Supplementary Material for
“Regularized Policies are Reward Robust”

1 Proofs of Main Results

We first introduce some notation that will be used exclusively for the Appendix. For any function R : Z(X) — R,
we define Ry (pu) = R(u) + 1o () and R_(n) = R(p) — to (). Indeed, it should noted that if R is upper semi-
continuous concave then R_ is upper semi-continuous concave and —R_ is proper convex. The central benefit
of rewriting R in this is way is due to

sup R(u)= sup R_(p).
HEK P, HEK P

First we will show a technical result.

Lemma 1 If R: B(X) — R is upper semicontinuous and concave then (—R_)* is increasing.

Proof Let r,r' € Fp(X) such that r <7’ and let

v € argsup (/X r(z)du(z) + R(M)) ,

HEP(X)

noting that v exists since the mapping p — [, 7(z)du(z) + R(j) is concave, upper semicontinuous and &2(X) is
compact. Next we have

(—R)*(r) — (~R_)*()

- s (/[ rrduto)+ R ) - s ([ r@aute) + 7o)
g/Xr(:v)du(x)—&—R(V)—/X?“/(x)dl/(ﬂ?)—R(V)

_ /X (r(z) — ' (2)) dv(z)

<0

We also recall some classical results regarding Fenchel duality between the spaces F(X) and Z(X).

Definition 1 (Rockafellar| (1968])) For any proper convex function F : Fp(X) — (—o00,00] and pn € B(X) we
define

P = sup ( [ nda— )

heFy,

and for any h € Fp(Q) we define

F**(h) = sup (/ hdp — F*(u)) .
HERB(X) X

Theorem 1 (Zalinescu| (2002) Theorem 2.3.3) If X is a Hausdorff locally conver space, and F : X —
(—00,00] is a proper convex lower semi-continuous function then F** = F.



Regularized Policies are Reward Robust

1.1 Proof of Theorem [

We have
sup R(u) = sup —(—R(p))
HEK P, HEK P ~
1) *k
= sup —(—R(n))
HEK P,

@ sup — sup (/Xr’(x)dp(x)—(—R)*(T/))

pEKP .,  TEF(X)

— sup inf ( /X (_r'(x))du<x)+(—R)*<r’))

,U‘E/pr,y T,e}-b(){)

0 s ([ @)t + Ry )

T’Efb()() ,U‘E/CP,»Y

D iur ( sup /Xr’(x)du(x)Jr(—R)* (W))

r€Fp(X) \ pekp,

2t (RLeo(r) + (<R)” (=)

where (1) holds since —R is proper convex, (2) is the definition of the conjugate, (3) is an application of Ky
Fan’s minimax theorem (Fan, |1953, Theorem 2) noting that the set Kp, is compact, and that the mapping
r— [y (=r'(x))du(z) + (—R)" (r") is concave and the mapping p — [, (—r'(x)) du(z) is linear. (4) holds by
negating r’ since —F,(X) = F»(X) and (5) holds by definition.

1.2 Proof of Theorem [2]

By definition, we have RLp~(r*) — (r*, u*) > 0. To show the other direction, it follows that

RLp,(r") = (%, p7) = (RLp, (") + (=R)"(=r7)) = (", 1) + (= R)"(=17))

&t (RLp (1) 4+ (SR) (=) = (" )+ (R) (=)
2 Sup R(p) = ({r", 1) + (=R)*(=r7))

D Ru?) — (", 1) + (—R)* (1))

where (1) follows via optimality of *, (2) is due to the duality result, (3) follows via optimality of p* and (4) is an
application of the Fenchel-Young inequality on the convex function —R. Finally, we have RLp~(r*) = (r*, u*),
which implies optimality of p* and concludes the proof.

1.3 Proof of Theorem [3|

Using the classic linear programming duality result, we have

RLpo(r) = (1=7) dgf [ V(sduo(s). W

where

Vpry = {V € Fp(S) : V(s) > r(s,a) +’V/SV(S’)dP(s’ | s,a),V(s,a) € X} ,



and define
ry(s,a) :=V(s) — "// V(s')dP(s' | s,a). (2)
S
It then holds that

sup R(u) 2 inf  (RLp, () + (—R)*(~r"))

HEK P ~ r' €Fp(X)
2 . . * ’
= f 1-— f Vis)d —R)*(—
welfnb(x) (( ) Veg;la,r/ﬂ/s ($)dpols) + (=R (= )>

= inf inf 1— V(s)d —R)*(—r' (v
’l"el]I:lb(X) Vel]I-'lb(S) <( 7)/8 (S) uO(S)jL( ) ( T)JFWPW 17( )

Vel.rFlb(S) r'elﬁb(x) <( 7)/S (s)dpo(s) + (=R)"(=r") + 1y, (V)

= inf inf <(1 —v)LV(S)duo(S) + (—R)*(—T/)>,

VeF(S)r'<ryv

where (1) is due to Theorem (2) is due to (1)) and noting that r < ry implies V(s) > r(s,a)+~ [¢ V(s')dP(s" |
s,a) concludes the proof.

1.4 Proof of Lemma 1]

First note that for any € Kp ., we have
/ TV(‘S: a)d:u(sa CL)
X

~([veausa - [ [veare [sodso)
- (/S V(s)d,u(s,a)/SV(s)du(s,a)Jr(lV)/SV(S)dNO(S))

= (=) [ V)t
and so we can conclude for any V' € Fy,(S), we have

RLp,(rv) = (1—7) /s V(s)dpo(s).

Next, we have

sw 7 = int | ((1-9) [ Vo) + (1))

= 1
HEK P, VEeF,(S)

— veifrlf(a (RLp (ry) + (=R)*(—7rv))

> . / _ L
> dnf(RLeo () + (<R)* (=)

sup R(p),
HEK P,y

and since the lower bound can achieve equality, it implies that the optimal r* is of the form ry .
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1.5 Proof of Corollary

We have
= g ([ Ao )
- s ([ e /X reuta) - 2000
- o (/y" () - <20
—e ([0 )du(x)—Q(u))

0 (L= r
8 )
which concludes the proof.

1.6 Proof of Theorem [l

First define the set

Qp = {Q € FX): Qs0) > r(ssa) +7 [ sup Q)P | )} ,

X a'€A

and define

ro(s,a) = Q(s,a) — ’y/X sup Q(s',a’)dP(s' | s,a)

a’€ A

Next we can write

RLpo(r) = o inf [ sup QGs.a)du(s).

next we have

sup R(u) D nf (RLp(r") + (=R)*(—r"))

HEK P, y r'€Fp(X)
@ . . ,
=  inf inf /su s,a)dpuo(s) + (=R)*(—r )

" EFy(X) (QEQP,,./W SGEBQ( )dpo(s) + (=R)*(=r")

= inf ( inf </SsupQ(5,a)duo(S)+LQP,,,,,W(Q))+(R)*(TI))

T E€Fp(X) \QEF»(X) acA

' €Fp(X) QEFL(X) a€A

= inf inf </S sup Q(s,a)dpuo(s) + (—R)*(—r") + LQPJ./,W(Q))
= inf inf </S sup Q(s,a)duo(s) + (—R)*(—r") + LQPJ./,W(Q))

QEFu(X) r'€Fy(X) acA

= inf (/SSHPQ(&CL)CZ#O(S)JF inf ((R)*(T')HQP,N,W(Q)))

QEFs(X) acA r €Fp(X)
= inf su s,a)duo(s) + inf (—R)*(—r' )
= ant ([ sup Qs oot + int (-~ (-1

© inf (/S sup Q(s,a)duo(s) + (R)*(TQ)> )

QEFu(X) acA



where (1) is due to Theorem I} (2) is due to (A]), and (3) follows since (—R)* is increasing by assumption. Next,
noting that (—R)*(—rq) = eQ* (%), and that

r—ro=r(s,a)— Qs a) + 'y/ sup Q(s',a’)dP(s' | s,a)
1- 0 X a’eA
= (r(s,a) + 'y/ sup Q(s',a’)dP(s" | s,a)) —Q(s,a)
X a' €A
= TQ - Q7
which is the difference between the Bellman operator. Putting this together yields

sup R(u)
HEK P, ~

= ot (4 (5572 + f s 200 bt
= inf (59* (7@) +/Ssup Q(s,a)dug(s))

QEFu(X) acA

1.7 Proof of Lemma [2]

We first set n = |A|. Let F3(S,R™) denote the set of measurable and bounded functions mapping from S into
R™. For any m € Fu(S,R™), we use w(a | s) to denote the index corresponding to a € A for the function m
evaluated at s € S. Next, we define the following set:

By = {u(s,a) = (] s) - ps(s) | ps € P(S),m € Fy(S.B")},

noting that By C #(X). We also have that &?(X) C By since this corresponds to having each 7(a | s) satisfy
m(a|s)€[0,1] and ) . 4 7(a|s) = 1. We then redefine

() = {2«5,@) Um0 neE,

We will first show that this choice of €2 is convex. First we need a Lemma that will make it easier.

Lemma 2 The functional F': R — R defined as

n
oy
Fx)=) z;-log | =——
; 2 =1
is convex over its domain RZ,.

Proof We derive the Hessian of F' which can be verified to be:
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where the last inequality follows by an application of Cauchy-Schwarz inequality noting that x € Dom F' = RZ,.
Since the Hessian is positive semi-definite, it follows that F' is convex. |

First denote by ps(s) = > ,c 4 #(s,a) and note that 7,(a | s) = u(s,a)/ps(s). For any p € dom 2, we have
Q(,U,) = E;A(s,a) [KL(T(}M U)]

=Eus0) Z mu(a ] s)-log(mu(a]s))+logn
acA
=E,s(s) [Z mu(a | s)-log(mu(a]s))| +logn
acA
— [ X ns(o)mulal 9)-log (mula | 9)ds + logn
SaeA
= / Z u(s,a)-log (M) ds + logn,
S(LEA EQ’EAI’(‘(S7G)

and convexity follows by the above Lemma. Before we proceed, we need to also show that By is convex so
that our redefining of 2 does not break convexity established above. Consider u,v € By and so there exists
ps,vs € Z(S) and 7, m, € Fp(S,R™) with p(s,a) = mu(a | s) - ps(s) and v(s,a) = m,(a | s) - vs(s). For any
A € [0, 1], we have (setting P, ., (s) = %VS(Q))

Ap(s,a)+ (1= ANv(s,a) = Amyu(a | s) - ps(s) + (1 =) -m(a]|s) vs(s)

ps(s) vs(s)
Pyl,(s)~<)\7r (a]s)- +1=X) - 7m(a]s)- .
g g Pyu(s) Pyu(s)
By construction, both ug and vg are absolutely continuous with respect to P, , and thus the terms inside the
bracket are bounded and well-defined. Moreover P, , € &(S) and thus this element is in By, which concludes
the convexity proof. We now proceed to derive the conjugate. For any r’ € F;,(X) we have

0 = sw ([ Fs.autsa) - o0

HEB(X)

D up (/Xr/(s,a)du(s,a)—ﬂ(u)>

neEBx

= sup (/X (s, a)dp(s,a) — Eus,0) KL(mu(- | 5), U)])

HEBX

swp ([ ([ sadmtal ) = Kt 19.0)) duts))

sup sup (/ (/ ' (s,a)dm,(a | s) — KL(m,( | s), U)) d/Ls(S))
ns€P(S) mu(-]s)eFsp(S,RP) X A

2 s s ([ ain @) - KL 0) ) duste)

—~
~

ns€P(S) m, ER?
® sup / sup (/ r'(s,a)dm,(a) — KL(m,, U)) dus(s)
us€P(8S)J X m, e P(A) A
@ sup / exp (r'(s,a))dU(a) — 1
ns€P(S)Jx
@ sup/ exp (r'(s,a))dU(a) — 1,
seSJx

where (1) holds since dom © C By. (2) holds from (Rockafellar and Wets|, 2009, Theorem 14.60, p. 677) using the
fact that Fp,(S,R™) is trivially a decomposable space in definition (Rockafellar and Wets|, |2009} Definition 14.59,
p. 676). (3) holds since dom (KL(-,U)) C Z(A) C R™. (4) is due to (Feydy et al., [2019, Proposition 5) and (5)
follows by noting that the optimal pg is concentrated around the supremum.



1.8 Imitation Learning
1.8.1 f-divergence

Note that for any r € Fy,(X') we have

(Br()= s (/[ ryivte) + 7))

- ueS;?x) (/X r(z)dv(r) — KL(v, ME)
W /Xr(x)duE(m) —1,

where (1) holds due to (Feydy et all 2019, Proposition 5). We will now show that (—R)* is increasing for any
R(u) = —Dy(p, pr) where Dy is an f-divergence. First let

v € argsup (/X r(x)dp(x) + R(#)) )

HEP(X)

noting that v exists since the mapping p +— [, r(x)du(x) 4+ R(p) is concave, upper semicontinuous and Z(X) is
compact. For any v’ > r

(=R_)*(r) = (=R-)*(r)

= o ([ e nw) - s ([ i nw)
Y ([ ) = sy ([ - re )

< /X r(z)dv(z) + R(v) — /X r'(z)dv(x) — R(v)
:/ (r(x) — ' (2)) dv(z)
X

<0,
where (1) holds due to the fact that dom (D (-, ug)) € Z(X).

1.8.2 InfoGAIL

In this case, we exploit the fact that —R(u) takes the form of an Integral Probability Metric between p and ug.
Let My, the set of functions that are L-Lipschitz with respect to d. For any r € F,(X) we have

(—R)*(r) = sup ( [ v~ sup ( [ nwyiv) - [ h(x)duE<x>)>
vERB(X) X h:Lipy(h)<L X X
1
Q[ r@due(a) + o, o).
X
where (1) is due to (Husain, [2020, Lemma 5). Thus, it holds that

swp B = inf  (RLn ()4 [ o' @)dus(o) + o, ()

HEK P ~ r'€Fp(X) X
(2) .
= 70/61}15@) <RLP,,Y(T‘,) - /X r'(z)dpg(x) + L'HL(T/)>
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where (2) holds since Lip,(—r) = Lip,(r). We now show that adding an entropy term to
Ry == swp ([ Wadn(e)~ [ mhinsa)) - By KL |5, U] )
h:Lipy(h)<L X X

will ensure that (—R)* is increasing. Using standard results from (Penot} 2012)) that the conjugate of the sum
of two functions is the infimal convolution between their conjugates mean we will convolve both and entropy
conjugate from Lemma 2 of the main file.:

(—R)*(r') = inf (sup/xexp (r'(s,a) —r(s,a))dU(a)—i—/

dug + 4
reFy(X) \ses o HE LHL(T)) )

= inf (sup/xexp (r'(s,a) —r(s,a)) dU(a)+/

retr \ses X

rduE) | (5)

Let 7"/ < 7’ pointwise and define

r* € arginf (sup/ exp (r'(s,a) — r(s,a)) dU(a) —|—/ rduE) , (6)
reHr \seSJx X

noting that since exists due to Weierstrass Theorem since Hj, is compact and the mapping inside is convex and

lower semicontinuous. Next, we have

(=R)*(r") = (=R)*(r') (7)
inf (sup/){exp(r”(s,a)r(s,a))dU(a)+/ rduE> — inf (sup/){exp(r/(s,a)r(s,a))dU(a)+/

rdpg
r€HL \scS X r€HL \scS X

< ZEE/X exp (r"(s,a) — r*(s,a)) dU(a) + /X r*dug — Zgg/x exp (r'(s,a) — r*(s,a)) dU(a) — /X rdug 9)
= EIEI}S) /X exp (r''(s,a) —r*(s,a)) dU(a) — ilelg/x exp (r'(s,a) — r*(s,a))dU(a) (10)
<0, (11)

where the last inequality follows from the fact that #” < ¢ and thus this proves that (—R)* is increasing.

1.9 Entropic Exploration

For any r € Fy(X)

(~RI(r)= sup ( / r(w)du(w)—KL(M,Ux)>

HEB(X)
W / exp (r(z)) dUx(z) — 1,
X
where (1) follows from (Feydy et al.| [2019, Proposition 5).
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