
Supplementary Material for
“Regularized Policies are Reward Robust”

1 Proofs of Main Results

We first introduce some notation that will be used exclusively for the Appendix. For any function R : B(X )→ R,
we define R+(µ) = R(µ) + ιP(µ) and R−(µ) = R(µ)− ιP(µ). Indeed, it should noted that if R is upper semi-
continuous concave then R− is upper semi-continuous concave and −R− is proper convex. The central benefit
of rewriting R in this is way is due to

sup
µ∈KP,γ

R(µ) = sup
µ∈KP,γ

R−(µ).

First we will show a technical result.

Lemma 1 If R : B(X )→ R is upper semicontinuous and concave then (−R−)? is increasing.

Proof Let r, r′ ∈ Fb(X ) such that r ≤ r′ and let

ν ∈ arg sup
µ∈P(X )

(∫
X
r(x)dµ(x) +R(µ)

)
,

noting that ν exists since the mapping µ 7→
∫
X r(x)dµ(x) +R(µ) is concave, upper semicontinuous and P(X ) is

compact. Next we have

(−R−)?(r)− (−R−)?(r′)

= sup
µ∈P(X )

(∫
X
r(x)dµ(x) +R(µ)

)
− sup
µ∈P(X )

(∫
X
r′(x)dµ(x) +R(µ)

)
≤
∫
X
r(x)dν(x) +R(ν)−

∫
X
r′(x)dν(x)−R(ν)

=

∫
X

(r(x)− r′(x)) dν(x)

≤ 0

We also recall some classical results regarding Fenchel duality between the spaces Fb(X ) and B(X ).

Definition 1 (Rockafellar (1968)) For any proper convex function F : Fb(X )→ (−∞,∞] and µ ∈ B(X ) we
define

F ?(µ) = sup
h∈Fb

(∫
X
hdµ− F (h)

)
and for any h ∈ Fb(Ω) we define

F ??(h) = sup
µ∈B(X )

(∫
X
hdµ− F ?(µ)

)
.

Theorem 1 (Zalinescu (2002) Theorem 2.3.3) If X is a Hausdorff locally convex space, and F : X →
(−∞,∞] is a proper convex lower semi-continuous function then F ?? = F .
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1.1 Proof of Theorem 1

We have

sup
µ∈KP,γ

R(µ) = sup
µ∈KP,γ

− (−R(µ))

(1)
= sup

µ∈KP,γ
− (−R(µ))

??

(2)
= sup

µ∈KP,γ
− sup
r′∈Fb(X )

(∫
X
r′(x)dµ(x)− (−R)

?
(r′)

)
= sup
µ∈KP,γ

inf
r′∈Fb(X )

(∫
X

(−r′(x)) dµ(x) + (−R)
?

(r′)

)
(3)
= inf

r′∈Fb(X )
sup

µ∈KP,γ

(∫
X

(−r′(x)) dµ(x) + (−R)
?

(r′)

)
(4)
= inf

r′∈Fb(X )

(
sup

µ∈KP,γ

∫
X
r′(x)dµ(x) + (−R)

?
(−r′)

)
(5)
= inf

r′∈Fb(X )

(
RLP,γ(r′) + (−R)

?
(−r′)

)
where (1) holds since −R is proper convex, (2) is the definition of the conjugate, (3) is an application of Ky
Fan’s minimax theorem (Fan, 1953, Theorem 2) noting that the set KP,γ is compact, and that the mapping
r 7→

∫
X (−r′(x)) dµ(x) + (−R)

?
(r′) is concave and the mapping µ 7→

∫
X (−r′(x)) dµ(x) is linear. (4) holds by

negating r′ since −Fb(X ) = Fb(X ) and (5) holds by definition.

1.2 Proof of Theorem 2

By definition, we have RLP,γ(r∗)− 〈r∗, µ∗〉 ≥ 0. To show the other direction, it follows that

RLP,γ(r∗)− 〈r∗, µ∗〉 = (RLP,γ(r∗) + (−R)?(−r∗))− (〈r∗, µ∗〉+ (−R)?(−r∗))
(1)
= inf

r′∈Fb(X )
(RLP,γ(r′) + (−R)?(−r′))− (〈r∗, µ∗〉+ (−R)?(−r∗))

(2)
= sup

µ∈KP,γ
R(µ)− (〈r∗, µ∗〉+ (−R)?(−r∗))

(3)
= R(µ∗)− (〈r∗, µ∗〉+ (−R)?(−r∗))
= 〈−r∗, µ∗〉 − (−R) (µ∗)− (−R)

?
(−r∗)

(4)

≤ 0,

where (1) follows via optimality of r∗, (2) is due to the duality result, (3) follows via optimality of µ∗ and (4) is an
application of the Fenchel-Young inequality on the convex function −R. Finally, we have RLP,γ(r∗) = 〈r∗, µ∗〉,
which implies optimality of µ∗ and concludes the proof.

1.3 Proof of Theorem 3

Using the classic linear programming duality result, we have

RLP,γ(r) = (1− γ) inf
V ∈VP,r,γ

∫
S
V (s)dµ0(s), (1)

where

VP,r,γ =

{
V ∈ Fb(S) : V (s) ≥ r(s, a) + γ

∫
S
V (s′)dP (s′ | s, a),∀(s, a) ∈ X

}
,



and define

rV (s, a) := V (s)− γ
∫
S
V (s′)dP (s′ | s, a). (2)

It then holds that

sup
µ∈KP,γ

R(µ)
(1)
= inf

r′∈Fb(X )
(RLP,γ(r′) + (−R)?(−r′))

(2)
= inf

r′∈Fb(X )

(
(1− γ) inf

V ∈VP,r′,γ

∫
S
V (s)dµ0(s) + (−R)?(−r′)

)
= inf
r′∈Fb(X )

inf
V ∈Fb(S)

(
(1− γ)

∫
S
V (s)dµ0(s) + (−R)?(−r′) + ιVP,r′,γ (V )

)
= inf
V ∈Fb(S)

inf
r′∈Fb(X )

(
(1− γ)

∫
S
V (s)dµ0(s) + (−R)?(−r′) + ιVP,r′,γ (V )

)
= inf
V ∈Fb(S)

inf
r′≤rV

(
(1− γ)

∫
S
V (s)dµ0(s) + (−R)?(−r′)

)
,

where (1) is due to Theorem 1, (2) is due to (1) and noting that r ≤ rV implies V (s) ≥ r(s, a)+γ
∫
S V (s′)dP (s′ |

s, a) concludes the proof.

1.4 Proof of Lemma 1

First note that for any µ ∈ KP,γ , we have

∫
X
rV (s, a)dµ(s, a)

=

(∫
S
V (s)dµ(s, a)− γ

∫
X

∫
S
V (s′)dP (s′ | s, a)dµ(s, a)

)
=

(∫
S
V (s)dµ(s, a)−

∫
S
V (s)dµ(s, a) + (1− γ)

∫
S
V (s)dµ0(s)

)
= (1− γ)

∫
S
V (s)dµ0(s),

and so we can conclude for any V ∈ Fb(S), we have

RLP,γ(rV ) = (1− γ)

∫
S
V (s)dµ0(s).

Next, we have

sup
µ∈KP,γ

R(µ) = inf
V ∈Fb(S)

(
(1− γ)

∫
S
V (s)dµ0(s) + (−R)?(−rV )

)
= inf
V ∈Fb(S)

(RLP,γ(rV ) + (−R)?(−rV ))

≥ inf
r′∈Fb(X )

(RLP,γ(r′) + (−R)? (−r′))

= sup
µ∈KP,γ

R(µ),

and since the lower bound can achieve equality, it implies that the optimal r∗ is of the form rV .
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1.5 Proof of Corollary 1

We have

(−R)?(−r′) = sup
µ∈B(X )

(∫
X
−r′(x)dµ(x) +R(µ)

)
= sup
µ∈B(X )

(∫
X
−r′(x)dµ(x) +

∫
X
r(x)dµ(x)− εΩ(µ)

)
= sup
µ∈B(X )

(∫
X
r(x)− r′(x)dµ(x)− εΩ(µ)

)
= ε sup

µ∈B(X )

(∫
X

r(x)− r′(x)

ε
dµ(x)− Ω(µ)

)
= εΩ?

(
r − r′

ε

)
,

which concludes the proof.

1.6 Proof of Theorem 4

First define the set

QP,r,γ =

{
Q ∈ Fb(X ) : Q(s, a) ≥ r(s, a) + γ

∫
X

sup
a′∈A

Q(s′, a′)dP (s′ | s, a)

}
,

and define

rQ(s, a) = Q(s, a)− γ
∫
X

sup
a′∈A

Q(s′, a′)dP (s′ | s, a)

Next we can write

RLP,γ(r) = inf
Q∈QP,r,γ

∫
S

sup
a∈A

Q(s, a)dµ0(s), (A)

next we have

sup
µ∈KP,γ

R(µ)
(1)
= inf

r′∈Fb(X )
(RLP,γ(r′) + (−R)?(−r′))

(2)
= inf

r′∈Fb(X )

(
inf

Q∈QP,r′,γ

∫
S

sup
a∈A

Q(s, a)dµ0(s) + (−R)?(−r′)
)

= inf
r′∈Fb(X )

(
inf

Q∈Fb(X )

(∫
S

sup
a∈A

Q(s, a)dµ0(s) + ιQP,r′,γ (Q)

)
+ (−R)?(−r′)

)
= inf
r′∈Fb(X )

inf
Q∈Fb(X )

(∫
S

sup
a∈A

Q(s, a)dµ0(s) + (−R)?(−r′) + ιQP,r′,γ (Q)

)
= inf
Q∈Fb(X )

inf
r′∈Fb(X )

(∫
S

sup
a∈A

Q(s, a)dµ0(s) + (−R)?(−r′) + ιQP,r′,γ (Q)

)
= inf
Q∈Fb(X )

(∫
S

sup
a∈A

Q(s, a)dµ0(s) + inf
r′∈Fb(X )

(
(−R)?(−r′) + ιQP,r′,γ (Q)

))
= inf
Q∈Fb(X )

(∫
S

sup
a∈A

Q(s, a)dµ0(s) + inf
r′≤rQ

(−R)?(−r′)
)

(3)
= inf

Q∈Fb(X )

(∫
S

sup
a∈A

Q(s, a)dµ0(s) + (−R)?(−rQ)

)
,



where (1) is due to Theorem 1, (2) is due to (A), and (3) follows since (−R)? is increasing by assumption. Next,

noting that (−R)?(−rQ) = εΩ?
(
r−rQ
ε

)
, and that

r − rQ = r(s, a)− Q(s, a)

1− γ
+ γ

∫
X

sup
a′∈A

Q(s′, a′)dP (s′ | s, a)

=

(
r(s, a) + γ

∫
X

sup
a′∈A

Q(s′, a′)dP (s′ | s, a)

)
−Q(s, a)

= T Q−Q,

which is the difference between the Bellman operator. Putting this together yields

sup
µ∈KP,γ

R(µ)

= inf
Q∈Fb(X )

(
εΩ?

(
r − rQ
ε

)
+

∫
S

sup
a∈A

Q(s, a)dµ0(s)

)
= inf
Q∈Fb(X )

(
εΩ?

(
T Q−Q

ε

)
+

∫
S

sup
a∈A

Q(s, a)dµ0(s)

)
1.7 Proof of Lemma 2

We first set n = |A|. Let Fb(S,Rn) denote the set of measurable and bounded functions mapping from S into
Rn. For any π ∈ Fb(S,Rn), we use π(a | s) to denote the index corresponding to a ∈ A for the function π
evaluated at s ∈ S. Next, we define the following set:

B× := {µ(s, a) = π(a | s) · µS(s) | µS ∈P(S), π ∈ Fb(S,Rn)} ,

noting that B× ⊆ B(X ). We also have that P(X ) ⊂ B× since this corresponds to having each π(a | s) satisfy
π(a | s) ∈ [0, 1] and

∑
a∈A π(a | s) = 1. We then redefine

Ω(µ) =

{
Eµ(s,a) [KL(πµ(· | s), U)] if µ ∈ B×
∞ if µ /∈ B×

We will first show that this choice of Ω is convex. First we need a Lemma that will make it easier.

Lemma 2 The functional F : Rn → R defined as

F (x) =

n∑
i=1

xi · log

(
xi∑
j=1 xj

)
is convex over its domain Rn>0.

Proof We derive the Hessian of F which can be verified to be:

HF (x) = diag

(
1

x1
,

1

x2
, . . . ,

1

xn

)
− 1∑n

i=1 xi
· 1ᵀ1.

Next, we have for any vector z ∈ Rn and x ∈ domF :

zᵀHF (x)z = zᵀ diag

(
1

x1
,

1

x2
, . . . ,

1

xn

)
z − 1∑n

i=1 xi

(
n∑
i=1

zi

)2

=

n∑
i=1

z2i
xi
− 1∑n

i=1 xi

(
n∑
i=1

zi

)2

=
1∑n
i=1 xi

( n∑
i=1

xi

)
·

(
n∑
i=1

z2i
xi

)
−

(
n∑
i=1

zi

)2


≥ 0,
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where the last inequality follows by an application of Cauchy-Schwarz inequality noting that x ∈ DomF = Rn>0.
Since the Hessian is positive semi-definite, it follows that F is convex.

First denote by µS(s) =
∑
a∈A µ(s, a) and note that πµ(a | s) = µ(s, a)/µS(s). For any µ ∈ dom Ω, we have

Ω(µ) = Eµ(s,a) [KL(πµ, U)]

= Eµ(s,a)

[∑
a∈A

πµ(a | s) · log (πµ(a | s)) + log n

]

= EµS(s)

[∑
a∈A

πµ(a | s) · log (πµ(a | s))

]
+ log n

=

∫
S

∑
a∈A

µS(s)πµ(a | s) · log (πµ(a | s)) ds+ log n

=

∫
S

∑
a∈A

µ(s, a) · log

(
µ(s, a)∑

a′∈A µ(s, a′)

)
ds+ log n,

and convexity follows by the above Lemma. Before we proceed, we need to also show that B× is convex so
that our redefining of Ω does not break convexity established above. Consider µ, ν ∈ B× and so there exists
µS , νS ∈ P(S) and πµ, πν ∈ Fb(S,Rn) with µ(s, a) = πµ(a | s) · µS(s) and ν(s, a) = πν(a | s) · νS(s). For any

λ ∈ [0, 1], we have (setting Pµ,ν(s) = µS(s)+νS(s)
2 )

λ · µ(s, a) + (1− λ)ν(s, a) = λπµ(a | s) · µS(s) + (1− λ) · πν(a | s) · νS(s)

= Pµ,ν(s) ·
(
λπµ(a | s) · µS(s)

Pµ,ν(s)
+ (1− λ) · πν(a | s) · νS(s)

Pµ,ν(s)

)
.

By construction, both µS and νS are absolutely continuous with respect to Pµ,ν and thus the terms inside the
bracket are bounded and well-defined. Moreover Pµ,ν ∈ P(S) and thus this element is in B×, which concludes
the convexity proof. We now proceed to derive the conjugate. For any r′ ∈ Fb(X ) we have

Ω?(r′) = sup
µ∈B(X )

(∫
X
r′(s, a)dµ(s, a)− Ω(µ)

)
(1)
= sup

µ∈B×

(∫
X
r′(s, a)dµ(s, a)− Ω(µ)

)
= sup
µ∈B×

(∫
X
r′(s, a)dµ(s, a)− Eµ(s,a) [KL(πµ(· | s), U)]

)
= sup
µ∈B×

(∫
X

(∫
A
r′(s, a)dπµ(a | s)−KL(πµ(· | s), U)

)
dµ(s, a)

)
= sup
µS∈P(S)

sup
πµ(·|s)∈Fb(S,Rn)

(∫
X

(∫
A
r′(s, a)dπµ(a | s)−KL(πµ(· | s), U)

)
dµS(s)

)
(2)
= sup

µS∈P(S)

∫
X

sup
πµ∈Rn

(∫
A
r′(s, a)dπµ(a)−KL(πµ, U)

)
dµS(s)

(3)
= sup

µS∈P(S)

∫
X

sup
πµ∈P(A)

(∫
A
r′(s, a)dπµ(a)−KL(πµ, U)

)
dµS(s)

(4)
= sup

µS∈P(S)

∫
X

exp (r′(s, a)) dU(a)− 1

(5)
= sup

s∈S

∫
X

exp (r′(s, a)) dU(a)− 1,

where (1) holds since dom Ω ⊆ B×. (2) holds from (Rockafellar and Wets, 2009, Theorem 14.60, p. 677) using the
fact that Fb(S,Rn) is trivially a decomposable space in definition (Rockafellar and Wets, 2009, Definition 14.59,
p. 676). (3) holds since dom (KL(·, U)) ⊆P(A) ⊂ Rn. (4) is due to (Feydy et al., 2019, Proposition 5) and (5)
follows by noting that the optimal µS is concentrated around the supremum.



1.8 Imitation Learning

1.8.1 f-divergence

Note that for any r ∈ Fb(X ) we have

(−R)?(r) = sup
ν∈B(X )

(∫
X
r(x)dν(x) +R(ν)

)
= sup
ν∈B(X )

(∫
X
r(x)dν(x)−KL(ν, µE

)
(1)
=

∫
X
r(x)dµE(x)− 1,

where (1) holds due to (Feydy et al., 2019, Proposition 5). We will now show that (−R)? is increasing for any
R(µ) = −Df (µ, µE) where Df is an f -divergence. First let

ν ∈ arg sup
µ∈P(X )

(∫
X
r(x)dµ(x) +R(µ)

)
,

noting that ν exists since the mapping µ 7→
∫
X r(x)dµ(x) +R(µ) is concave, upper semicontinuous and P(X ) is

compact. For any r′ ≥ r

(−R−)?(r)− (−R−)?(r′)

= sup
µ∈B(X )

(∫
X
r(x)dµ(x) +R(µ)

)
− sup
µ∈B(X )

(∫
X
r′(x)dµ(x) +R(µ)

)
(1)
= sup

µ∈P(X )

(∫
X
r(x)dµ(x) +R(µ)

)
− sup
µ∈P(X )

(∫
X
r′(x)dµ(x) +R(µ)

)
≤
∫
X
r(x)dν(x) +R(ν)−

∫
X
r′(x)dν(x)−R(ν)

=

∫
X

(r(x)− r′(x)) dν(x)

≤ 0,

where (1) holds due to the fact that dom (Df (·, µE)) ⊆P(X ).

1.8.2 InfoGAIL

In this case, we exploit the fact that −R(µ) takes the form of an Integral Probability Metric between µ and µE .
Let HL the set of functions that are L-Lipschitz with respect to d. For any r ∈ Fb(X ) we have

(−R)?(r) = sup
ν∈B(X )

(∫
X
r(x)dν(x)− sup

h:Lipd(h)≤L

(∫
X
h(x)dν(x)−

∫
X
h(x)dµE(x)

))
(1)
=

∫
X
r(x)dµE(x) + ιHL(r),

where (1) is due to (Husain, 2020, Lemma 5). Thus, it holds that

sup
µ∈KP,γ

R(µ) = inf
r′∈Fb(X )

(
RLP,γ(r′) +

∫
X
−r′(x)dµE(x) + ιHL(−r′)

)
(2)
= inf

r′∈Fb(X )

(
RLP,γ(r′)−

∫
X
r′(x)dµE(x) + ιHL(r′)

)
= inf
r′:Lipd≤L

(
RLP,γ(r′)−

∫
X
r′(x)dµE(x)

)
,
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where (2) holds since Lipd(−r) = Lipd(r). We now show that adding an entropy term to

R(µ) = − sup
h:Lipd(h)≤L

(∫
X
h(x)dµ(x)−

∫
X
h(x)dµE(x)

)
− εEµ(s,a) [KL(πµ(· | s), UA)] (3)

will ensure that (−R)? is increasing. Using standard results from (Penot, 2012) that the conjugate of the sum
of two functions is the infimal convolution between their conjugates mean we will convolve both (3) and entropy
conjugate from Lemma 2 of the main file.:

(−R)?(r′) = inf
r∈Fb(X )

(
sup
s∈S

∫
X

exp (r′(s, a)− r(s, a)) dU(a) +

∫
X
rdµE + ιHL(r)

)
(4)

= inf
r∈HL

(
sup
s∈S

∫
X

exp (r′(s, a)− r(s, a)) dU(a) +

∫
X
rdµE

)
. (5)

Let r′′ ≤ r′ pointwise and define

r∗ ∈ arg inf
r∈HL

(
sup
s∈S

∫
X

exp (r′(s, a)− r(s, a)) dU(a) +

∫
X
rdµE

)
, (6)

noting that since exists due to Weierstrass Theorem since HL is compact and the mapping inside is convex and
lower semicontinuous. Next, we have

(−R)?(r′′)− (−R)?(r′) (7)

= inf
r∈HL

(
sup
s∈S

∫
X

exp (r′′(s, a)− r(s, a)) dU(a) +

∫
X
rdµE

)
− inf
r∈HL

(
sup
s∈S

∫
X

exp (r′(s, a)− r(s, a)) dU(a) +

∫
X
rdµE

)
(8)

≤ sup
s∈S

∫
X

exp (r′′(s, a)− r∗(s, a)) dU(a) +

∫
X
r∗dµE − sup

s∈S

∫
X

exp (r′(s, a)− r∗(s, a)) dU(a)−
∫
X
r∗dµE (9)

= sup
s∈S

∫
X

exp (r′′(s, a)− r∗(s, a)) dU(a)− sup
s∈S

∫
X

exp (r′(s, a)− r∗(s, a)) dU(a) (10)

≤ 0, (11)

where the last inequality follows from the fact that r′′ ≤ r′ and thus this proves that (−R)? is increasing.

1.9 Entropic Exploration

For any r ∈ Fb(X )

(−R)?(r) = sup
µ∈B(X )

(∫
X
r(x)dµ(x)−KL(µ,UX )

)
(1)
=

∫
X

exp (r(x)) dUX (x)− 1,

where (1) follows from (Feydy et al., 2019, Proposition 5).
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optimal transport and mmd using sinkhorn divergences. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 2681–2690.

Husain, H. (2020). Distributional robustness with ipms and links to regularization and gans. Advances in Neural
Information Processing Systems, 33.

Penot, J.-P. (2012). Calculus without derivatives, volume 266. Springer Science & Business Media.



Rockafellar, R. (1968). Integrals which are convex functionals. Pacific journal of mathematics, 24(3):525–539.

Rockafellar, R. T. and Wets, R. J.-B. (2009). Variational analysis, volume 317. Springer Science & Business
Media.

Zalinescu, C. (2002). Convex analysis in general vector spaces. World scientific.


	Proofs of Main Results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 1
	Proof of Corollary 1
	Proof of Theorem 4
	Proof of Lemma 2
	Imitation Learning
	f-divergence
	InfoGAIL

	Entropic Exploration


