ≤ λ+ · L|Yu,v = 1] ≤ exp

[
−
(
2γ2∆2 + 1

2 − λ+

)2
2

L

]
. (11)

Learning User Preferences in Non-Stationary Environments

Therefore, taking λ− = 2γ1∆2 + 1
2 +

√
2
L log(3N2/δ) and λ+ = 2γ2∆2 + 1

2 −
√

2
L log(3N2/δ), we obtain that

P [Xu,v ≥ λ− · L|Yu,v = 0] ≤ δ

3N2
, (12)

and

P [Xu,v ≤ λ+ · L|Yu,v = 1] ≤ δ

3N2
. (13)

Picking any λ ∈ [λ−, λ+], we can see that the bounds in (12)–(13), with λ− and λ+ replaced by λ. This is

equivalent to P
[

Ŷu,v 6= Yu,v

∣∣∣Yu,v = `
]
≤ δ/(3N2), for ` = 0, 1. Such λ exists if λ+ ≥ λ−, which holds whenever,

L ≥ 2 log(3N2/δ)

∆4(γ2 − γ1)2
= Tstatic. (14)

Finally, taking a union bound over all pairs of users (we trivially have at most N2 such pairs) we conclude that
we can correctly infer the values of Yu,v for all u, v ∈ [N] (and therefore cluster all such pairs of users correctly),
with probability at least 1− δ/3, as claimed.

We would like to mention here that the test described above can only distinguish between whether Yu,v = 1 or
Yu,v = 0, assuming that users did not change their type during the test. If, however, a test is conducted when
there are switches, we can still infer the clustering of those users who have not changed during the test correctly.

We are now in a position to prove Theorem 1. With some abuse of notation, let us denote by reward(B`) the
expected reward accumulated in batch B`, i.e.,

reward(B`) , E

[∑
t∈B`

1

N

N∑
u=1

1[Ruπu,t = 1]

]

= |B`| − E

[∑
t∈B`

1

N

N∑
u=1

1[Ruπu,t = 0]

]
, |B`| − regret(B`), (15)

where regret(B`) is the regret accumulated during batch B`. As can be seen from Algorithm Collaborative,
we decompose the recommendation horizon T to a sequence of batches of size ∆T each. To obtain Theorem 1, we
will relate the total reward/regret with the local reward/regret of the static algorithm Recommend. Specifically,
let B`, for ` = 1, 2, . . . , dT/∆Te, denote the `’th batch of size ∆T, and let tB` be the ending time of batch B`.
We will keep track of a set of users Vt ⊆ [N] which will include all those users for whom we have been able to
identify that they have have changed their user groups at some point of time during the batch B`. We initialize
VtB`−1

+1 = φ at the beginning of the batch to be the empty set. We define

VB`,1 ,
∑

t∈B`\tB`

1 [Tu(t) 6= Tu(t+ 1), for some u ∈ [N]] , (16)

as the number of variations that have occurred during the batch B`. Furthermore, we let

VB`,2 ,
1

N

∑
u∈[N]

∑
t∈B`\tB`

1 [Tu(t) 6= Tu(t+ 1)] , (17)

as the total number of variations that have occurred during the batch B`. For τ ∈ B`, we define Zτ to be an
indicator random variable which is unity if some user switches its type in a window of 2 · Tstatic around round τ
within the batch B`. For τ ∈ B`, let us denote Wτ := {max{τ −Tstatic, tB`−1+1}, . . . ,min{τ + Tstatic, tB`}} as the
window of size 2 · Tstatic around τ . Then, note that Zτ can be written as

Zτ = 1

∑
u∈[N]

∑
t∈Wτ

1 [Tu(t) 6= Tu(t+ 1)] > 0

 . (18)

Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

As can be seen from Algorithm Recommend, at every round in each batch, we start a test with probability
1/
√

∆T, which involves recommending randomly sampled items to every user for Tstatic rounds. After each such
test, we can use Lemma 2 to partition the set of users. In addition, in the fourth step of Algorithm Recommend
we conduct a reference test at the beginning of the batch. In the sequel, we denote this test by Test0, and further
denote the (j+ 1)th test by Testj . The partition induced by the (j+ 1)th test is denoted by PTestj . By comparing
the partitions PTestj and PTest0 , we will be able to partially identify users who have changed their user groups in
the batch. This is done in Algorithm Test. We will call those users who have changed their user groups in a
particular batch as bad users and those users who have not changed their user groups throughout the batch as
good users. Moreover, a user is also good until he changes his user group and will be denoted as bad from the
round he changes his group. In order to bound the regret over each batch we will consider the following three
cases:

• Case 1: Consider the situation where at least 2/3 of the users of any particular user group have changed
their user group. We denote this event by E1. In such a case, we will upper bound the regret in the batch

B` by ∆T . Notice that, since VB`,2 ≥ 2ν
3 , therefore conditioned on E1, we have regret(B`) ≤

3∆TVB`,2
2ν .

• Case 2: In this case, we will assume that for every user group, at most 1/3 of the users change their user
groups in the batch. For any test PTestj , notice that we can actually end up with more than K clusters (say
we have K′ clusters) because of variations. In that case, we will identify all the users in the smallest K′ −K
clusters as users who have changed their user group. Note that, it is possible that we make a mistake in this
process because one of the clusters in the smallest K′−K clusters might correspond to good users who have
not changed their user group. This, however, must mean that a larger cluster among the largest K clusters
must correspond to users who have changed. This in turn implies that at least 2νN

3 users have changed since
the size of the smaller cluster corresponding to users who do not change their group throughout the batch
B` is at least 2νN

3 . We will denote this event by E2. As in the previous case, we trivially upper bound the

regret in the batch B` by ∆T, and similarly to Case 1, we have regret(B`) ≤
3∆TVB`,2

2ν , conditioned on E2.

• Case 3: In this case, as in the previous case, we assume that for every user group, at most 1/3 of the users
change their user groups in the batch. Contrary to the previous case, we will also assume that in every test
with more than K clusters (say, K′ clusters), the users in the smallest K′ −K users correspond to users who
have changed their user group. For a future test j started at round τtest,j such that Zτtest,j ,u = 0, we will
compare the partitions PTest0 and PTestj by establishing a bijective mapping between the clusters of the two
partitions. For every cluster C in PTest0 , we can find a cluster C′ in PTestj such that at least two-thirds of the
elements in C, C′ are common. Subsequently, for all those users in C which are not present in C′, we correctly
identify them as users who have changed their user groups. For a pair of distinct users (u, v) ⊂ [N] × [N]
belonging to the same user group at the beginning of the batch B`, we call them interesting if one of them
have changed their user group. Note that, for any pair of interesting users (u, v) where one of them have
changed their user group at any round after the reference test is conducted and remains in different user
group before the (j + 1)th test is started will belong to different clusters in PTestj . Note that it is possible
that ZtB`−1

+1,u = 1, i.e., some user u might change their user group during the first Tstatic rounds when the

reference test is being conducted. Since we can label the top K clusters (by the corresponding user-group)
returned by the reference test as we know that two-thirds users of every user group did not change. We
denote by PTest0(u) the cluster (label) u belongs to in the partition returned by the reference test Test0. Let
us define an indicator random variable Lu which is unity if user u has changed his user group in the first
Tstatic rounds. Consider such a user u for which Lu = 1. In that case, three things are possible at the end
of the reference test:

1. u might belong to the smallest K′ − K clusters in the reference test in which case u is identified as a
user who has changed his user group and he is not involved in the main algorithm started after the
reference test, i.e., u is added to the set VTstatic . We define an indicator random variable Xu,1 which is
unity if user u has changed his user group during the first Tstatic rounds in the batch, and is returned
in the smallest K′ − K clusters at the end of the reference test.

2. u belongs to the cluster corresponding to his new user group in which case we will not be able to infer
that u has changed his user group. In this case, we will consider u to be a good user unless he changes
his user group later. We will consider his user group at the end of the reference test (PTest0(u) which
is same as Tu(tB`−1

+ 1 + Tstatic)) to be his actual user group. We will call this a special case and we

Learning User Preferences in Non-Stationary Environments

define an indicator random variable Xu,2 , 1[Ptest0(u) = Tu(tB`−1
+ 1 + Tstatic)] which is unity if user u

changes his user group during the first Tstatic rounds in the batch, and belongs to his final user group
(the user group he belongs to at the end of the reference test).

3. u remains in his original user group (or an intermediate user group if he changes his user group multiple
times during the reference test). We define an indicator random variable Xu,3 which is unity if the
user changes his user group in the first Tstatic rounds and does not belong to his final user group
(the user group he belongs to at the end of the reference test) at the end of the reference test, i.e.,
Xu,3 , 1[Ptest0(u) 6= Tu(tB`−1

+ 1 + Tstatic)]. For a round τ > Tstatic in B`, we will define an indicator
random variable Ju,τ = 1[Tu(τ) 6= PTest0(u)], which is unity if user u is in a different group at round τ
than the user group of u that was returned by the reference test.

We are now in a position to bound the regret over each batch. To that end, we will decompose the regret into
a few terms and analyze the contribution of each term separately. First, as we described above conditioned on
Cases 1 and 2, namely, A , E1 ∪ E2 we have

regret(B`|A) ,
1

N

∑
t∈B`\Ttest,`

∑
u∈[N]

E
[
1
[
Ru,πu,t = 0 | A

]]
(19)

≤ 3∆TVB`,2
2ν

. (20)

Next, we analyze Case 3, where we condition on Ac, namely,

regret(B`|Ac) ,
1

N

∑
t∈B`\Ttest,`

∑
u∈[N]

E
[
1
[
Ru,πu,t = 0 | Ac

]]
. (21)

We do that by considering each of the sub-cases listed above.

B.1 Variations When Testing

We bound the regret for those rounds in the batch for which Zτ = 1. Specifically, for a round τ ∈ B`, we denote
the event Eτ,1 when Zτ = 1, which by definition imply that there is a variation in a window of size 2 · Tstatic

around round τ for some user. In particular, using the definitions in (16) and (18), we note that∑
τ∈B`\Ttest,`

Zτ ≤
∑
τ∈B`

∑
t∈Wτ

1 [Tu(t) 6= Tu(t+ 1), for some u ∈ [N]] (22)

≤ 2 · VB`,1 · Tstatic. (23)

Therefore, we can bound the regret in those rounds and users where Zτ = 1 by

A2 ,
1

N
E

 ∑
t∈B`\Ttest,`

∑
u∈[N]:Zt=1

1
[
Ru,πu,t = 0 | Ac

] (24)

≤ E

[∑
τ∈B`

1 [Zt = 1]

]
(25)

≤ 2 · VB`,1 · Tstatic. (26)

B.2 Regret Due To Testing

We bound the regret for those rounds where we test in Algorithm Recommend. Specifically, for a round τ ∈ B`,
we define the indicator random variable Yτ which is unity when a test is being conducted at the round τ . We

Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

have

A3 ,
1

N
E

 ∑
t∈B`\Ttest,`:Yτ=1

∑
u∈[N]

1
[
Ru,πu,t = 0 | Ac

] (27)

≤ E

[∑
t∈B`

1 [Yτ = 1]

]
(28)

≤ ∆T · p · Tstatic, (29)

where we have used the fact that P[Yτ = 1] = P[τ ∈ Test] = p, |B`| = ∆T, and each test takes Tstatic rounds.

B.3 Undetected Bad Users

For a user u ∈ [N], we define an indicator random variable Bu,t which is unity if the user is not included in the
set of bad users Vt at round t ∈ B`. Furthermore, for a round t after the reference test, namely, t ∈ B` \ Ttest,`,
where Ttest,` , [tB`−1

+ 1, . . . , tB`−1
+ Tstatic], define an indicator random variable Ht which is unity if there is a

bad user which is undetected (or, untested) involved in the algorithm. As we explain Below this random variable
can be decomposed into the union of three sub-cases which we discussed above. For any round t ∈ B` \ Ttest,`,
we have:

• A user u who satisfies Lu = 1,Bu,t = 1,Xu,3 = 1, Ju,t = 1 and Zt = 0, is one who has changed his user group
in the first Tstatic rounds in the batch, was not in his final user group at the end of the reference test, and
his user group at round t is different from his user group that was returned by the reference test, i.e.,

Tu(tB`−1
+ 1 + Tstatic) 6= PTest0(u) and Tu(t) 6= PTest0(u).

• A user u who satisfies Lu = 1,Bu,t = 1,Xu,2 = 1, Ju,t = 1 and Zt = 0, is one who has changed his user group
in the first Tstatic rounds in the batch, and his user group at the end of the reference test is also same as the
one provided by the estimate of the reference test, but his user group at round t is different from his user
group at the end of the reference test, i.e.,

Tu(tB`−1
+ 1 + Tstatic) = PTest0(u) and Tu(t) 6= PTest0(u).

• A user u who satisfies Lu = 0,Bu,t = 1, Ju,t = 1 and Zt = 0 is one who has not changed his user group in
the first Tstatic rounds in the batch, but his user group at round t is different from his user group at the
beginning of the batch, i.e.,

Tu(tB`−1
+ 1 + Tstatic) = Tu(t), for t ∈ Ttest,`,

Tu(t) 6= PTest0(u).

Given the above three sub-cases, it is clear that Ht for t ∈ B` \ Ttest,`, can be written as

Ht = 1

∑
u∈[N]

1 [Lu = 1,Bu,t = 1,Xu,3 = 1, Ju,t = 1,Zt = 0]

+
∑
u∈[N]

1 [Lu = 0,Bu,t = 1, Ju,t = 1,Zt = 0]

+
∑
u∈[N]

1 [Lu = 1,Bu,t = 1,Xu,2 = 1, Ju,t = 1,Zt = 0] > 0

 . (30)

Learning User Preferences in Non-Stationary Environments

Basically, Ht indicates whether at time t ∈ B` \ Ttest,` a bad user is present or not. Accordingly, we bound the
regret in this case as follows

A4 ,
1

N
E

 ∑
t∈B`\Ttest,`:Ht=1

∑
u∈[N]

1
[
Ru,πu,t = 0 | Ac

] (31)

≤ E
∑

t∈B`\Ttest,`

1 [Ht = 1] (32)

= E
∑

t∈B`:∃u∈[N],Ju,t=1

Gt, (33)

where in (33) we sum over all those rounds where some user changed its type, and Gt counts the number of rounds
it takes to detect the bad users. This random variable is clearly stochastically dominated by by a Geometric
random variable with mean 1/p. Indeed, a test can start at every round with probability p, and a test that starts
at a round Zt = 0 will certainly reveal that the user is in a different user group than the one returned in the
reference test Ptest0 . Accordingly, we will add that user to the set VtB`−1

+1+Tstatic+t. Therefore, we obtain that,

A4 ≤ E
∑

t∈B`:∃u∈[N],Ju,t=1

Gt ≤ E
∑

t∈B`:∃u∈[N],Ju,t=1

1

p
≤ VB`,1

p
. (34)

B.4 The “Static” Regret

It remains to bound the regret for those round where we do not test and all bad users are detected, i.e.,

A5 ,
1

N
E

 ∑
t∈B`\Ttest,`:Ht=0,Yt=0

∑
u∈[N]\Vt

1
[
Ru,πu,t = 0 | Ac

] . (35)

We shall refer to this regret as the static regret. This static case was studied in [Bresler et al., 2014], where
algorithm Recommend was analyzed thoroughly. As discussed before, in [Bresler et al., 2014] it was assumed
that users of the same user-type have the same exact preference vectors, while in this paper we assume the
weaker coherence Assumption A3. Nonetheless, except for a few technical differences (which we highlight in the
proof of the following result), our analysis relies on the proof of Theorem 1 in [Bresler et al., 2014].

Theorem 2 (No Variations). Let δ ∈ (0, 1), and consider the latent source model and assumptions A1–A3.

Also, assume that N = Ω
(

M
ν log 1

δ +
(

3
δ

)1/α)
. Then, for any Tstatic ≤ ∆T ≤ µ ·M, we have

A5 ≤ (∆T − Tstatic) · δ. (36)

B.5 Collecting Terms

We finally collect all the above bounds to obtain the result stated in Theorem 1. Specifically, using (20), (26),
(29), (34), and Theorem 1, we obtain

regret(B`) ≤ Tstatic · (1− µ) + (∆T − Tstatic) · δ + 2 · VB`,1 · Tstatic + p ·∆T · Tstatic

+
VB`,1
p

+
3∆TVB`,2

2ν
(37)

≤ δ ·∆T + Tstatic · (1− δ − µ) + 2 · VB`,1 · Tstatic + p ·∆T · Tstatic

+
VB`,1
p

+
3∆TVB`,2

2ν
, (38)

where the first term at the r.h.s. of (37) is the regret due to the first Tstatic rounds where we recommend random
items. Since (38) is true for every batch B`, we can sum-up over `, and obtain that

regret(T) ≤
dT/∆Te∑
`=1

regret(B`) (39)

≤ δ · T +
T

∆T
Tstatic · (1− δ − µ) + 2 · V1 · Tstatic + p · T · Tstatic +

V1

p
+

3∆TV2

2ν
. (40)

Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

Minimizing the r.h.s. of the above inequality w.r.t. p, we obtain that its optimal value is p? =
√

V1/(T · Tstatic).
Therefore,

regret(T) ≤ δ · T +
T

∆T
Tstatic · (1− δ − µ) + 2 · V1 · Tstatic + 2

√
V1 · T · Tstatic +

3∆TV2

2ν
. (41)

It is left to do is to minimize the r.h.s. of the above inequality over ∆T. The optimal value is given in a form
of a solution for a cubic equation. Alternatively, it turns out that the following choice which minimizes the first
three terms at the r.h.s. of (41) is

∆∗T = min

(
T,

√
2νT

3V2
κ

)
, (42)

where κ , Tstatic(1− δ − µ). Substituting this value back in (41) gives

regret(T) ≤ δ · T + max

(
κ,

√
3V2Tκ

2ν

)
+ 2 · V1 · Tstatic + 2

√
V1 · T · Tstatic

+ min

(
3V2T

2ν
,

√
3V2Tκ

2ν

)
, (43)

and so reward(T) = T − regret(T) is lower bounded by the same expression as in Theorem 1. Note that the

condition ∆T > Tstatic in Theorem 2 boils down to T > Tstatic · max
{

1, 3V2

2ν(1−δ−µ)

}
= Tlearn. Finally, for

T ≤ Tlearn, we get that reward(T) ≥ µ · T, as claimed.

B.6 Proof of Theorem 2

To prove the result in Theorem 2, it is suffice to lower bound the probability P
[
Ruπu,t = 1,Yt = 0,Ht = 0

]
. To

that end, for any u ∈ [N] and t ∈ [T], define

Gu,t ,
{
|∂t(u)| ≥ 2νN

3

}
, (44)

where ∂t(u) is the set of neighbors at time t user u have from the same user-types, respectively. For t large
enough the probability of Gu,t is lower bounded strictly by zero. To show that recall that |Tu(t)| is the number
of users in user’s u type at round t. As we argued above at each round we know that |Tu(t)| > 2νN

3 . Also, recall
that in the beginning of the batch we devote the first Tstatic recommendations for creating an initial partition
P0 of the users into types (see, the the fourth step in Algorithm 2). We showed in Lemma 2 that the resulted
partition is correct with probability at least 1 − δ/3, and therefore, |∂t(u)| 2νN3 with the same probability, i.e.,
P[Gu,t] ≥ 1− δ/3, for t ∈ B` \ Ttest,`.

Next, using the same steps as in the proof of Lemma 2 in [Bresler et al., 2014], we show that the good neigh-
borhoods have, through random exploration, accurately estimated the probability of liking each item. Thus, we
correctly classify each item as likable or not with high probability. In particular, we show Below that

P
[
Ru,πu,t = 1,Yt = 0,Ht = 0

∣∣Gu,t] ≥ 1− 2M exp

(
−2

∆2νtN1−α

3M

)
− 1

Nα
. (45)

Before proving the above inequality let us first show how we can use it lower bound the regret. Indeed, combining
the above inequality with the fact that P[Gu,t] ≥ 1− δ/3, we get

P
[
Ru,πu,t = 1,Yt = 0,Ht = 0

]
≥ 1− 2M exp

(
−2

∆2νtN1−α

3M

)
− 1

Nα
− δ

3
. (46)

It can be seen that if the number of users N satisfy N = Ω
(

M
ν log 1

δ +
(

3
δ

)1/α)
, and of course t ≥ Tstatic, then the

r.h.s. of (46) is at least 1− δ, namely, P
[
Ru,πu,t = 1,Yt = 0,Ht = 0

]
≥ 1− δ. Therefore, we obtain,

A5 ≤
∑

t∈B`\Ttest,`

1

N

N∑
u=1

P
[
Ru,πu,t = 0,Yt = 0,Ht = 0|Ac

]
≤ (∆T − Tstatic) · δ, (47)

Learning User Preferences in Non-Stationary Environments

where in the second inequality we have used Assumption A2. Next, we prove (45). First, we lower bound the
number of times an arbitrary item has been rated by the good neighbors of some user u, conditioned on the event
Gu,t. To that end, note that the number of good neighbors user u has and who have rated item i is stochastically

dominated by Binomial
(

2νN
3 , t

MNα

)
. Let D be the event “item i has less than νtN1−α

3M ratings from good neighbors
of u”. Then, Chernoff’s bound then gives

P (D) ≤ P
(

Binomial

(
2νN

3
,

t

MNα

)
≤ νtN1−α

3M

)
(48)

≤ exp

(
−νtN

1−α

3M

)
. (49)

Next, conditioned on Gu,t and D we prove that with high probability when exploiting the algorithm predicts
correctly every item as likable or unlikable for user u. Recall our definition for the posterior p̂u` in (4). Suppose

item i is likeable by user u, and let G , νtN1−α

3M . Then, conditioned on G, p̂u` stochastically dominates p̃ui ,
Binomial(G, pui)/G. Then,

P
(
p̃ui ≤

1

2

∣∣∣∣G

)
= P

(
Binomial(G, pui) ≤

G

2

∣∣∣∣G

)
(50)

≤ exp
(
−2G∆2

)
(51)

≤ exp

(
−2

∆2νtN1−α

3M

)
, (52)

where the first inequality follows from Hoeffding’s inequality, and the second inequality is because pui ≥ 1/2+∆.
Using monotonicity, we also have

P
(
p̃ui ≤

1

2

∣∣∣∣G ≥ νtN1−α

3M

)
≤ exp

(
−2

∆2νtN1−α

3M

)
. (53)

Using the same steps we can show that if item i is unlikeable by user u then with the same probability p̃ui ≥ 1
2 .

Taking a union bound over all items we get that with probability at least 1−M exp
(
−2∆2νtN1−α

3M

)
our algorithm

correctly classifies every item as likable or unlikable for user u. We are now in a position to prove (45). Specifically,

for user u at time t, conditioned on Gu,t we have shown in (49) that with probability at least 1−M exp
(
−νtN

1−α

3M

)
every item has more than νtN1−α

3M ratings from good neighbors of u. Now, using the fact that with probability

at least 1 − M exp
(
−2∆2νtN1−α

3M

)
we classify correctly all items, coupled with the fact that we exploit with

probability 1− N−α, we get

P
[
Ru,πu,t = 1,Yt = 0,Ht = 0

∣∣Gu,t] ≥ 1−M exp

(
−νtN

1−α

3M

)
−M exp

(
−2

∆2νtN1−α

3M

)
− 1

Nα
(54)

≥ 1− 2M exp

(
−2

∆2νtN1−α

3M

)
− 1

Nα
, (55)

as claimed.

C Experiments

We simulate an online recommender system using real-world data in order to understand whether our algorithm
performs well, even when the data is not generated by the probabilistic model introduced in Section 2. To that
end, we follow a similar vein as in [Bresler et al., 2014, Heckel and Ramchandran, 2017], and look at movie
ratings from the popular Movielens25m dataset,1 which provides 5-star rating and free-text tagging activity

1https://grouplens.org/datasets/movielens/25m/

Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

from Movielens, a movie recommendation service. We parsed the first 7 million ratings for our experiment, and
consider only those users who have rated at least 225 movies, ending up with a total number of N = 247 users.

To avoid any kind of biases, we also restrict ourselves to movies which are more or less equally liked and disliked
by the users. To that end, we choose those movies whose average ratings is between 2.5 and 3.5, and we found
out that M = 10149 such movies exist. Finally, we looked at two genres: Action and Romance. For each user
u ∈ [N], we recover piece-wise stationary preferences by the following steps:

1. We sort the movies rated by user u in ascending order according to the time-stamp.

2. We partition the movies rated by user u into 15 bins so that each bin contains equal number of movies. We
will consider each bin to be a window of time.

3. For each bin, we find the number au ∈ N of Action movies rated by user u, as well as ru ∈ N the number
of Romance movies rated by the same user.

Accordingly, note that in each bin, the probability of user u: liking a movie tagged Action but not Romance is
au/(au + ru); liking a movie tagged Romance but not Action is ru/(au + ru); liking a movie tagged both Action

and Romance is 1, and finally, a movie which does not have any of these tags is 0. We want to point out that
we consider the number of Action and Romance movies that were rated by the user, rather than just liked, since
any user is biased towards rating the movies he will like (see, [Heckel and Ramchandran, 2017]), and therefore
the number of movies rated by the user is a better indicator of his preference towards the genre. Fig. 3 shows
the probability of 5 randomly chosen users liking Action movies across 10 different bins. It is clear that the
preferences exhibit a piece-wise stationary behaviour, and that the variations are significant.

We now assume for simplicity that the number of rounds in each bin is 100 (this value is unknown to the
algorithm), and we took the total number of rounds to be T = 600. In lieu of creating the initial disjoint clusters
at the beginning of each batch (i.e., P0), we recommend Tstatic randomly chosen items to all users. For each user
u ∈ [N], we take the neighbors of u to be the top 10 users whose feedback vector has the highest cosine similarity
with that of user u, over the Tstatic recommended items. Further, since T = 600 is quite small, we do not test for
bad users in each batch (namely, we skip lines 13− 15 in Algorithm 2). The reasons for this modification are as
follows. First, in the theoretical analysis, we have assumed that ratings of a single bad user can potentially result
in faulty recommendations for all other users in their user group. However, in practice, that might not be the case
as future recommendations are determined by multiple other users who can negate the effect of that bad user.
Secondly, as the dataset for our experiment is not very large (10 neighbors for each user), detecting bad users
based on ratings of neighbors can be unreliable. Finally, for small T, Tstatic is comparatively large and therefore
testing for bad users can potentially bias the accumulated reward towards larger batch-sizes. Nevertheless, as we
will show, our experiment clearly demonstrates the dependence on ∆T and Tstatic in the non-stationary setting.
We run Algorithm 1 with Tstatic = 10 and pR = 0.1, for several different values of the batch-size ∆T, each for 5
different iterations. The performance of the algorithms is measured in terms of the average cumulative reward
up to time T, namely,

acc-reward(T) ,
∑
t∈[T]

1

N

∑
u∈[N]

Ruπu,t ,

where πu,t is the item recommended by the algorithm to user u at time t. The average cumulative reward up to
time T is given in Table 1. From this table, it is clear that the highest average cumulative reward is obtained
when the batch-size is ∆T = 100, and decreases gradually as the batch-size increases. Finally, not that since
we are not detecting bad users in our experiments, the knowledge of V1 is not required (V1 is only used to
set pT). Notice that V2 is used to set the batch-size ∆T correctly. Since an incorrect value of V2 results in
a sub-optimal value for ∆T, computing the average cumulative reward by iterating through different values of
∆T also gives an idea about the sensitivity of our algorithms with respect to this mis-specification. As can be
seen from our results, the highest value of acc-reward(T) was achieved when ∆T = 100, while the acc-reward(T)
degrades gracefully with the mis-specification of ∆T (or, V2).

Next, we illustrate the benefit of our algorithm compared to the static algorithm even in a stationary environment.
To that end, we run Algorithm 1 with ∆T ∈ {100, 600}, Tstatic ∈ {10, 30, 60, 80, 100}, and assume a single bin
of size T = 600. Our results are presented in Fig. 4, and perhaps surprisingly, Algorithm 1 with ∆T = 100
achieves a better accumulated reward compared to ∆T = 600 (static algorithm), for small values of Tstatic. The

Learning User Preferences in Non-Stationary Environments

∆T acc-reward(T)

50 316.707
100 325.716
150 306.538
200 278.219
300 278.642
350 224.893
400 239.410
450 204.127
500 162.96
550 169.97
600 137.40

Table 1: Accumulated reward as a function of the batch-size: ∆T = 600 corresponds to the static case, and
∆T = 100 corresponds to the optimal value.

Figure 3: The probability au/(au + ru) of user u liking a movie with Action tag but not Romance tag, for five
different users, across 10 different bins/windows.

main reason for this phenomenon is because for Algorithm 1 with ∆T = 600, the neighbors of any user might
not be well chosen due to small values of Tstatic because of which the user will receive poor recommendations
throughout the entire time frame. On the other hand, running Algorithm 1 with ∆T = 100 restarts Algorithm
2 at periodic intervals. As a result, the users have a good set of neighbors in some batches and a bad set
in others, but the cumulative reward concentrate because the neighbors are independent across the batches.
However, the performance of the algorithm with ∆T = 600 improves as Tstatic gets larger since the quality of
the estimated neighborhood improves. This experiment hits that it is better to restart the recommendation
algorithm periodically, i.e., follow Algorithm 1 (with ∆T < T) even in stationary environments. We would like to
emphasize that an insufficient number of samples for the initial clustering, results in a worse accumulated reward
for ∆T = 600. In practice, however, the number of samples used for the initial clustering might be difficult
to determine a-priori. In that situation, we suggest to restart the algorithm periodically with a small value of
Tstatic. Indeed, since the batches are independent, the accumulated reward concentrates due to the law of large
numbers.

Next, we further compare the performance of our algorithm to the static case [Bresler et al., 2014], and to the
Popularity Amongst Friends (PAF) algorithm [Barman and Dabeer, 2012]. We consider the same setting as in
[Bresler et al., 2014]. In particular, we again quantize movie ratings ≥ 4 as +1 (likable), movie ratings < 3 as −1
(unlikable), and missing ratings as 0. We consider the top N = 250 and M = 500 users and movies, respectively.
This results in ≈ 80% nonzero entries among the total number of entries in the rating matrix. There are of
course missing entries in the resulted rating matrix. Accordingly, in our simulation if at a certain time, item i

Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

Figure 4: Comparison of Average Cumulative Reward acc− reward(T) for batchsize (∆T) ∈ {100, 600} and
Tstatic ∈ {10, 30, 60, 80, 100}.

Figure 5: The accumulated reward over time achieved by Algorithm Collaborative and existing recommen-
dation algorithm Popularity Amongst Friends [Barman and Dabeer, 2012], for several values of the variation
budget V ∈ {0, 5, 10}, using Movielens10m dataset.

was recommended to user u, who has not rated that item, we receive 0 reward. Despite that we will still treat
item i as being consumed by user u, and accordingly, item i cannot be recommended to user u again. Since we
allow algorithms to recommend an item to a given user only once, after T = M = 500 time steps, all items have
been recommend to all users. As before, the performance of the algorithms is measured in terms of the average
cumulative reward up to time T.

In the simulation, we run Algorithm Collaborative with three different values for the variation budget V =
V1 = V2 ∈ {0, 5, 10}, and recall that V = 0 corresponds to the static case [Bresler et al., 2014]. The results
are given in Fig. 5. It is evident that Algorithm Collaborative significantly outperforms PAF algorithm, a
fact which was already observed in [Bresler et al., 2014]. More importantly we see that assuming that V = 5,
and accordingly recommending in batches, gives the best results among the other values of V, and in particular
the static case. Except for coping with variations in the preferences of users, this can be attributed also to
model mismatch. To wit, the static algorithm Recommend was designed for a certain probabilistic model
which may not capture certain phenomena in real-world datasets. Accordingly, it might be the case that the

Learning User Preferences in Non-Stationary Environments

algorithm will “stuck” on a certain wrong rating trajectory which will hinder the rate at which likeable movies are
recommended. Working in batches, and by which letting the algorithm to “restart” occasionally, may compensate
for this mismatch. Finally, note that the reason for the ∩-shape of the obtained curves is the fact that after
recommending most of the likable items (around t ≈ 310), mostly unlikable movies are left to recommend, until
we exhaust all possible movies.

D Conclusion and Outlook

In this paper, we introduced a novel model for online non-stationary recommendation systems, where users
may change their preferences over time adversarially. For this model, we analyzed the performance of a CF
recommendation algorithm, and derived a lower bound on its achievable reward.

We hope our work has opened more doors than it closes. Apart from tightening the obtained lower bound on
the reward, there are several exciting directions for future work. First, it is of significant importance to tackle
the case where the number of variations is unknown. Devising universal algorithms which are oblivious to the
knowledge of the non-stationarity, and proving theoretical guarantees is quite challenging (see, for example, the
recent papers [Karnin and Anava, 2016,Auer et al., 2019,Chen et al., 2019] where the problem of non-stationary
MAB with unknown number of variations was considered). Secondly, it is very interesting and technically
challenging to derive information-theoretic upper bounds on the performance (reward) of any CF algorithm for
the general model introduced in this paper. The results of this paper can be rather directly generalized to one-
class recommendation systems where users only rate what they like and never reveal what they dislike. It would
be interesting to introduce and analyze models which combines both content/graph information on top of the
collaborative filtering information. Also, while in this paper our ultimate goal was to design recommender system
which maximize the number of likes, in some applications one might want to take into account other aspects,
such as fairness, novelty and multi-stakeholder recommender systems. Formally analyzing such aspects has not
been done, and is of practical and theoretical importance. Finally, as was mentioned in the Appendix C there are
several inherent challenges with standard CF datasets used for simulating (non-stationary) online recommender
systems. Implementing a real interactive online recommendation system and testing our algorithms over it is an
important step towards a complete understanding of CF based recommender systems.

