
Learning User Preferences in Non-Stationary Environments

Wasim Huleihel Soumyabrata Pal Ofer Shayevitz
Tel-Aviv University University of Massachusetts Amherst Tel-Aviv University

Abstract

Recommendation systems often use online
collaborative filtering (CF) algorithms to
identify items a given user likes over time,
based on ratings that this user and a large
number of other users have provided in the
past. This problem has been studied exten-
sively when users’ preferences do not change
over time (static case); an assumption that
is often violated in practical settings. In this
paper, we introduce a novel model for on-
line non-stationary recommendation systems
which allows for temporal uncertainties in the
users’ preferences. For this model, we pro-
pose a user-based CF algorithm, and pro-
vide a theoretical analysis of its achievable
reward. Compared to related non-stationary
multi-armed bandit literature, the main fun-
damental difficulty in our model lies in the
fact that variations in the preferences of a
certain user may affect the recommendations
for other users severely. We also test our al-
gorithm over real-world datasets, showing its
effectiveness in real-world applications. One
of the main surprising observations in our ex-
periments is the fact our algorithm outper-
forms other static algorithms even when pref-
erences do not change over time. This hints
toward the general conclusion that in prac-
tice, dynamic algorithms, such as the one we
propose, might be beneficial even in station-
ary environments.

1 Introduction

Recommendation systems provide users with appro-
priate items based on their revealed preferences such

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

as ratings. Due to their wide applicability, recommen-
dation systems have received significant attention in
machine learning and data mining societies [Si and
Jin, 2003,Rennie and Srebro, 2005,Salakhutdinov and
Mnih, 2007, Bell et al., 2007, Koren, 2008, Salakhut-
dinov and Mnih, 2008, Jahrer et al., 2010]. In prac-
tice, recommendation systems often employ collab-
orative filtering (CF) [Ekstrand et al., 2011], for
recommending (potentially) liked items to a given
user by considering items that other “similar” users
liked. There are two main categories of CF algo-
rithms: user-based, e.g., [Resnick et al., 1994,Herlocker
et al., 1999,Bresler et al., 2014,Bellogin and Parapar,
2012,Heckel and Ramchandran, 2017], and item-based,
e.g., [Gregory et al., 1998, Sarwar et al., 2001, Linden
et al., 2003, Bresler et al., 2016], and many references
therein. User-based algorithms exploit similarity in
the user space by recommending a particular user u
those items which were liked by other similar users.
Item-based algorithms, in contrast, exploit similarity
in the item space by recommending items similar to
those which were liked in the past by a particular user.

Prevalent recommendation systems typically operate
in an online fashion where items are recommended to
users over time, and the obtained ratings are used for
future recommendations. Typically, the goal in such a
problem is to maximize the number of likes revealed at
any time. This problem has been studied extensively,
e.g., [Bresler et al., 2014, Bresler et al., 2016, Heckel
and Ramchandran, 2017, Bresler and Karzand, 2019],
always under the assumption that user’s preferences
do not vary over time. In practice, however, tem-
poral changes in the structure of the user’s prefer-
ences are an intrinsic characteristic of the problem,
since users change their taste occasionally [Hariri et al.,
2015, Liu et al., 2010, Moore et al., 2013, Hariri et al.,
2014, Karahodza et al., 2014, Shi et al., 2015, Basile
et al., 2015,Liu, 2015,Mukherjee et al., 2017,Eskanda-
nian and Mobasher, 2018]. Ignoring these changes re-
sults in recommendation algorithms which are doomed
to failure in practice. This sets the goal of this pa-
per: we aim to model and understand the effect of
non-stationary environment on online recommenda-
tion systems.



Learning User Preferences in Non-Stationary Environments

To that end, we introduce a novel latent probabilis-
tic model for online non-stationary recommendation
systems, and analyze the reward of an online user-
based algorithm. Our model and certain elements of
the algorithm are inspired by related static models
and algorithms studied in [Bresler et al., 2014,Bresler
et al., 2016, Heckel and Ramchandran, 2017]. In a
nutshell, each user in our model has a latent proba-
bility preference vector which describes the extent to
which he/she likes or dislikes each item. Similar users
have similar preference vectors (this will be defined
rigorously in the following section). At a given time
step t = 1, 2, . . ., the algorithm recommends a single
item to each user, typically different for each user, and
with probability specified by the corresponding prefer-
ence vector, the user likes or dislikes the recommended
item. Following [Bresler et al., 2014, Bresler et al.,
2016, Heckel and Ramchandran, 2017] we impose the
constraint that an item that has been rated by a user,
cannot be recommended to the same user again. This
is due to the fact that in many applications, such as,
recommendation of movies or books, a rating often
corresponds to consuming an item, and there is little
point in, e.g., recommending a product that has been
previously purchased in the past for a second time,
at least not immediately. While in certain applica-
tions, this constraint might be unnecessary/irrelevant,
it forces our algorithm to exploit the user-item struc-
ture for collaboration. In any case, repeating the same
recommendations only makes the problem easier algo-
rithmically, and the results of this paper can be gen-
eralized to account for this case as well. Finally, to
model the non-stationarity in the users’ preferences,
we allow users to change their user-type over time.

Main Contributions. Despite the success of CF,
there has been no theoretical development to justify
its effectiveness in non-stationary environment. The
main contributions of this paper are two-fold. First,
we introduce a novel model for general online non-
stationary recommendation systems where we general-
ize the stationary model introduced in [Bresler et al.,
2014] by allowing arbitrary shifts in user preferences
over time. Our second main contribution is a the-
oretical analysis of a user-based CF algorithm that
maximize the number of recommendations that users
like. As time evolves, our CF algorithm randomly ex-
plores batches of items, one batch at a time, in or-
der to learn users’ preferences of new items in each
batch. By splitting the space into optimal number of
batches, our algorithms can start exploiting without
having learned the preferences of the users regarding
at all items. Furthermore, in each batch, our algorithm
tests for variations, and once a change in the prefer-
ence of a certain user is detected, that user is removed
from the exploitation steps. Our results allow us to

quantify the “price of non-stationarity”, which math-
ematically captures the added complexity embedded
in changing users’ preferences versus stationary ones.
The proposed algorithm achieve near-optimal perfor-
mance relative to an oracle that recommends all lik-
able items first. Our findings, such as the scaling of
the cold-start time on the various parameters, and the
effect of non-stationary environment on recommenda-
tion, can inform the design of recommendation algo-
rithms, and refine our understanding of the associated
benefits and costs while designing a practical recom-
mendation system.

Related Work. While to the best of our knowledge,
this is the first work that analytically studies tempo-
ral changes in the users’ preferences, theoretical re-
sults have been established for the stationary setting
where there are no changes in the user preferences over
time. We next briefly survey these prior works. One
of the first initial asymptotic theoretical results con-
cerning user-based CF were established in [Biau et al.,
2010]. Most related to our approach are the setups
and algorithms studied in [Bresler et al., 2014,Bresler
et al., 2016, Heckel and Ramchandran, 2017, Bresler
and Karzand, 2019]. In particular, [Bresler et al.,
2014] analyzed a user-based algorithm for online two-
class CF problem in a similar setting to ours, while a
corresponding item-based algorithm was analyzed in
[Bresler et al., 2016]. A probabilistic model in an on-
line setup was studied in [Dabeer, 2013], and [Barman
and Dabeer, 2012] study a probabilistic model in an
offline setup, and derived asymptotic optimal perfor-
mance guarantees for two-class CF problem. Theo-
retical guarantees for a one-class models were derived
in [Heckel and Ramchandran, 2017]. Another related
work is [Deshpande and Montanari, 2012], who con-
sidered online recommendation systems in the context
of linear multi-armed bandit (MAB) problem [Bubeck
and Cesa-Bianchi, 2012].

Our setup relates to some variants of the MAB prob-
lem. An inherent conceptual difference between our
setup and standard MAB formulation [Thompson,
1933] is that in our case an item can be recommended
to a user just once, while in MAB an item (or arm) is
allowed to be recommended ceaselessly. In fact, the so-
lution principle for MAB is to explore for the best item,
and once found, keep exploiting (i.e., recommending)
it [Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012].
This observation applies also to clustered bandits [Bui
et al., 2012], or, bandits with dependent arms [Pandey
et al., 2007]. Specifically, in these formulations the
arms are grouped into clusters, and within each clus-
ter arms are correlated. It is assumed, however, that
the assignment of arms to clusters is known, while in
our setup this information is not available. Another re-



Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

lated formulation of MAB is “sleeping bandits” [Klein-
berg et al., 2008], where the availability of arms vary
over time in an adversarial manner, while in our setup,
the sequence of items that are available is not adver-
sarial. Finally, a more recent related version is the
problem of MAB with non-stationary rewards, e.g.,
[Hartland et al., 2011,Garivier and Moulines, 2008,Yu
and Mannor, 2009, Besbes Omer and Gur Yonatan
and Zeevi Assaf, 2014,Besbes et al., 2014,Karnin and
Anava, 2016, Luo et al., 2017, Cao et al., 2019, Chen
et al., 2019,Auer et al., 2019,Jun et al., 2019,Sen et al.,
2017,Kveton et al., 2017,Besbes et al., 2015,Allesiardo
et al., 2017,Zhao et al., 2020]. This formulation allows
for a broad range of temporal uncertainties in the re-
wards. While the motivation of this setup is similar
to ours, due to the same reasons as above, the results
and methods in these papers are quite different from
ours. In particular, the main fundamental difficulty in
our model compared to MAB literature lies in the fact
that variations in the preferences of a certain user may
affect the recommendations for other users severely.

2 Model and Learning Problem

In this section we introduce the model and the learning
problem considered in this paper. We start with the
static setting where users’ preferences do not change
over time, and then generalize to the dynamic setting.

Static Model. Consider a system with N users and
M items. A user may “like” (+1) or “dislike” (−1) an
item. At each time step, each user is recommended
an item that he has not consumed yet. Each user
u ∈ [N] , {1, 2, . . . ,N} is associated with a latent (un-

known) preference vector pu ∈ [0, 1]
M

, whose entries
pui are the probabilities of user u liking item i ∈ [M],
independently across items. We assume that an item i
is either likable for user u, i.e., pui > 1/2, or unlikable,
i.e., pui < 1/2. The reward earned by the recommen-
dation system up to any time step is the total num-
ber of liked items that have been recommended so far
across all users (a precise definition will be given in the
sequel). Accordingly, to maximize this reward, clearly
likable items for the user should be recommended be-
fore unlikable ones. For a particular item i, recom-
mended to a user u, the observed rating is a random
variable Rui, such that Rui = 1 with probability pui,
and Rui = −1 with probability 1 − pui. The rat-
ings are assumed random in order to model the fact
that users are not fully consistent in their ratings. A
CF algorithm operates as follows: at each time step
t = 0, 1, . . ., the algorithm recommends a single item
i = πu,t ∈ [M] to each user u ∈ [N], and obtains a real-
ization of the binary random variable Rui in response.
Thus, if Rui = 1, user u likes item i, and Rui = −1

means that user u does not like item i. Either way,
as we explain and motivate in the Introduction, once
rated by user u, item i will not be recommended to
that user again.

To learn the preference of some user for an item, we
need this user to rate that item. However, since we
cannot recommend that item to the same user again,
the only way to estimate the preferences of a user
is through collaboration (e.g., by making inferences
from ratings made by other users). In order to make
collaborative recommendations based on users’ pref-
erences we must assume some structure/relation be-
tween users and/or items. To that end, we study a
latent model, in which users are clustered. Specif-
ically, following [Barman and Dabeer, 2012, Dabeer,
2013, Bresler et al., 2014, Bresler et al., 2016, Heckel
and Ramchandran, 2017, Bresler and Karzand, 2019]
(and many references therein), we assume that each
user belongs to one of K < N user-types, where users of
the same type have “similar” item preference vectors.
The number of types K represents the heterogeneity
in the population. This assumption is common and
implicitly invoked by contemporary user-based CF al-
gorithms [Sarwar et al., 2000], which perform well in
practice. Several empirical justifications for the clus-
tering behavior in the user-item space can be found in,
e.g., [Sutskever et al., 2009,Bresler et al., 2014,Heckel
and Ramchandran, 2017].

There are many ways to define similarity between
users. For example, in [Das et al., 2007, Barman
and Dabeer, 2012,Dabeer, 2013,Bresler and Karzand,
2019] two users are considered of the same type if they
have the same exact ratings, and these rating vectors
are generated at random. While this model is perhaps
unrealistic and does not capture challenges in real-
world datasets, it allows for a neat theoretical anal-
ysis. A slightly more general and flexible model was
proposed in [Bresler et al., 2014]. Here, two users u
and v belong to the same type if their corresponding
preference vectors pu and pv are the same, nonethe-
less, their actual ratings might be different. In [Heckel
and Ramchandran, 2017] this assumption was signifi-
cantly relaxed by assuming instead that the preference
vectors belonging to the same type are more similar (in
terms of the magnitude of their inner product) than
those belonging to other types. Roughly speaking, in
this paper we follow this latter assumption, but we
relax it even further. The precise statement of our as-
sumptions will be given in the following section. This
concludes the presentation of the static model. We
next incorporate the non-stationary aspect.

User Variations. As explained in the introduction,
our paper initializes the theoretical investigation of the
situation where the preferences of users do not remain



Learning User Preferences in Non-Stationary Environments

static but vary over time. To model this, we allow
users to change their user-type over time. To wit,
denote the type of user u ∈ [N] at time t ∈ [T] by
Tu(t) ∈ [K]. In the sequel, Tu(1), for any u ∈ [N], des-
ignates the initial clustering of users into types. We
assume that each user can change his type an arbi-
trary number of times, but bound the total number of
such variations. Specifically, we define two notions for
variations:

V1 , max
u∈[N]

∑
t∈[T−1]

1[Tu(t) 6= Tu(t+ 1)], (1)

V2 , N−1
∑

t∈[T−1]

∑
u∈[N]

1[Tu(t) 6= Tu(t+ 1)], (2)

where 1[·] is the indicator function. These definitions
capture the constraint imposed on the non-stationary
environment faced by the CF algorithm. In words,
V1 is the maximum number of variations over T steps,
while NV2 is the total number of variations. In general,
V1 and V2 are designed to depend on the time horizon
T. It turns out that in order to obtain the tightest
bound on the reward, both definitions are needed. It
is clear that V1 ≤ N · V2.

In this paper, we consider the already non-trivial case
where the values of (or, at least, upper bounds on) V1

and V2 are given to the learner/algorithm in advance.
This is inline with the various settings of classical re-
sults in the non-stationary MAB literature, e.g., [Bes-
bes Omer and Gur Yonatan and Zeevi Assaf, 2014,Bes-
bes et al., 2014,Luo et al., 2017]. Nonetheless, in a sim-
ilar fashion to recent advances in the MAB literature
[Karnin and Anava, 2016,Auer et al., 2019,Chen et al.,
2019], it is an important, challenging, and of prac-
tical importance to propose and analyze algorithms
which are oblivious to the number of variations (see
Appendix D).

Learning Problem and Reward. Generally speak-
ing, a reasonable objective for a CF algorithm is to
maximize the expected reward up to time T, i.e.,

reward(T) , E
∑
t∈[T]

1

N

∑
u∈[N]

Ruπu,t ,

where we note that the recommended item πu,t is a
random variable because it is chosen by the CF algo-
rithm as a function of previous responses to recom-
mendations made at previous times. In this paper,
however, we focus on recommending likable items. Fol-
lowing [Bresler et al., 2014,Bresler et al., 2016,Heckel
and Ramchandran, 2017, Bresler and Karzand, 2019],
we consider the accumulated reward defined as the ex-
pected total number of liked items that are recom-

mended by an algorithm up to time T, i.e.,

reward(T) , E
∑
t∈[T]

1

N

∑
u∈[N]

1
[
puπu,t > 1/2

]
. (3)

Note that the main difference between these two ob-
jectives is that the former prioritize items according to
their probability of being liked, while the latter asks to
recommend likable items for a user in an arbitrary or-
der. This is sufficient for many real recommendation
systems such as for movies and music (see, [Bresler
et al., 2014, Sec. 2] for a detailed discussion). We
would like to emphasize that depending on the in-
tended application, other metrics can be considered.
For example, one may be interested in the number
of actual “clicks” rather then the number of “likable”
recommendations. Indeed, in some applications, the
former is the measurable quantity. Nonetheless, we
believe that our algorithms and techniques can handle
such a criterion as well.

3 Algorithms and Theoretical
Guarantees

In this section, we present our algorithm Collabo-
rative which recommends items to users over time,
followed by a formal theoretical statement for its per-
formance. We start with a non-formal description of
our algorithm. The pseudocodes are given in Algo-
rithms 1–3. The algorithm takes as input the param-
eters (α, λ,Tstatic,∆T), which we shall discuss below.

We now describe the proposed algorithm. Below, we
use “t” to denote the time index at any step of the
algorithm. Also, in the sequel, we use P to denote an
estimated partitioning of the users into clusters, i.e.,
P is a collection of clusters, where each cluster refers
to a set of users who have same estimated user type.

Batches. In Algorithm 1, the time horizon T is par-
titioned into dT/∆Te batches of size ∆T each, and de-
noted by {Bb}b≥1. We use τ to denote the time in-
dex at which each batch starts, namely, for the bth

batch τ = (b − 1)∆T, for b ∈ [1, d1/∆Te]. At the
beginning of each batch, we restart Algorithm Rec-
ommend, and run it for the entire batch. Also, at the
beginning of each batch, we estimate an initial parti-
tion P0 for the set of all users [N] using Algorithm 3,
which we describe bellow. At each subsequent time
index t, the Algorithm Recommend either runs a test
for variations with probability (w.p.) pT ∝

√
V1/T,

or, explores-exploits w.p. 1− pT.

User partitioning in the batch. The goal of Algo-
rithm 3 is to create a partition of the users into types.
To that end, routine Test(Tstatic, λ,St−1,P0) recom-
mends Tstatic ∈ N random items Ttest (|Ttest| = Tstatic)



Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

Algorithm 1 Collaborative Algorithm for recom-
mending items.

Require: Parameters (α, λ,Tstatic,∆T).
1: Set index batch b = 1.
2: while b ≤ dT/∆Te do
3: Set τ ← (b− 1)∆T.
4: Call Recommend(τ, α, λ,Tstatic,∆T).
5: Set b ← b + 1 and return to the beginning of

Step 2.

to all users in St−1 ⊆ [N], initialized in each batch
to be the set of all users [N]. Then, using the ob-
tained responses {Rui}u∈[S],i∈Ttest , in the second and
third steps of this algorithm a partition of the users
is created. Specifically, for any pair of distinct users
u, v ∈ St−1, we let Xu,v be the number of items for
which u and v had the same responses. Let Eu,v =
1 [Xu,v ≥ λ · Tstatic], for some λ > 0. Accordingly,
users u and v are inferred to have the same type if
Eu,v = 1. Subsequently, if there exists a valid parti-
tioning P over the set of users in St−1, which is con-
sistent with the variables Eu,v, then we declare that
P is our estimated user-partition, otherwise, we place
all users in the same group. This is true precisely
when the graph with edge set Eu,v is a disjoint union
of cliques. Note that this partitioning procedure is
equivalent to the cosine similarity test, declaring that
two users u and v as being neighbors if their cosine
similarity is at least as large as some threshold. The
values of Tstatic and λ ∈ (0, 1) are specified in Theo-
rem 1.

Variations detection in the batch. Given the
partitions P0 and P, in step 14 of Algorithm 2 we
compare those partitions in order to detect any vari-
ations using routine Variation. We show that if the
user variations is not “too large” in the corresponding
batch, then it is possible to draw a one-to-one cor-
respondence between the clusters in P and P0, and
therefore, it is possible to identify the users who have
changed their clusters, i.e., they are in a different clus-
ter in P than the one in P0. All such users are declared
as “bad” users and are included in the set Vt. We up-
date St ← St−1 \ Vt. The users in Vt will be excluded
from future exploitation rounds.

Exploration-Exploitation. Since we restart the
main algorithm in each batch, we focus on a particular
batch b in the explanation below. For ease of notation,
we omit the batch index from all definitions. As men-
tioned above, w.p. 1 − pT our algorithm performs an
exploration-exploitation routine. In such a case, with
probability pR = N−α the algorithm randomly explores
the space of items, and with complementary probabil-
ity, 1 − pR, the algorithm exploits by recommending
those items that maximize a certain score. With some

Algorithm 2 Recommend(τ, α, λ,Tstatic,∆T)

1: Select a random ordering σ of the items [M].
2: Define pR = N−α and pT =

√
V1/(T · Tstatic).

3: Let t to be the time index at any step of the algo-
rithm.

4: P0 ←Test(Tstatic,λ,[N]).
5: Initialize Sτ+Tstatic ← [N].
6: while τ + Tstatic < t ≤ min(T, τ + ∆T) do
7: Draw Θ ∼ Bern(pT).
8: if Θ = 0 then
9: St ← St−1.

10: •With probability pR: πu,t ← random item
for all u ∈ [N] that has not rated.

11: • With probability 1 − pR: πu,t ← item
i that user u ∈ St has not rated and that
maximizes score p̂

(t)
ui in (4).

12: else
13: P ←Test(Tstatic,λ,St−1).
14: Vt ←Variation(P,P0).
15: St ← St−1 \ Vt.

Algorithm 3 Test(Tstatic,λ,St−1) Algorithm for par-
titioning users.

1: Recommend Tstatic random items Ttest to all users
in St−1.

2: For any u 6= v ∈ St−1, let Xu,v be the number
of items in Ttest for which u and v had the same
responses, and let Eu,v = 1 [Xu,v ≥ λ · Tstatic].

3: Let P be the valid partitioning over users consis-
tent with the variables Eu,v. If such a partitioning
does not exist, let P ≡ St−1.

4: Return P.

abuse of notation let R
(t)
ui ∈ {−1, 0, 1} be the observed

rating of user u to item i up to time t in the bth batch,
where “0” means that no rating has been given yet (in
the bth batch). When exploiting, the algorithm eval-

uates empirical probabilities p̂
(t)
ui , at time t, for user

u ∈ St, and item i. These empirical probabilities are
defined as follows,

p̂
(t)
ui ,


∑
v∈neigh(u,t) 1

[
R

(t)
vi =1

]
Cut

, if Cut > 0

1/2, otherwise,
(4)

where Cut ,
∑
v∈neigh(u,t) 1[R

(t)
vi 6= 0], and the “neigh-

borhood” of user u ∈ St at time t in the bth batch is
neigh(u, t) , P0(u)∩St, where P0(u) is the set of users
in the same cluster as user u in the initial partition P0

created in the beginning of the batch. Note that the
exploitation step at any time index t is done only for
those users which are present in St. Finally, we empha-

size here that the empirical probabilities p̂
(t)
ui as well as

the neighborhoods neigh(u, t), are all refreshed at the



Learning User Preferences in Non-Stationary Environments

Algorithm 4 Variation(P,P0) Algorithm for test-
ing variations.

1: For each cluster C in P, find a cluster C′ in P0 that

shares at least half the users in C i.e., |C ∩ C′| ≥ |C|2 .
2: Establish a one-to-one mapping from clusters in P

to clusters in P0 in this manner. If such a one-to-
one mapping is not possible, return ∅.

3: Identify the set of users V who belong to different
clusters in P and P0.

4: Return V.

beginning of each batch; ratings from previous batches
are ignored in the evaluation of these quantities.

Remark 1. In practice, we can continue recommend-
ing items to any user u in Vt (bad users) based on the
items liked by other users who belong to P0(u).

Theoretical performance guarantee. In the fol-
lowing, we state our main theoretical result, which is
a lower bound on the reward in (3) achieved by Al-
gorithm Collaborative. To that end, we introduce
three natural and prima facie necessary assumptions,
which will be used in order to establish our result.

A1 No ∆-ambiguous items. For every user u ∈ [N]
and item i ∈ [M], there exists a constant ∆ ∈
(0, 1/2] such that |pui − 1/2| ≥ ∆.

A2 Minimum portion of likeable items. There
exists a constant µ ∈ [0, 1], such that for every

user u ∈ [N], it holds
∑M
i=1 1 [pui > 1/2] ≥ µM.

A3 (In)coherence. There exist constants γ2 ≥ γ1 ∈
[0, 1) such that if two users u and v are of different
types, then 〈2pu − 1, 2pv − 1〉 ≤ 4γ1∆2M, and if
they are of the same type, then 〈2pu − 1, 2pv −
1〉 ≥ 4γ2∆2M. Here 1 is the all ones vector.

In a nutshell, Assumption A1 is necessary to assure
that one can infer whether an item is either likable or
unlikable with a finite number of samples. The param-
eter ∆ quantifies the inconsistency (or, noise), where
∆ = 0 (∆ = 1/2) is the completely noisy (noiseless)
case. The second condition states that each user likes
at least a fraction µ of the total items. This assump-
tion is made to avoid degenerate situations were a user
u does not like any item. Note that one can always ig-
nore those users whose activity is insignificant since
their contribution to the reward will be insignificant
as well. Evidently, from a practical point of view,
any real-world recommendation engine must prioritize
users whose activity is significant. Notice that rele-
vant literature, such as [Bresler et al., 2014,Heckel and
Ramchandran, 2017], makes the same assumptions as
well.

The more interesting assumption is A3. The incoher-
ence part of assumption A3 requires that the prefer-
ence vectors for any two users u and v belonging to
different user-types are not too similar, so that the
cosine similarity test can separate users of different
types over time. The parameter γ1 controls this in-
coherence; the smaller γ1 is, the less similar are users
of different types. This incoherence assumption ap-
pears in [Bresler et al., 2014] as well. The coherence
part of assumption A3 asks that any two users of the
same user-type share a large fraction of the items that
they find likable, and this fraction is controlled by the
parameter γ2. This coherence assumption should be
contrasted with [Bresler et al., 2014] where it was as-
sumed that the preference vectors pu and pv of two
users u and v from the same user-type to be exactly the
same, which is evidently a stronger assumption, and
accordingly, our coherence assumption relaxes that sig-
nificantly.

We would like to clarify that the above assumptions are
only required for the analysis; Our proposed algorithm
can be implemented regardless of these assumptions.
As is shown in Section 4, in real-world applications,
our algorithm works well even if these assumptions do
not hold. In Appendix A we provide two examples
where the typical values of the various parameters in
Assumptions A1–A3 are derived. Below, we summa-
rize our findings for the noiseless case.

Example 1. Consider the noiseless case where ∆ =
1/2. We generate K d-dimensional binary vectors
{bi}Ki=1 by randomly drawing d statistically indepen-
dent Bernoulli(1/2) random variables, for each user-
type. Here d ≤ M is some parameter. We show
in Appendix A that the incoherence condition holds

with high probability if γ1 > Θ(
√

log M
M ), while the co-

herence condition holds with high probability if γ2 ≤
d
M −Θ(

√
(M−d) log M

M2 ). Finally, the typical value of µ is

clearly around 1/2 with high probability.

Let a∨b , max(a, b) and a∧b , min(a, b), for a, b ∈ R.
We are now in position to state our main result, whose
proof can be found in the supplementary material.

Theorem 1. Let δ ∈ (0, 1) and ν ∈ (0, 1) be some
pre-specified tolerances. Take as input to Collabo-
rative α ∈ (0, 4/7], any λ ∈ (λ−, λ+), and ∆T =

T ∧
√

2νT
3V2

κ, where λ± , 2γ1∆2 + 1
2 ± ∆2(γ2 − γ1)

and κ , Tstatic(1− δ − µ). Define Tstatic ,
2 log(3N2/δ)
∆4(γ2−γ1)2

and Tlearn ,
[
1 ∨ 3V2

2ν(1−δ−µ)

]
Tstatic. Consider the latent

source model and assumptions A1–A3. If at every
time-point, the portion of users belonging to any user-
type is at least ν, then, for any Tlearn ≤ T ≤ µ · M,
the expected proportion of liked items recommended by



Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

Collaborative up until time T satisfies

reward(T) ≥ (1− δ) · T− κ ∨
√

3V2Tκ

2ν
− 2V1Tstatic

− 2
√

V1TTstatic −
3V2T

2ν
∧
√

3V2Tκ

2ν
. (5)

For T < Tlearn, the reward satisfies reward(T) ≥ µ · T.

We now explain the implications of Theorem 1. For
T < Tlearn, the algorithm may give poor recommen-
dations. This is reasonable since in the first Tlearn

rounds mostly random items are recommended, inde-
pendently of the users responses, and thus the reward
is at least µ · T. This is the initial phase for which
our CF algorithm gives poor recommendations. Then,
for Tlearn < T < µ · M, the algorithm becomes effi-
cient. Specifically, when V1 = V2 = 0, we get that
reward(T)/T ≥ (1 − Tlearn/T) · (1 − δ − η). There-
fore, the proposed algorithm becomes near-optimal, as
the achieved reward is (1− ε′)–close to an oracle that
recommends only likeable items and thus achieves a
reward of T. Note that contrary to multi-armed ban-
dit literature, linear reward is common in collabora-
tive filtering frameworks (see, for example, [Bresler
et al., 2014, Heckel and Ramchandran, 2017, Bresler
and Karzand, 2019]). For T > µ·M, on the other hand,
one cannot guarantee that likable items remain, and
the learning time (cold-start time) is Tlearn = Tstatic.

Clearly, when V1,V2 > 0 the reward decreases. Specif-
ically, if both of these parameters scale as O(Tc),
for some constant c ∈ [0, 1], then the payoff for
non-stationarity compared to the static case is of or-
der O(

√
T1+c), a sub-linear cost in T. In particu-

lar, ignoring the exact dependency of the reward on
the various parameters, the scaling of (5) with T is

reward(T)/T ≥ 1 − δ − O(
√

Tc−1). This result pro-
vides a spectrum of orders of the payoff ranging be-
tween order O(

√
T) (constant number of variations),

and of order O(T) (number of variations is O(T)).
The sub-linearity growth implies that our user-based
CF algorithm has long run average performance that
converges to the performance that would have been
achieved in the static environment, where users’ pref-
erences do not vary. Finally, in terms of the learning
time, it can be checked that Tlearn = Θ(Tc log(N2/δ)),
and thus the condition T > Tlearn boils down to
T > Θ([log(N2/δ)]

1
1−c ). Therefore, when there are

variations, the cold-start time grows, and the scaling
of the variations with T dictates the poly-log order of
this learning phase.

Next, we study the dependency of the learning time
in Theorem 1 on γ1 and γ2, for Example 1 above. It
can be seen that the learning time depend on these pa-
rameters via the term (γ2 − γ1)−2. Accordingly, when

d = M in Example 1 we get that (γ2 − γ1)−2 is of or-

der constant by taking γ1 = Θ(
√

log M
M ) and γ2 = 1.

In fact, it is evident that this is true when d = Θ(M)
as well, and thus if any two users from the same user-
type share a constant fraction of the total number of
items that they find likeable, then this has a multi-
plicative constant effect on the learning time. If how-
ever, d = o(M), say, d = O(Mq), for q ∈ (0, 1/2), then
we can set γ2 = Θ(M−c), and accordingly, Tstatic will
scale as M2q · log(N2/δ), for α → 0. Accordingly, we
see that when negligible amount of common items are
likeable by users of the same type, then the learning
time is significantly larger, as expected.

Below we mention briefly some of the technical chal-
lenges encountered in the proof of Theorem 1. First,
we establish a connection between the static reward
and the reward of a dynamic oracle in the non-
stationary setting. This connection is general and can
be used in other possible static recommendation sys-
tem models that incorporate non-stationary environ-
ment. One of the main difficulties in the proof of The-
orem 1 is the analysis of how would a variation in the
preference of some user affects other users in its esti-
mated neighborhood. Unless this user is detected by
Algorithm 3, the algorithm does not know the change
of this user, and it will keep using this user’s feedback
to make recommendations for other users. This is one
source of added regret incurred by the unsuccessful
and incorrect detections of the change-points. Other
sources of regret are the cost associated with the detec-
tion/testing delay, and a regret incurred by variations
happening when testing. These costs are captured by
the third and fourth terms at the r.h.s. of (5).

4 Experiments

We provide only a summary of our experimental re-
sults here, deferring full details and further experi-
ments to Appendix C. We follow a similar vein as in
[Bresler et al., 2014, Heckel and Ramchandran, 2017],
and simulate an online recommender system using
real-world data. Specifically, we look at movie rat-
ings from the popular Movielens25m dataset, which
provides 5-star rating from Movielens, a movie recom-
mendation service. We quantize movie ratings ≥ 4 as
+1 (likable), movie ratings < 3 as −1 (unlikable), and
missing ratings as 0. We parsed the first 7 million rat-
ings for our experiment, and consider only those users
who have rated at least 225 movies, ending up with
a total number of N = 247 users. Also, we focused
on two genres: Action and Romance. For each user
u ∈ [N], we recover piece-wise stationary preferences
by the following three steps: 1) We sort the movies
rated by user u in ascending order according to the



Learning User Preferences in Non-Stationary Environments

time-stamp. 2) We partition the movies rated by user
u into 15 bins so that each bin contains equal number
of movies. We will consider each bin to be a window
of time. 3) For each bin, we find the number au ∈ N of
Action movies rated by user u, as well as ru ∈ N, the
number of Romance movies rated by the same user.

Accordingly, note that in each bin, the probability of
user u: liking a movie tagged Action but not Romance
is au/(au + ru); liking a movie tagged Romance but
not Action is ru/(au + ru); liking a movie tagged both
Action and Romance is 1, and finally, a movie which
does not have any of these tags is 0. We want to
point out that we consider the number of Action and
Romance movies that were rated by the user, rather
than just liked, since any user is biased towards rating
the movies he will like (see, [Heckel and Ramchandran,
2017]), and therefore the number of movies rated by
the user is a better indicator of his preference towards
the genre. Fig. 1 shows the probability of 5 randomly
chosen users liking Action movies across 10 different
bins. It is clear that the preferences exhibit a piece-
wise stationary behaviour, and that the variations are
significant.

We now assume for simplicity that the number of
rounds in each bin is 100 (this value is unknown to the
algorithm), and we took the total number of rounds
to be T = 600. In lieu of creating the initial disjoint
clusters at the beginning of each batch (i.e., P0), we
recommend Tstatic randomly chosen items to all users.
For each user u ∈ [N], we take the neighbors of u to
be the top 10 users whose feedback vector has the
highest cosine similarity with that of user u, over the
Tstatic recommended items. Further, since T = 600
is quite small, we do not test for bad users in each
batch (namely, we skip lines 13− 15 in Algorithm 2).
Nevertheless, as we will show, our experiment clearly
demonstrates the dependence on ∆T and Tstatic in
the non-stationary setting. We run Algorithm 1 with
Tstatic = 10 and pR = 0.1, for several different values of
the batch-size ∆T, each for 5 different iterations. The
performance of the algorithms is measured in terms of
the average cumulative reward up to time T, namely,
acc-reward(T) ,

∑
t∈[T]

1
N

∑
u∈[N] Ruπu,t , where πu,t

is the item recommended by the algorithm to user u
at time t. The average cumulative reward up to time
T is listed in the form of tuples (∆T, acc-reward(T)) :
(50, 316.71), (100,325.71), (150, 306.54), (200, 278.21),
(300, 278.64), (350, 224.9), (400, 239.4)(450, 204.12),
(500, 162.96),(550, 169.97), (600, 137.40). From this
list, it is clear that the highest average cumulative
reward is obtained when the batch-size is ∆T = 100,
and decreases gradually as the batch-size increases.

Next, we illustrate the benefit of our algorithm com-
pared to the static algorithm even in a stationary en-

Figure 1: The probability au/(au + ru) of user u liking
a movie with Action tag but not Romance tag, for five
different users, across 10 different bins.

Figure 2: Comparison of Average Cumulative Re-
ward for batchsize ∆T ∈ {100, 600} , Tstatic ∈
{10, 30, 60, 80, 100}, T = 600 and no non-stationarity.

vironment. To that end, we run Algorithm 1 with
∆T ∈ {100, 600} and Tstatic ∈ {10, 30, 60, 80, 100},
and assume a single bin of size T = 600. Our re-
sults are presented in Fig. 2, and perhaps surprisingly,
Algorithm 1 with ∆T = 100 achieves a better accu-
mulated reward compared to ∆T = 600 (static al-
gorithm), for small values of Tstatic. The main rea-
son for this phenomenon is that for Algorithm 1 with
∆T = 600, the neighbors of any user might not be well
chosen for small values of Tstatic, for which users will
receive poor recommendations throughout the entire
time frame. On the other hand, running Algorithm 1
with ∆T = 100 restarts Algorithm 2 at periodic in-
tervals. As a result, the users have a good set of
neighbors in some batches and a bad set in others,
but the cumulative reward concentrate because the
neighbors are independent across the batches. How-
ever, the performance of the algorithm with ∆T = 600
improves as Tstatic gets larger since the quality of the
estimated neighborhood improves. This experiment
hints towards the conclusion that in general it might
be better to restart the algorithm periodically, i.e., fol-
low Algorithm 1 (with ∆T < T) even in stationary
environments.



Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

Acknowledgements

This research was supported by ISF grant no. 1495/18.

References

[Allesiardo et al., 2017] Allesiardo, R., Féraud, R.,
and Maillard, O. (2017). The non-stationary
stochastic multi-armed bandit problem. Int J Data
Sci Anal, 3:267–283.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and
Fischer, P. (2002). Finite-time analysis of the multi-
armed bandit problem. Machine Learning, 47:235–
256.

[Auer et al., 2019] Auer, P., Gajane, P., and Ortner,
R. (2019). Adaptively tracking the best bandit arm
with an unknown number of distribution changes.
In Proceedings of the Thirty-Second Conference on
Learning Theory, volume 99, pages 138–158. PMLR.

[Barman and Dabeer, 2012] Barman, K. and Dabeer,
O. (2012). Analysis of a collaborative filter based on
popularity amongst neighbors. IEEE Transactions
on Information Theory, 58(12):7110–7134.

[Basile et al., 2015] Basile, P., Caputo, A., Degemmis,
M., Lops, P., and Semeraro, G. (2015). Modeling
short-term preferences in time-aware recommender
systems. In UMAP Workshops.

[Bell et al., 2007] Bell, R., Koren, Y., and Volinsky,
C. (2007). Modeling relationships at multiple scales
to improve accuracy of large recommender systems.
In Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’07, pages 95–104, New York,
NY, USA. ACM.

[Bellogin and Parapar, 2012] Bellogin, A. and Para-
par, J. (2012). Using graph partitioning techniques
for neighbour selection in user-based collaborative
filtering. In Proceedings of the Sixth ACM Confer-
ence on Recommender Systems, RecSys ’12, pages
213–216. ACM.

[Besbes et al., 2014] Besbes, O., Gur, Y., and Zeevi,
A. (2014). Stochastic multi-armed-bandit problem
with non-stationary rewards. In Advances in Neural
Information Processing Systems 27, pages 199–207.

[Besbes et al., 2015] Besbes, O., Gur, Y., and Zeevi,
A. (2015). Non-stationary stochastic optimization.
Operations Research, 63(5):1227–1244.

[Besbes Omer and Gur Yonatan and Zeevi Assaf, 2014]
Besbes Omer and Gur Yonatan and Zeevi Assaf
(2014). Stochastic multi-armed-bandit problem

with non-stationary reward. In Proceedings of
the 20th International Conference on Neural
Information Processing Systems, pages 199–207.

[Biau et al., 2010] Biau, G., Cadre, B., and Rouvière,
L. (2010). Statistical analysis of k -nearest neigh-
bor collaborative recommendation. Ann. Statist.,
38(3):1568–1592.

[Bresler et al., 2014] Bresler, G., Chen, G. H., and
Shah, D. (2014). A latent source model for online
collaborative filtering. In Proceedings of the 27th In-
ternational Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS’14, pages 3347–
3355.

[Bresler and Karzand, 2019] Bresler, G. and Karzand,
M. (2019). Regret bounds and regimes of optimality
for user-user and item-item collaborative filtering.
arXiv:1711.02198.

[Bresler et al., 2016] Bresler, G., Shah, D., and
Voloch, L. F. (2016). Collaborative filtering with
low regret. In Proceedings of the 2016 ACM SIG-
METRICS International Conference on Measure-
ment and Modeling of Computer Science, SIGMET-
RICS ’16, pages 207–220, New York, NY, USA.
ACM.

[Bubeck and Cesa-Bianchi, 2012] Bubeck, S. and
Cesa-Bianchi, N. (2012). Regret analysis of
stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends in Machine
Learning, 5(1):1–122.

[Bui et al., 2012] Bui, L., Johari, R., and Mannor, S.
(2012). Clustered bandits. CoRR.

[Cao et al., 2019] Cao, Y., Zheng, W., Kveton, B.,
and Xie, Y. (2019). Nearly optimal adaptive proce-
dure for piecewise-stationary bandit: a change-point
detection approach. In Proceedings of the 22nd In-
ternational Conference on Artificial Intelligence and
Statistics (AISTATS).

[Chen et al., 2019] Chen, Y., Lee, C.-W., Luo, H.,
and Wei, C.-Y. (2019). A new algorithm for non-
stationary contextual bandits: Efficient, optimal
and parameter-free. In Proceedings of the Thirty-
Second Conference on Learning Theory, volume 99,
pages 696–726. PMLR.

[Dabeer, 2013] Dabeer, O. (2013). Adaptive collabo-
rating filtering: The low noise regime. In 2013 IEEE
International Symposium on Information Theory,
pages 1197–1201.

[Das et al., 2007] Das, A. S., Datar, M., Garg, A., and
Rajaram, S. (2007). Google news personalization:



Learning User Preferences in Non-Stationary Environments

Scalable online collaborative filtering. In Proceed-
ings of the 16th International Conference on World
Wide Web, WWW ’07, pages 271–280, New York,
NY, USA. ACM.

[Deshpande and Montanari, 2012] Deshpande, Y. and
Montanari, A. (2012). Linear bandits in high di-
mension and recommendation systems. In Allerton
Conference on Communication, Control, and Com-
putation, pages 1750–1754.

[Ekstrand et al., 2011] Ekstrand, M. D., Riedl, J. T.,
and Konstan, J. A. (2011). Collaborative filter-
ing recommender systems. Found. Trends Hum.-
Comput. Interact., 4(2):81–173.

[Eskandanian and Mobasher, 2018] Eskandanian, F.
and Mobasher, B. (2018). Detecting changes in user
preferences using hidden markov models for sequen-
tial recommendation tasks. CoRR, abs/1810.00272.

[Garivier and Moulines, 2008] Garivier, A. and
Moulines, E. (2008). On upper-confidence bound
policies for non-stationary bandit problems.

[Gregory et al., 1998] Gregory, D. L., Jennifer, A. J.,
and Eric, A. B. (1998). Collaborative recommenda-
tions using item-to-item similarity mappings. U.S.
Patent 6266649B1.

[Hariri et al., 2014] Hariri, N., Mobasher, B., and
Burke, R. (2014). Context adaptation in interactive
recommender systems. In RecSys 2014 - Proceed-
ings of the 8th ACM Conference on Recommender
Systems, pages 41–48.

[Hariri et al., 2015] Hariri, N., Mobasher, B., and
Burke, R. (2015). Adapting to user preference
changes in interactive recommendation. In Pro-
ceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (IJCAI 2015),
pages 4268–4274.

[Hartland et al., 2011] Hartland, C., Baskiotis, N.,
Gelly, S., Sebag, M., and Teytaud, O. (2011).
Change point detection and meta-bandits for online
learning in dynamic environments.

[Heckel and Ramchandran, 2017] Heckel, R. and
Ramchandran, K. (2017). The sample complexity
of online one-class collaborative filtering. In Pro-
ceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pages
1452–1460. JMLR.org.

[Herlocker et al., 1999] Herlocker, J. L., Konstan,
J. A., Borchers, A., and Riedl, J. (1999). An algo-
rithmic framework for performing collaborative fil-
tering. In Proceedings of the 22Nd Annual Inter-
national ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’99,
pages 230–237, New York, NY, USA. ACM.

[Jahrer et al., 2010] Jahrer, M., Töscher, A., and Leg-
enstein, R. (2010). Combining predictions for accu-
rate recommender systems. In Proceedings of the
16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’10,
pages 693–702, New York, NY, USA. ACM.

[Jun et al., 2019] Jun, K.-S., Willett, R., Wright, S.,
and Nowak, R. (2019). Bilinear bandits with low-
rank structure. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
3163–3172. PMLR.

[Karahodza et al., 2014] Karahodza, B., Supic, H.,
and Donko, D. (2014). An approach to design of
time-aware recommender system based on changes
in group user’s preferences. In 2014 X Inter-
national Symposium on Telecommunications (BIH-
TEL), pages 1–4.

[Karnin and Anava, 2016] Karnin, Z. S. and Anava,
O. (2016). Multi-armed bandits: Competing with
optimal sequences. In Advances in Neural Informa-
tion Processing Systems 29, pages 199–207.

[Kleinberg et al., 2008] Kleinberg, R., Niculescu-
Mizil, A., and Sharma, Y. (2008). Regret bounds
for sleeping experts and bandits. volume 80, pages
425–436.

[Koren, 2008] Koren, Y. (2008). Factorization meets
the neighborhood: A multifaceted collaborative fil-
tering model. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’08, pages 426–
434, New York, NY, USA. ACM.

[Kveton et al., 2017] Kveton, B., Szepesvari, C., Rao,
A., Wen, Z., Abbasi-Yadkori, Y., and Muthukrish-
nan, S. (2017). Stochastic low-rank bandits.

[Linden et al., 2003] Linden, G., Smith, B., and York,
J. (2003). Amazon.com recommendations: item-to-
item collaborative filtering. IEEE Internet Comput-
ing, 7(1):76–80.

[Liu et al., 2010] Liu, J., Pedersen, E., and Dolan, P.
(2010). Personalized news recommendation based
on click behavior. In 2010 International Conference
on Intelligent User Interfaces.

[Liu, 2015] Liu, X. (2015). Modeling users’ dynamic
preference for personalized recommendation. In
Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI’15, pages 1785–1791.



Wasim Huleihel, Soumyabrata Pal, Ofer Shayevitz

[Luo et al., 2017] Luo, H., Agarwal, A., and Lang-
ford, J. (2017). Efficient contextual bandits in non-
stationary worlds. In COLT.

[Moore et al., 2013] Moore, J. L., Chen, S., Joachims,
T., and Turnbull, D. (2013). Taste over time: the
temporal dynamics of user preferences. In ISMIR.

[Mukherjee et al., 2017] Mukherjee, S., Lamba, H.,
and Weikum, G. (2017). Item recommendation with
evolving user preferences and experience. CoRR,
abs/1705.02519.

[Pandey et al., 2007] Pandey, S., Chakrabarti, D.,
and Agarwal, D. (2007). Multi-armed bandit prob-
lems with dependent arms. pages 721–728.

[Rennie and Srebro, 2005] Rennie, J. D. M. and Sre-
bro, N. (2005). Fast maximum margin matrix fac-
torization for collaborative prediction. In Proceed-
ings of the 22Nd International Conference on Ma-
chine Learning, ICML ’05, pages 713–719, New
York, NY, USA. ACM.

[Resnick et al., 1994] Resnick, P., Iacovou, N.,
Suchak, M., Bergstrom, P., and Riedl, J. (1994).
Grouplens: An open architecture for collaborative
filtering of netnews. In Proceedings of the 1994
ACM Conference on Computer Supported Cooper-
ative Work, CSCW ’94, pages 175–186, New York,
NY, USA. ACM.

[Salakhutdinov and Mnih, 2007] Salakhutdinov, R.
and Mnih, A. (2007). Probabilistic matrix factor-
ization. In Proceedings of the 20th International
Conference on Neural Information Processing
Systems, NIPS’07, pages 1257–1264, USA.

[Salakhutdinov and Mnih, 2008] Salakhutdinov, R.
and Mnih, A. (2008). Bayesian probabilistic matrix
factorization using markov chain monte carlo. In
Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pages 880–887,
New York, NY, USA. ACM.

[Sarwar et al., 2000] Sarwar, B., Karypis, G., Kon-
stan, J., and Riedl, J. (2000). Analysis of recommen-
dation algorithms for e-commerce. In Proceedings of
the 2Nd ACM Conference on Electronic Commerce,
EC ’00, pages 158–167, New York, NY, USA. ACM.

[Sarwar et al., 2001] Sarwar, B., Karypis, G., Kon-
stan, J., and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms. In Pro-
ceedings of the 10th International Conference on
World Wide Web, WWW ’01, pages 285–295, New
York, NY, USA. ACM.

[Sen et al., 2017] Sen, R., Shanmugam, K., Kocaoglu,
M., Dimakis, A., and Shakkottai, S. (2017). Con-
textual Bandits with Latent Confounders: An NMF
Approach. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Re-
search, pages 518–527. PMLR.

[Shi et al., 2015] Shi, F., Ghedira, C., and Marini, J.
(2015). Context adaptation for smart recommender
systems. IT Professional, 17(6):18–26.

[Si and Jin, 2003] Si, L. and Jin, R. (2003). Flexible
mixture model for collaborative filtering. In Pro-
ceedings of the Twentieth International Conference
on International Conference on Machine Learning,
ICML’03, pages 704–711. AAAI Press.

[Sutskever et al., 2009] Sutskever, I., Tenenbaum,
J. B., and Salakhutdinov, R. R. (2009). Modelling
relational data using bayesian clustered tensor fac-
torization. In Advances in Neural Information Pro-
cessing Systems 22, pages 1821–1828.

[Thompson, 1933] Thompson, W. R. (1933). On the
likelihood that one unknown probability exceeds
another in view of the evidence of two samples.
Biometrika, 25(3/4):285–294.

[Yu and Mannor, 2009] Yu, J. Y. and Mannor, S.
(2009). Piecewise-stationary bandit problems with
side observations. In Proceedings of the 26th An-
nual International Conference on Machine Learn-
ing, ICML’09, page 1177–1184.

[Zhao et al., 2020] Zhao, P., Zhang, L., Jiang, Y., and
Zhou, Z.-H. (2020). A simple approach for non-
stationary linear bandits. In Proceedings of the
Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceed-
ings of Machine Learning Research, pages 746–755.
PMLR.


