
Mean-Variance Analysis
in Bayesian Optimization under Uncertainty:

Supplementary Materials

Contents

A Proofs 2

A.1 Proof of Lemma 3.1 . 2

A.2 Proof of Theorem 4.1 . 2

A.3 Proof of Theorem 4.2 . 6

A.4 Proof of Theorem 4.3 . 10

B Details of Section 3.3 11

B.1 Noisy Input Setting . 11

B.2 Simulator Based Experiment . 12

C Extension to Continuous Set 14

D Algorithms and Computational Details 17

D.1 Pseudo-codes . 17

D.2 Computation of l
(F1)
t , u

(F1)
t , l

(F2)
t and u

(F2)
t . 17

D.3 Computational Complexity . 18

E Additional Experiments 19

E.1 Implementation Details . 19

E.2 Artificial-data Experiments . 20

E.2.1 GP Test Function . 20

E.2.2 Benchmark Functions for Optimization . 21

E.2.3 Sensitivity to the choice of βt . 21

E.2.4 Noisy Input Setting . 22

E.3 Real-data Experiments . 22

E.3.1 Newsvendor Problem under Dynamic Consumer Substitution 22

E.3.2 Portfolio Optimization Problem . 25

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

A Proofs

A.1 Proof of Lemma 3.1

Proof. Let us consider the following event in Lemma 2.1:

∀x ∈ X , ∀w ∈ Ω, ∀t ≥ 1, |f(x,w)− µt−1(x,w)| ≤ β1/2
t σt−1(x,w). (7)

Under the event (7), the following holds:

∀x ∈ X , ∀t ≥ 1,

∫
Ω

lt(x,w)p(w)dw ≤
∫

Ω

f(x,w)p(w)dw ≤
∫

Ω

ut(x,w)p(w)dw.

This indicates F1(x) ∈ Q(F1)
t (x) for all x ∈ X , t ≥ 1 under the event (7).

Next, we show that F2(x) ∈ Q(F2)
t (x) holds for all x ∈ X , t ≥ 1 under the event (7). Let us consider the quantity

f(x,w)−Ew[f(x,w)], which appears in the integrand of Vw[f(x,w)]. Under the event (7), the following holds:

∀x ∈ X , ∀t ≥ 1, l̃t(x,w) ≤ f(x,w)− Ew[f(x,w)] ≤ ũt(x,w), (8)

where l̃t(x,w) = lt(x,w)−Ew[ut(x,w)] and ũt(x,w) = ut(x,w)−Ew[lt(x,w)]. Regarding to the integrand of
Vw[f(x,w)], the following inequality holds for all x ∈ X , t ≥ 1 when (8) holds:

l̃
(sq)
t (x,w) ≤ {f(x,w)− Ew[f(x,w)]}2 ≤ ũ(sq)

t (x,w), (9)

where

l̃
(sq)
t (x,w) =

{
0 if l̃t(x,w) ≤ 0 ≤ ũt(x,w),

min
{
l̃2t (x,w), ũ2

t (x,w)
}

otherwise
,

ũ
(sq)
t (x,w) = max

{
l̃2t (x,w), ũ2

t (x,w)
}
.

The inequality (9) is derived from the fact that, for any a, b (a ≤ b),

a ≤ x ≤ b⇒ ã ≤ x2 ≤ b̃

where

ã =

{
0 if a ≤ 0 ≤ b,
min{a2, b2} otherwise

,

b̃ = max{a2, b2}.

Finally, from the monotonicity of square root and the definition of Q
(F2)
t (x), F2(x) ∈ Q

(F2)
t (x) holds for all

x ∈ X , t ≥ 1 under the event (7). From Lemma 2.1 and the definition of βt, the event (7) holds with probability

at least 1− δ. Therefore, with probability at least 1− δ, F1(x) ∈ Q(F1)
t (x) and F2(x) ∈ Q(F2)

t (x) holds for any
x ∈ X , t ≥ 1. �

A.2 Proof of Theorem 4.1

From the definition of βt and Lemma 2.1, the following holds with probability at least 1− δ/3:

∀ x ∈ X , ∀w ∈ Ω, ∀t ≥ 1, |f(x,w)− µt−1(x,w)| ≤ β1/2
t σt−1(x,w). (10)

Moreover, we give the following lemma about the confidence bound Q
(G)
t (xt):

Lemma A.1. Assume that (10) holds. Then, for any T ≥ 1, it holds that

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ 2αβ

1/2
T

T∑
t=1

∫
Ω

σt−1(xt,w)p(w)dw

+ (1− α)

√√√√8TB̃β
1/2
T

T∑
t=1

∫
Ω

σt−1(xt,w)p(w)dw + 20TβT

T∑
t=1

∫
Ω

σ2
t−1(xt,w)p(w)dw,

where B̃ = max(x,w)∈(X×Ω)|f(x,w)− Ew[f(x,w)]|.

Proof. From the definition of u
(G)
t and l

(G)
t , we have

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}

= α

T∑
t=1

{
u

(F1)
t (xt)− l(F1)

t (xt)
}

+ (1− α)

T∑
t=1

{
u

(F2)
t (xt)− l(F2)

t (xt)
}
. (11)

Similarly, from the definition of u
(F1)
t and l

(F1)
t , we get the following inequality:

T∑
t=1

{
u

(F1)
t (xt)− l(F1)

t (xt)
}

=

T∑
t=1

∫
Ω

{ut(xt,w)− lt(xt,w)} p(w)dw

= 2

T∑
t=1

β
1/2
t

∫
Ω

σt−1(xt,w)p(w)dw

≤ 2β
1/2
T

T∑
t=1

∫
Ω

σt−1(xt,w)p(w)dw. (12)

Here, the last inequality is given by monotonicity of βt. In addition, noting that the definition of u
(F2)
t and l

(F2)
t

we obtain

u
(F2)
t (xt)− l(F2)

t (xt) =

√∫
Ω

ũ
(sq)
t (xt,w)p(w)dw −

√∫
Ω

l̃
(sq)
t (xt,w)p(w)dw

≤

√∫
Ω

{
ũ

(sq)
t (xt,w)− l̃(sq)

t (xt,w)
}
p(w)dw, (13)

where the last inequality is obtained by using the fact that
√
a−
√
b ≤
√
a− b for any a ≥ b ≥ 0. Furthermore,

we have

ũ
(sq)
t (xt,w)− l̃(sq)

t (xt,w) = max
{
l̃2t (xt,w), ũ2

t (xt,w)
}
−min

{
l̃2t (xt,w), ũ2

t (xt,w)
}

+ STR2
0,t(xt,w), (14)

where STR0,t(xt,w) = max
{

0,min
(
ũt(xt,w),−l̃t(xt,w)

)}
. Moreover, we define µ̃t−1(x,w) and σ̃t−1(x,w)

as

µ̃t−1(x,w) = µt−1(x,w)− Ew[µt−1(x,w)],

σ̃t−1(x,w) = σt−1(x,w) + Ew[σt−1(x,w)].

Then, l̃t(x,w) and ũt(x,w) can be expressed as follows:

l̃t(x,w) = µ̃t−1(x,w)− β1/2
t σ̃t−1(x,w),

ũt(x,w) = µ̃t−1(x,w) + β
1/2
t σ̃t−1(x,w).

Here, if l̃2t (xt,w) ≤ ũ2
t (xt,w), then we have µ̃t−1(xt,w) ≥ 0 and

max
{
l̃2t (xt,w), ũ2

t (xt,w)
}
−min

{
l̃2t (xt,w), ũ2

t (xt,w)
}

=
{
µ̃t−1(xt,w) + β

1/2
t σ̃t−1(xt,w)

}2

−
{
µ̃t−1(xt,w)− β1/2

t σ̃t−1(xt,w)
}2

= 4β
1/2
t µ̃t−1(xt,w)σ̃t−1(xt,w)

= 4β
1/2
t |µ̃t−1(xt,w)|σ̃t−1(xt,w).

On the other hand, if l̃2t (xt,w) > ũ2
t (xt,w), then we get µ̃t−1(xt,w) < 0 and

max
{
l̃2t (xt,w), ũ2

t (xt,w)
}
−min

{
l̃2t (xt,w), ũ2

t (xt,w)
}

=
{
µ̃t−1(xt,w)− β1/2

t σ̃t−1(xt,w)
}2

−
{
µ̃t−1(xt,w) + β

1/2
t σ̃t−1(xt,w)

}2

= −4β
1/2
t µ̃t−1(xt,w)σ̃t−1(xt,w)

= 4β
1/2
t |µ̃t−1(xt,w)|σ̃t−1(xt,w).

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

Therefore, in all cases the following equality holds:

max
{
l̃2t (xt,w), ũ2

t (xt,w)
}
−min

{
l̃2t (xt,w), ũ2

t (xt,w)
}

= 4β
1/2
t |µ̃t−1(xt,w)|σ̃t−1(xt,w).

Next, since (10) holds, we get f(x,w)− Ew[f(xt,w)] ∈ [l̃t(x,w), ũt(x,w)]. This implies that

|f(x,w)− Ew[f(xt,w)]− µ̃t−1(x,w)| ≤ β1/2
t σ̃(x,w).

Hence, we have

|f(x,w)− Ew[f(xt,w)]− µ̃t−1(x,w)| ≤ β1/2
t σ̃t−1(x,w)

⇒ |µ̃t−1(x,w)| ≤ |f(x,w)− Ew[f(xt,w)]|+ β
1/2
t σ̃t−1(x,w)

⇒ |µ̃t−1(x,w)| ≤ B̃ + β
1/2
t σ̃t−1(x,w).

Thus, the following inequality holds:

max
{
l̃2t (xt,w), ũ2

t (xt,w)
}
−min

{
l̃2t (xt,w), ũ2

t (xt,w)
}

≤ 4β
1/2
t σ̃t−1(xt,w)

{
B̃ + β

1/2
t σ̃t−1(xt,w)

}
= 4B̃β

1/2
t σ̃t−1(xt,w) + 4βtσ̃

2
t−1(xt,w). (15)

Moreover, STR0,t(xt,w) can be bounded as

STR0,t(xt,w) ≤ ũt(xt,w)− l̃t(xt,w)

2

= β
1/2
t σ̃t−1(xt,w). (16)

Hence, from (14), (15) and (16), we obtain

u
(sq)
t (xt,w)− l(sq)

t (xt,w) ≤ 4B̃β
1/2
t σ̃t−1(xt,w) + 5βtσ̃

2
t−1(xt,w)

and ∫
Ω

{
u

(sq)
t (xt,w)− l(sq)

t (xt,w)
}
p(w)dw

≤ 4B̃β
1/2
t

∫
Ω

σ̃t−1(xt,w)p(w)dw + 5βt

∫
Ω

σ̃2
t−1(xt,w)p(w)dw.

In addition, from the definition of σ̃t−1(xt,w), the following holds:∫
Ω

σ̃t−1(xt,w)p(w)dw = Ew[σt−1(xt,w)] +

∫
Ω

σt−1(xt,w)p(w)dw

= 2

∫
Ω

σt−1(xt,w)p(w)dw,∫
Ω

σ̃2
t−1(xt,w)p(w)dw =

∫
Ω

σ2
t−1(xt,w)p(w)dw + 2Ew[σt−1(xt,w)]

∫
Ω

σt−1(xt,w)p(w)dw + {Ew[σt−1(xt,w)]}2

=

∫
Ω

σ2
t−1(xt,w)p(w)dw + 3

{∫
Ω

σt−1(xt,w)p(w)dw

}2

≤ 4

∫
Ω

σ2
t−1(xt,w)p(w)dw.

Here, the last inequality is obtained by using Jensen’s inequality and convexity of g(x) = x2. Therefore, we have∫
Ω

{
u

(sq)
t (xt,w)− l(sq)

t (xt,w)
}
p(w)dw

≤ 8B̃β
1/2
t

∫
Ω

σt−1(xt,w)p(w)dw + 20βt

∫
Ω

σ2
t−1(xt,w)p(w)dw. (17)

Thus, by using (17) and Schwartz’s inequality for (13), we get

T∑
t=1

{
u

(F2)
t (xt)− l(F2)

t (xt)
}

≤

√√√√8TB̃β
1/2
T

T∑
t=1

∫
Ω

σt−1(xt,w)p(w)dw + 20TβT

T∑
t=1

∫
Ω

σ2
t−1(xt,w)p(w)dw. (18)

Therefore, from (11), (12) and (18), we have the desired inequality. �

Next, in order to evaluate
∑T
t=1

∫
Ω
σt−1(xt,w)dw and

∑T
t=1

∫
Ω
σ2
t−1(xt,w)dw in the right hand side of the

inequality of Lemma A.1, we introduce the following lemma given by Kirschner and Krause (2018):

Lemma A.2. Let St be any non-negative stochastic process adapted to a filtration {Ft}, and define mt = E[St |
Ft−1]. Assume that St ≤ K for K ≥ 1. Then, for any T ≥ 1, the following holds with probability at least 1− δ:

T∑
t=1

mt ≤ 2
T∑
t=1

St + 8K ln
6K

δ
.

Furthermore, from the assumption about the kernel function, we get k((xt,w), (xt,w)) ≤ 1 and σt−1(xt,w) ≤
k((xt,w), (xt,w)) ≤ 1. Hence, from Lemma A.2, with probability at least 1− δ/3, it holds that

T∑
t=1

∫
Ω

σt−1(xt,w)p(w)dw ≤ 2

T∑
t=1

σt−1(xt,wt) + 8 ln
18

δ
. (19)

Similarly, the following inequality holds with probability at least 1− δ/3:

T∑
t=1

∫
Ω

σ2
t−1(xt,w)p(w)dw ≤ 2

T∑
t=1

σ2
t−1(xt,wt) + 8 ln

18

δ
. (20)

In addition, we introduce the following lemma given by Srinivas et al. (2010) about the maximum information
gain γT :

Lemma A.3. Fix T ≥ 1. Then, the following inequality holds:

T∑
t=1

σ2
t−1(xt,wt) ≤

2

ln(1 + σ−2)
γT . (21)

Moreover, from Schwarz’s inequality and Lemma A.3, we get the following inequality:

T∑
t=1

σt−1(xt,wt) ≤

√
2T

ln(1 + σ−2)
γT . (22)

Thus, from (19), (20), (21) and (22) we obtain the following corollary:

Corollary A.1. Assume that (10), (19) and (20) hold. Then, for any T ≥ 1, it holds that

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ αβ1/2

T

{√
2TC1γT + C2

}
+ (1− α)

√
2TB̃β

1/2
T

{√
8TC1γT + 2C2

}
+ 5TβT {C1γT + 2C2},

where C1 = 16
ln(1+σ−2) and C2 = 16 ln 18

δ .

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

Proof. From Lemma A.1, (19) and (20), it holds that

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ 4αβ

1/2
T

{
T∑
t=1

σt−1(xt,wt) + 4 ln
18

δ

}

+ (1− α)

√√√√16TB̃β
1/2
T

{
T∑
t=1

σt−1(xt,wt) + 4 ln
18

δ

}
+ 40TβT

{
T∑
t=1

σ2
t−1(xt,wt) + 4 ln

18

δ

}
. (23)

Therefore, by combining (21), (22) and (23), we get the desired inequality. �

Finally, we prove Theorem 4.1. Let T ≥ 1, and define T̂ = argmaxt=1,...,T l
(G)
t (xt). Assume that (10) holds.

Then, for any x ∈ X , it holds that G(x) ∈ [l
(G)
t (x), u

(G)
t (x)]. Thus, for any t′ = 1, . . . , T , we get

G(x∗)−G(x̂T) ≤ u(G)
t′ (xt′)− l(G)

T̂
(x̂T)

= u
(G)
t′ (xt′)− max

t=1,...,T
l
(G)
t (x̂t)

≤ u(G)
t′ (xt′)− l(G)

t′ (xt′).

This implies that

G(x∗)−G(x̂T) ≤ 1

T

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
. (24)

Here, note that with probability at least 1− δ, (10), (19) and (20) hold. Therefore, by combining Corollary A.1,
the following holds with probability at least 1− δ:

G(x∗)−G(x̂T) ≤ αT−1β
1/2
T

(√
2TC1γT + C2

)
+ (1− α)T−1

√
2TB̃β

1/2
T

(√
8TC1γT + 2C2

)
+ 5TβT (C1γT + 2C2).

Hence, if T satisfies RT /T ≤ ε, with probability at least 1− δ, it holds that G(x∗)−G(x̂T) ≤ ε. Therefore, x̂T
is the ε-accurate solution.

A.3 Proof of Theorem 4.2

In this subsection, we prove Theorem 4.2. First, we show several lemmas.

Lemma A.4. For any t ≥ 1, Π̂t has at least one element (i.e., Π̂t 6= ∅).

Proof. Let t ≥ 1. We define x̃t and x†t as

x̃t = arg max
x∈X

l
(F2)
t (x),

x†t = arg max
x∈X ;l

(F2)
t (x)=l

(F2)
t (x̃t)

l
(F1)
t (x).

Assume that E
(pes)

t,x†t
= ∅. Then, it holds that

∀x′ ∈ ∅ = E
(pes)

t,x†t
, F

(pes)
t (x†t) � F

(pes)
t (x′).

This implies that x†t ∈ Π̂t.

On the other hand, if E
(pes)

t,x†t
6= ∅, then the following holds for any x′ ∈ E(pes)

t,x†t
:

l
(F2)
t (x†t) = l

(F2)
t (x̃t) ≥ l(F2)

t (x′).

Here, if l
(F2)
t (x†t) > l

(F2)
t (x′), it holds that F

(pes)
t (x†t) � F

(pes)
t (x′). Similarly, if l

(F2)
t (x†t) = l

(F2)
t (x′), it holds

that

l
(F1)
t (x†t) ≥ l

(F1)
t (x′).

Noting that F
(pes)
t (x†t) 6= F

(pes)
t (x′) and l

(F2)
t (x†t) = l

(F2)
t (x′), we have l

(F1)
t (x†t) > l

(F1)
t (x′). Thus, we have

F
(pes)
t (x†t) � F

(pes)
t (x′). Form the definition of Π̂t, we get x†t ∈ Π̂t. �

Lemma A.5. Let t ≥ 1, and assume that Mt 6= ∅. Also let x(1) be an element of Mt. Then, there exists an
element x′ ∈ Π̂t such that

F
(pes)
t (x(1)) � F (pes)

t (x′).

Proof. Let t ≥ 1, Mt 6= ∅ and x(1) ∈Mt. Assume that the following holds:

F
(pes)
t (x(1)) � F (pes)

t (x′), ∀x′ ∈ Π̂t. (25)

From the definition of Mt, we have x(1) /∈ Π̂t. Here, since x(1) /∈ Π̂t, there exists x(2) ∈ E(pes)

t,x(1) such that

F
(pes)
t (x(1)) � F (pes)

t (x(2)).

Therefore, there exists x(3) ∈ E(pes)

t,x(2) such that

F
(pes)
t (x(2)) � F (pes)

t (x(3)).

Furthermore, by combining

F
(pes)
t (x(1)) � F (pes)

t (x(2)), F
(pes)
t (x(2)) � F (pes)

t (x(3))

we get F
(pes)
t (x(1)) � F (pes)

t (x(3)). Thus, from (25) we obtain x(3) /∈ Π̂t. By repeating the same argument, we
have x(1), . . . ,x(|X |), where x(k) /∈ Π̂t, k = 1, . . . , |X |. Next, we show that x(i) 6= x(j) for any i and j with i 6= j.

In fact, if there exist i and j with i < j such that x(i) = x(j), we get F
(pes)
t (x(i)) = F

(pes)
t (x(j)). Here, from

i ≤ j − 1, noting that the definition of x(i) and x(j−1) we get

F
(pes)
t (x(j)) = F

(pes)
t (x(i)) ≤ F (pes)

t (x(j−1)).

Similarly, from the definition of x(j−1) and x(j), we obtain

F
(pes)
t (x(j−1)) ≤ F (pes)

t (x(j)).

Thus, we get F
(pes)
t (x(j−1)) = F

(pes)
t (x(j)). However, it contradicts x(j) ∈ E

(pes)

t,x(j−1) . Hence, it holds that

x(i) 6= x(j) for any i and j with i 6= j. Therefore, the set {x(1), . . . ,x(|X |)} is equal to X . Recall that x(k) /∈ Π̂t

for any k = 1, . . . , |X |. By combining this and {x(1), . . . ,x(|X |)} = X , we have Π̂t = ∅. However, it contradicts
Lemma A.4. Hence, the assumption (25) is incorrect. �

Lemma A.6. Let x be an element of X , and let ε = (ε1, ε2) be a positive vector. Assume that at least one of
the following inequalities holds for any x′ ∈ X :

F1(x) + ε1 ≥ F1(x′), F2(x) + ε2 ≥ F2(x′).

Then, it holds that F (x) ∈ Zε.

Proof. In order to prove Lemma A.6, we consider the following two cases:

(1) For any x,x′ ∈ Π, F (x) = F (x′).

(2) There exist x,x′ ∈ Π such that F (x) 6= F (x′).

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

First, we consider (1). We define x(1) and x(2) as

x̃ = arg max
x∈X

F1(x), x(1) = arg max
x;F1(x)=F1(x̃)

F2(x),

x† = arg max
x∈X

F2(x), x(2) = arg max
x;F2(x)=F2(x†)

F1(x).

From the definition of x(1) and x(2), it holds that x(1),x(2) ∈ Π. Thus, from (1), we get F (x(1)) = F (x(2)).
Hence, the following holds for any x′ ∈ X :

F1(x′) ≤ F1(x(1)), F2(x′) ≤ F2(x(2)) = F2(x(1)).

Therefore, we get F (x′) � F (x(1)). Note that F (x(1)) ∈ Z. Here, let x ∈ X . Then, from the lemma’s
assumption, at least one of the following inequalities holds:

F1(x) + ε1 ≥ F1(x(1)), F2(x) + ε2 ≥ F2(x(1)).

If F1(x) + ε1 ≥ F1(x(1)), we set a = (F1(x(1)), F2(x))>. Noting that F2(x′) ≤ F2(x(1)) for any x′ ∈ X , we have
a � F (x(1)). This implies that a ∈ Z. Thus, the following holds:

a = (F1(x(1)), F2(x))> � (F1(x) + ε1, F2(x) + ε2)> = F (x) + ε.

Furthermore, since F (x) � F (x(1)) and F (x(1)) ∈ Z, we obtain F (x) ∈ Zε. Similarly, if F2(x) + ε2 ≥ F2(x(1)),
we set b = (F1(x), F2(x(1)))>. Also in this case, by using the same argument, we get b ∈ Z and

b � F (x) + ε.

By combining this and F (x) � F (x(1)) (and F (x(1)) ∈ Z), we obtain F (x) ∈ Zε.

Next, we consider (2). From (2), there exist x(1), . . . ,x(l) such that

F (Π) = {F (x) | x ∈ Π} = {F (x(i)) | i = 1, . . . , l}, F (x(i)) 6= F (x(j)), i 6= j.

Here, without loss of generality, we may assume the following:

F1(x(1)) < · · · < F1(x(l)), F2(x(1)) > · · · > F2(x(l)).

Let x be an element of X . Assume that there exists j such that

F1(x) + ε1 ≥ F1(x(j)), F2(x) + ε2 ≥ F2(x(j+1)).

Note that (F1(x(j)), F2(x(j+1))> ∈ Z. In addition, there exists i ∈ {1, . . . , l} such that F (x) � F (x(i)) ∈ Z.
Therefore, F (x) ∈ Zε.

Similarly, assume that at least one of the following inequalities holds for any j:

F1(x) + ε1 < F1(x(j)), F2(x) + ε2 < F2(x(j+1)). (26)

Here, if F1(x) + ε1 < F1(x(1)), from lemma’s assumption it holds that F2(x) + ε2 ≥ F2(x(1)). Moreover, we
define c = (F1(x), F2(x(1)))> ∈ Z. Then, the following holds:

F (x) + ε = (F1(x) + ε1, F2(x) + ε2)> � (F1(x), F2(x(1)))> = c ∈ Z.

Furthermore, from the definition of x(1), it holds that F2(x(1)) ≥ F2(x). Thus, noting that F1(x)+ε1 < F1(x(1)),
we get F1(x) ≤ F1(x(1)). By combining these, we have F (x) � F (x(1)) ∈ Z. This implies that F (x) ∈ Zε.
On the other hand, if F1(x) + ε1 ≥ F1(x(1)), from (26) we get F2(x) + ε2 < F2(x(2)). Therefore, from lemma’s
assumption, we obtain F1(x) + ε1 ≥ F1(x(2)). By using (26) again, we have F2(x) + ε2 < F2(x(3)). Hence, by
repeating these procedures, we get F1(x) + ε1 ≥ F1(x(l)) and F2(x) + ε2 < F2(x(l)). Finally, noting that

F (x) � (F1(x(l)), F2(x) + ε2)> � (F1(x(l)), F2(x(l)))> = F (x(l)) ∈ Z,
F (x) + ε � (F1(x(l)), F2(x))> ∈ Z,

we get F (x) ∈ Zε. �

By using these lemmas, we prove Theorem 4.2.

Proof. First, we prove that the algorithm terminates after at most t′ iterations where t′ is the positive integer

satisfying maxx∈Mt′∪Π̂t′
λt′(x) = λt′(xt′) ≤ min {ε1, ε2}. From the definition of λt, noting that u

(F1)
t (x) −

l
(F1)
t (x) ≤ λt(x) and u

(F2)
t (x)− l(F2)

t (x) ≤ λt(x), we have

max
x∈Mt′∪Π̂t′

{
u

(F1)
t′ (x)− l(F1)

t′ (x)
}
≤ ε1

and
max

x∈Mt′∪Π̂t′

{
u

(F2)
t′ (x)− l(F2)

t′ (x)
}
≤ ε2.

Then, for any x′ ∈ Π̂t, it holds that

u
(F1)
t′ (x′) ≤ l(F1)

t′ (x′) + ε1 (27)

and
u

(F2)
t′ (x′) ≤ l(F2)

t′ (x′) + ε2. (28)

Here, let x be an element of Π̂t′ . Then, from the definition of Π̂t, for any x′ ∈ Π̂t′ , at least one of the following
inequalities holds:

l
(F1)
t′ (x′) ≤ l(F1)

t′ (x), l
(F2)
t′ (x′) ≤ l(F2)

t′ (x).

Thus, from (27) and (28), for any x′ ∈ Π̂t′ , it holds that F
(pes)
t (x) + ε ⊀ F (opt)

t′ (x′). This implies that Ut′ = ∅.
Similarly, if Mt′ 6= ∅, there exists x ∈ Mt′ such that F

(opt)
t′ (x) �ε F (pes)

t′ (x′) for any x′ ∈ Π̂t. On the other

hand, from Lemma A.5, there exists x′′ ∈ Π̂t′ such that F
(pes)
t′ (x) � F (pes)

t′ (x′′). Moreover, from (27) and (28),

x′′ satisfies F
(opt)
t′ (x) �ε F (pes)

t′ (x′′). However, it contradicts the definition of Mt. Hence, we get Mt′ = ∅.

Hereafter, we assume that (10), (19) and (20) hold. From the definition of λt, we obtain

λt(x) ≤
{
u

(F1)
t (x)− l(F1)

t (x)
}

+
{
u

(F2)
t (x)− l(F2)

t (x)
}
.

This implies that

T∑
t=1

λt(xt) ≤
T∑
t=1

{
u

(F1)
t (xt)− l(F1)

t (xt)
}

+

T∑
t=1

{
u

(F2)
t (xt)− l(F2)

t (xt)
}
.

Therefore, from (12), (18), (19) and (20), we get

T∑
t=1

λt(xt) ≤ 4β
1/2
T

{
T∑
t=1

σt−1(xt,wt) + 4 ln
18

δ

}

+

√√√√16TB̃β
1/2
T

{
T∑
t=1

σt−1(xt,wt) + 4 ln
18

δ

}
+ 40TβT

{
T∑
t=1

σ2
t−1(xt,wt) + 4 ln

18

δ

}
.

Hence, from (21) and (22), it holds that

1

T

T∑
t=1

λt(xt) ≤ T−1β
1/2
T

{√
2TC1γT + C2

}
+ T−1

√
2TB̃β

1/2
T

{√
8TC1γT + 2C2

}
+ 5TβT {C1γT + 2C2}. (29)

Here, let T be a positive integer such that the right hand side in (29) is less than or equal to min{ε1, ε2}. Then,
there exists a positive integer t′ such that t′ ≤ T and λt′(xt′) ≤ min{ε1, ε2}. Therefore, we have Mt′ = ∅ and
Ut′ = ∅. This means that the algorithm terminates after at most t′ iterations.

Next, under (10) we show that Π̂t is the ε-accurate Pareto set when Mt = ∅ and Ut = ∅. First, we prove

F (Π̂t) ⊂ Zε. Let x be an element of Π̂t. For any x′ ∈ Π̂t \ {x}, it holds that F
(pes)
t (x) + ε ⊀ F

(opt)
t (x′)

because Ut = ∅. Furthermore, noting that Mt = ∅, for any x′ ∈ X \ Π̂t, there exists x′′ ∈ Π̂t such that

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

F
(opt)
t (x′) �ε F (pes)

t (x′′). In addition, since x ∈ Π̂t, from the definition of Π̂t, at least one of the following
inequalities holds:

l
(F1)
t (x′′) ≤ l(F1)

t (x), l
(F2)
t (x′′) ≤ l(F2)

t (x).

By combining this and F
(opt)
t (x′) �ε F (pes)

t (x′′), we get F
(pes)
t (x) + ε ⊀ F (opt)

t (x′). Therefore, under (10) at
least one of the following inequalities holds for any x′ ∈ X \ {x}:

F1(x) + ε1 ≥ F1(x′), F2(x) + ε2 ≥ F2(x′).

Moreover, it is clear that F1(x) + ε1 ≥ F1(x). Hence, from Lemma A.6, we get F (Π̂t) ⊂ Zε.

Finally, we show that for any x′ ∈ Π, there exists x ∈ Π̂t such that x′ �ε x. When x′ ∈ Π̂t, the existence of x
is obvious because x′ �ε x′. On the other hand, when x′ ∈ X \ Π̂t, since Mt = ∅ there exists x ∈ Π̂t such that

F
(opt)
t (x′) �ε F (pes)

t (x). Thus, under (10), this implies that x′ �ε x. Hence, for any x′ ∈ Π, there exists x ∈ Π̂t

such that x′ �ε x. From this and F (Π̂t) ⊂ Zε, we have that Π̂t is the ε-accurate Pareto set. Here, note that
(10), (19) and (20) hold with probability at least 1− δ. Therefore, we get the desired result. �

A.4 Proof of Theorem 4.3

Proof. Assume that (10), (19) and (20) hold. Then, by using the same argument as in the proof of Theorem 4.2,
we get

1

T

T∑
t=1

λt(xt) ≤ T−1β
1/2
T

{√
2TC1γT + C2

}
+ T−1

√
2TB̃β

1/2
T

{√
8TC1γT + 2C2

}
+ 5TβT {C1γT + 2C2}. (30)

Here, from the definition of T , the right-hand side of (30) is less than or equal to min{ε1, ε2}. Hence, there exists
a positive integer t′ ≤ T such that maxx∈Mt′λt′(x) = λt′(xt′) ≤ min{ε1, ε2}. This implies that the algorithm
terminates after at most T iterations.

Next, we prove claim 2 of the theorem. Assume that x∗ exists. Here, we consider the two cases x∗ ∈M (obj)
t′ and

x∗ /∈M (obj)
t′ . For case x∗ ∈M (obj)

t′ , since (10) holds, the following inequality holds:

h− ε2 ≤ h ≤ F2(x∗) ≤ u(F2)
t′ (x∗).

This means that x∗ ∈ M (cons)
t′ . Therefore, we have x∗ ∈ Mt′ . Furthermore, noting that u

(F1)
t (x) − l(F1)

t (x) ≤
λt(x) and u

(F2)
t (x)− l(F2)

t (x) ≤ λt(x), it holds that

max
x∈Mt′

{
u

(F1)
t′ (x)− l(F1)

t′ (x)
}
≤ ε1, (31)

max
x∈Mt′

{
u

(F2)
t′ (x)− l(F2)

t′ (x)
}
≤ ε2. (32)

Here, if l
(F2)
t′ (x∗) < h − ε2, then from (32), we get u

(F2)
t′ (x∗) < h. Thus, from (10), we obtain F2(x∗) < h.

However, this contradicts the definition of x∗, implying that l
(F2)
t′ (x∗) ≥ h − ε2 and x∗ ∈ St′ 6= ∅. Moreover,

from (31) the following holds:

max
x∈Mt′

{
u

(F1)
t′ (x)− l(F1)

t′ (x)
}
≤ ε1

⇒u(F1)
t′ (x∗)− l(F1)

t′ (x∗) ≤ ε1
⇒u(F1)

t′ (x∗)− max
x∈St′

l
(F1)
t′ (x) ≤ ε1

⇒u(F1)
t′ (x∗)− l(F1)

t′ (x̂t′) ≤ ε1
⇒l(F1)

t′ (x̂t′) ≥ u(F1)
t′ (x∗)− ε1.

In addition, from the definition of St′ , we have

lt′(x̂t′) ≥ h− ε2.

On the other hand, if x∗ /∈M (obj)
t′ , then M

(obj)
t′ 6= X . Thus, from the definition of M

(obj)
t′ , it holds that St′ 6= ∅.

Therefore, we get

lt′(x̂t′) = max
x∈St′

lt′(x) ≥ h− ε2.

Furthermore, since x∗ /∈M (obj)
t′ , it holds that

u
(F1)
t′ (x∗)− ε1 ≤ u(F1)

t′ (x∗) < l
(F1)
t′ (x̂t′)− ε1 ≤ l(F1)

t′ (x̂t′).

Therefore, if x∗ exists, then we have St′ 6= ∅ and

l
(F1)
t′ (x̂t′) ≥ u(F1)

t′ (x∗)− ε1, (33)

lt′(x̂t′) ≥ h− ε2. (34)

Note that (33) and (34) imply that x̂t′ is an ε-accurate solution when (10) holds. Finally, since (10), (19) and
(20) hold with probability at least 1− δ, we have Theorem 4.3. �

B Details of Section 3.3

B.1 Noisy Input Setting

In this subsection, we consider the setting where the input x contains a noise ξ ∈ ∆. Let X ⊂ Rd be an input
space for optimization. In addition, assume that X is a finite set. Furthermore, let ∆ ⊂ Rd be a compact
and convex set, and let ξ be a random noise satisfying ξ ∈ ∆. Moreover, let f be a black-box function on
D := {x+ ξ | x ∈ X , ξ ∈ ∆}, and let k : D ×D → R be a positive-definite kernel with f ∈ Hk and ‖f‖Hk

≤ B.

For each step t, we select an observation point xt ∈ X , and the observed value is obtained as yt = f(xt+ξt)+ηt.
Here, ηt is the independent normal distribution ηt ∼ N (0, σ2), and ξt is the observed value of ξ.

In this setting, the expected value and variance of f(x) with respect to ξ are given by

Eξ[f(x+ ξ)] =

∫
∆

f(x+ ξ)p(ξ)dξ, (35)

Vξ[f(x+ ξ)] =

∫
∆

{f(x+ ξ)− Eξ[f(x+ ξ)]}2p(ξ)dξ, (36)

where p(ξ) is a known probability density function of ξ. Similarly as in (3), using (35) and (36) we define the
optimization objective functions F1 and F2. In addition, let µt(x), σ2

t (x) and Qt(x) := [lt(x), ut(x)] denote the
posterior mean, posterior variance and confidence bound of f(x) at the step t, respectively.

Confidence Bound Confidence bounds of objective functions F1 and F2 defined by using (35) and (36) can
also be constructed by using the same procedure as in §3.2. First, assume that f(x̃) ∈ Qt(x̃) for any x̃ ∈ D.
Then, the following holds for any x ∈ X :∫

∆

lt(x+ ξ)p(ξ)dξ ≤
∫

∆

f(x+ ξ)p(ξ)dξ ≤
∫

∆

ut(x+ ξ)p(ξ)dξ.

Therefore, the confidence bound Q
(F1)
t (x) of F1(x) can be constructed as Q

(F1)
t (x) := [l

(F1)
t (x), u

(F1)
t (x)] using

l
(F1)
t (x) =

∫
∆

lt(x+ ξ)p(ξ)dξ, u
(F1)
t (x) =

∫
∆

ut(x+ ξ)p(ξ)dξ.

Similarly, the confidence bound Q
(F2)
t (x) of F2(x) can be expressed as Q

(F2)
t (x) := [l

(F2)
t (x), u

(F2)
t (x)] using

l
(F2)
t (x) = −

√∫
∆

ũ
(sq)
t (x+ ξ)p(ξ)dξ, l

(F2)
t (x) = −

√∫
∆

l̃
(sq)
t (x+ ξ)p(ξ)dξ,

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

where l̃
(sq)
t (x+ ξ) and ũ

(sq)
t (x+ ξ) are given by

l̃t(x+ ξ) = lt(x+ ξ)− Eξ[ut(x+ ξ)],

ũt(x+ ξ) = ut(x+ ξ)− Eξ[lt(x+ ξ)],

l̃
(sq)
t (x+ ξ) =

{
0 if l̃t(x+ ξ) ≤ 0 ≤ ũt(x+ ξ),

min
{
l̃2t (x+ ξ), ũ2

t (x+ ξ)
}

otherwise
,

ũ
(sq)
t (x+ ξ) = max

{
l̃2t (x+ ξ), ũ2

t (x+ ξ)
}
.

Using Q
(F1)
t and Q

(F2)
t above, we can construct the proposed algorithm in the same procedure.

B.2 Simulator Based Experiment

In this subsection, we consider the setting that wt can be selected in the optimization phase at each step.
Furthermore, we show theoretical guarantees in this setting. Hereafter, we only discuss the multi-task scenario,
but the same argument can be made for multi-objective and constraint optimization scenarios by selecting wt
and ξt in the same procedure.

In our proposed algorithm, (xt,wt) at the step t is selected by

xt = arg max
x∈X

u
(G)
t (x),

wt = arg max
w∈Ω

σt−1(xt,w).

In this algorithm, the following theorem holds:

Theorem B.1. Let k be a positive-definite kernel, and let f ∈ Hk with ‖f‖Hk
≤ B. Also let δ ∈ (0, 1), ε > 0,

and define βt =
(√

2(γt−1 + ln(1/δ)) +B
)2

. Moreover, for any t, define x̂t = argmaxxt′∈{x1,...,xt}l
(G)
t′ (xt′).

Then, when the proposed algorithm in the simulator based setting is performed, x̂T is the ε-accurate solution with
probability at least 1− δ, where T is the smallest positive integer satisfying

αT−1β
1/2
T

√
TC1γT + (1− α)T−1

√
4TB̃β

1/2
T

√
TC1γT + 5TβTC1γT ≤ ε.

Here, B̃ and C1 are given by B̃ = max(x,w)∈(X×Ω) {f(x,w)− Ew[f(x,w)]} and C1 = 8
ln(1+σ−2) .

Proof. Assume that (10) holds. Then, from Lemma A.1 we have

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ 2αβ

1/2
T

T∑
t=1

∫
Ω

σt−1(xt,w)p(w)dw

+ (1− α)

√√√√8TB̃β
1/2
T

T∑
t=1

∫
Ω

σt−1(xt,w)p(w)dw + 20TβT

T∑
t=1

∫
Ω

σ2
t−1(xt,w)p(w)dw.

In addition, from the definition of wt, it holds that

T∑
t=1

∫
Ω

σt−1(xt,w)p(w)dw ≤
T∑
t=1

σt−1(xt,wt),

T∑
t=1

∫
Ω

σ2
t−1(xt,w)p(w)dw ≤

T∑
t=1

σ2
t−1(xt,wt).

Hence, we get

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ 2αβ

1/2
T

T∑
t=1

σt−1(xt,wt)+(1−α)

√√√√8TB̃β
1/2
T

T∑
t=1

σt−1(xt,wt) + 20TβT

T∑
t=1

σ2
t−1(xt,wt).

Furthermore, from (21) and (22), we obtain

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ αβ1/2

T

√
C1TγT + (1− α)

√
4TB̃β

1/2
T

√
C1TγT + 5TβTC1γT .

Finally, by using the same argument as in the proof of Theorem 4.1, the following inequality holds:

G(x∗)−G(x̂T) ≤
T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
/T.

Therefore, noting that the definition of T , we get the desired result. �

Noisy Input Extension Here, we extend the setting defined in subsection 3.3.1to the simulator based setting.
Since there is the noise ξ ∈ ∆ instead of w, we consider the observation point xt at the step t as xt := x̃t + ξt,
where (x̃t, ξt) is given by

x̃t = arg max
x∈X

u
(G)
t (x),

ξt = arg max
ξ∈∆

σt−1(x̃t + ξ).

Then, similar theorems as in Theorem B.1 hold. However, the practical performance of this algorithm is not
much different from that of Uncertainty Sampling, which was used as the base method in numerical experiments.
For this reason, in the simulator based noisy input setting, we propose a method for selecting (x̃t, ξt) as follows:

x̃t = arg max
x∈X

u
(G)
t (x),

ξt = arg max
ξ∈∆

σt−1(x̃t + ξ)p(ξ).

In order to derive similar convergence results as in Theorem B.1, we assume that the probability density function
p(ξ) of ξ is a bounded function on ∆, i.e., supξ∈D p(ξ) <∞.

Theorem B.2. Let δ ∈ (0, 1), ε > 0, and set βt =
(√

2(γt−1 + ln(1/δ)) +B
)2

. For any t, define x̂t =

argmaxxt′∈{x1,...,xt}l
(G)
t′ (xt′). Moreover, assume that supξ∈∆p(ξ) ≤ R <∞. Then, when the proposed algorithm

in the simulator based noisy input setting is performed, x̂T is the ε-accurate solution with probability at least
1− δ, where T is the smallest positive integer satisfying

αT−1β
1/2
T R

√
TC1γT + (1− α)T−1

√
4TB̃Rβ

1/2
T

√
TC1γT + 5TRβTC1γT ≤ ε.

Here, B̃ and C1 are given by B̃ = max(x,ξ)∈(X×∆) {f(x+ ξ)− Eξ[f(x+ ξ)]} and C1 = 8
ln(1+σ−2) .

Proof. Similarly as in Lemma A.1, with probability at least 1− δ, it holds that

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ 2αβ

1/2
T

T∑
t=1

∫
∆

σt−1(xt + ξ)p(ξ)dξ

+ (1− α)

√√√√8TB̃β
1/2
T

T∑
t=1

∫
∆

σt−1(xt + ξ)p(w)dξ + 20TβT

T∑
t=1

∫
∆

σ2
t−1(xt + ξ)p(ξ)dξ.

Moreover, from the definition of ξt, we have

T∑
t=1

∫
∆

σt−1(xt + ξ)p(ξ)dξ ≤
T∑
t=1

σt−1(xt + ξt)p(ξt) ≤ R
T∑
t=1

σt−1(xt + ξt),

T∑
t=1

∫
Ω

σ2
t−1(xt + ξ)p(ξ)dξ ≤

T∑
t=1

σ2
t−1(xt + ξt)p(ξt) ≤ R

T∑
t=1

σ2
t−1(xt + ξt).

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

Thus, we get

T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ 2αβ

1/2
T R

T∑
t=1

σt−1(xt+ξt)+(1−α)

√√√√8TB̃β
1/2
T R

T∑
t=1

σt−1(xt + ξt) + 20TβTR

T∑
t=1

σ2
t−1(xt + ξt),

and
T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
≤ αβ1/2

T R
√
C1TγT + (1− α)

√
4TB̃Rβ

1/2
T

√
C1TγT + 5TβTRC1γT .

By using the same argument as in the proof of 4.1, we obtain the following inequality:

G(x∗)−G(x̂T) ≤
T∑
t=1

{
u

(G)
t (xt)− l(G)

t (xt)
}
/T.

Therefore, we get the desired result. �

C Extension to Continuous Set

In this section, we consider the setting where X is a continuous set. First, in MT-MVA-BO, xt =

argmaxx∈Xu
(G)
t (x) can be calculated by using a continuous optimization solver. However, in MO-MVA-BO,

it is difficult to calculate the estimated Pareto set Π̂t and set of latent optimal solutions Mt. In this paper, based
on Srinivas et al. (2010) we extend the proposed algorithm by using a discretization set X̃ of X .

Hereafter, let X = [0, 1]d1 . Furthermore, assume that f is an L-Lipschitz continuous function, i.e., there exists
L > 0 such that

|f(x,w)− f(x′,w)| ≤ L‖x− x′‖1,

for any x,x′ ∈ X . Note that Lipschitz continuity holds if standard kernels are used (Sui et al., 2015, 2018).

From Lipschitz continuity of f , the following lemmas about F1 and F2 hold:

Lemma C.1. Let f be an L-Lipschitz continuous function. Then, it holds that

|F1(x)− F1(x′)| ≤ L‖x− x′‖1, ∀x,x′ ∈ X ,

where F1 is given by (3).

Proof. From the definition of F1 and Lipschitz continuity of f , the following inequality holds:

|F1(x)− F1(x′)| =
∣∣∣∣∫

Ω

{f(x,w)− f(x′,w)} p(w)dw

∣∣∣∣
≤
∫

Ω

|f(x,w)− f(x′,w)|p(w)dw

≤ L‖x− x′‖1.

�

Lemma C.2. Let f be an L-Lipschitz continuous function, B̃ = max(x,w)∈(X×Ω) |f(x,w)− Ew[f(x,w)]|, and
define F2 as in (3). Then, the following inequality holds for any x,x′ ∈ X :

|F2(x)− F2(x′)| ≤
√

4B̃L‖x− x′‖1.

Proof. From Lipschitz continuity of f , for any x,x′ ∈ X , w ∈ Ω, it holds that∣∣∣{f(x,w)− Ew[f(x,w)]}2 − {f(x′,w)− Ew[f(x′,w)]}2
∣∣∣

= |{f(x,w)− Ew[f(x,w)]} − {f(x′,w)− Ew[f(x′,w)]}| × |{f(x,w)− Ew[f(x,w)]}+ {f(x′,w)− Ew[f(x′,w)]}|
≤ (|f(x,w)− f(x′,w)|+ |Ew[f(x,w)]− Ew[f(x′,w)]|)× (|f(x,w)− Ew[f(x,w)]|+ |f(x′,w)− Ew[f(x′,w)]|)
≤2L‖x− x′‖1 × 2B̃

=4B̃L‖x− x′‖1.

Here, if F2(x) ≥ F2(x′), then

|F2(x)− F2(x′)|
=F2(x)− F2(x′)

=

√∫
Ω

{f(x′,w)− Ew[f(x′,w)]}2 p(w)dw −

√∫
Ω

{f(x,w)− Ew[f(x,w)]}2 p(w)dw

≤

√∫
Ω

{f(x′,w)− Ew[f(x′,w)]}2 p(w)dw −
∫

Ω

{f(x,w)− Ew[f(x,w)]}2 p(w)dw

≤

√∫
Ω

∣∣∣{f(x′,w)− Ew[f(x′,w)]}2 − {f(x,w)− Ew[f(x,w)]}2
∣∣∣ p(w)dw

≤
√

4B̃L‖x− x′‖1.

On the other hand, if F2(x) < F2(x′), it holds that |F2(x) − F2(x′)| ≤
√

4B̃L‖x− x′‖1. Therefore, for any

x,x′ ∈ X , the desired inequality holds. �

Moreover, the following lemma holds:

Lemma C.3. Let Z be the Pareto front for X , and let ε = (ε1, ε2)> be a positive vector. Define

Z+ =
⋃

(y1,y2)∈Z

(−∞, y1]× (−∞, y2], Z−(ε) =
⋃

(y1,y2)∈Z

(−∞, y1 − ε1)× (−∞, y2 − ε2),

Z∗(ε) = {(y1 − ε′1, y2 − ε′2) | (y1, y2) ∈ Z, 0 ≤ ε′1 ≤ ε1, 0 ≤ ε′2 ≤ ε2}.

Then, it holds that

Z+ = Z−(ε) ∪ Z∗(ε), Z−(ε) ∩ Z∗(ε) = ∅.

Proof. First, we show Z−(ε) ∩ Z∗(ε) = ∅. Let y be an element of Z−(ε). Then, there exists (y′1, y
′
2) ∈ Z such

that

y1 < y′1 − ε1, y2 < y′2 − ε2.

Here, for any (y′′1 , y
′′
2) ∈ Z, y′′1 satisfies y′1 ≤ y′′1 or y′1 > y′′1 . If y′1 ≤ y′′1 , from y1 < y′1 − ε1 we get

y /∈ {(y′′1 − ε′1, y′′2 − ε′2) | 0 ≤ ε′1 ≤ ε1, 0 ≤ ε′2 ≤ ε2}.

On the other hand, if y′1 > y′′1 , then y′′2 satisfies y′2 ≤ y′′2 because the inequality y′2 > y′′2 implies that (y′′1 , y
′′
2) ∈

(−∞, y′1)× (−∞, y′2). However, it contradicts that (y′′1 , y
′′
2) ∈ Z. From y′2 ≤ y′′2 and y2 < y′2 − ε2, we have

y /∈ {(y′′1 − ε′1, y′′2 − ε′2) | 0 ≤ ε′1 ≤ ε1, 0 ≤ ε′2 ≤ ε2}.

Therefore, it holds that y /∈ Z∗(ε). This implies that Z−(ε) ∩ Z∗(ε) = ∅.

Next, we show Z+ = Z−(ε) ∪ Z∗(ε). It is clear that Z+ ⊃ Z−(ε) ∪ Z∗(ε). Thus, we only show that Z+ ⊂
Z−(ε) ∪ Z∗(ε). Let y be an element of Z+. If y ∈ Z−(ε), it holds that y ∈ Z−(ε) ∪ Z∗(ε). On the other hand,
if y /∈ Z−(ε), at least one of the following inequalities holds for any (y′1, y

′
2) ∈ Z:

y1 ≥ y′1 − ε1, y2 ≥ y′2 − ε2.

If there exists ε′1 ∈ [0, ε1] such that (y1 + ε′1, y2) ∈ Z, then y ∈ Z∗(ε). Next, we consider the case that
(y1 + ε′1, y2) /∈ Z for any ε′1 ∈ [0, ε1]. Let Z ′ = {a = (a1, a2) ∈ Z | y1 ≤ a1 ≤ y + ε1}. Here, assume that
y2 < a2 − ε2 for any a ∈ Z ′. Then, from continuity of Z, there exists ŷ = (ŷ1, ŷ2) ∈ Z such that y1 < ŷ1 − ε1
and y2 < ŷ2− ε2. However, it contradicts y /∈ Z−(ε). Hence, there exists an element a = (a1, a2) ∈ Z ′ such that
y2 ≥ a2 − ε2. Moreover, there exists b ≥ y2 such that (y1, b) ∈ Z. This implies that there exist ε̃1 and ε̃2 such
that 0 ≤ ε̃1 ≤ ε1, 0 ≤ ε̃2 ≤ ε2 and (y1 + ε̃1, y2 + ε̃2) ∈ Z. Therefore, it holds that y ∈ Z∗(ε). �

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

Next, we explain the method of constructing X̃ . Let X̃ be a set of grid points when each dimension of X = [0, 1]d1

is divided into τ evenly spaced segments. Also let [x] ∈ X̃ be a point closest to x ∈ X with respect to the L1-
distance. Then, it holds that

‖x− [x]‖1 ≤
d1

τ
, ∀x ∈ X . (37)

In the proposed algorithm for the continuous set setting, Algorithm 1 is performed by using X̃ instead of X .
Then, we define the estimated Pareto set Π̂t, latent Pareto set Mt and uncertain set Ut in Algorithm 1 as

Π̂t =
{
x ∈ X̃ | ∀x′ ∈ Ẽ(pes)

t,x , F
(pes)
t (x) � F (pes)

t (x′)
}
, Ẽ

(pes)
t,x = {x′ ∈ X̃ | F (pes)

t (x) 6= F
(pes)
t (x′)},

Mt =
{
x ∈ X̃ \ Π̂t | ∀x′ ∈ Π̂t, F

(opt)
t (x) �ε/2 F

(pes)
t (x′)

}
,

Ut =
{
x ∈ Π̂t | ∃x′ ∈ Π̂t \ {x},F (pes)

t (x) + ε/2 ≺ F (opt)
t (x′)

}
.

Note that ε/2, not ε is used to calculate M̃t and Ũt.

In the algorithm using X̃ , the following theorem holds:

Theorem C.1. Let B̃ = max(x,w)∈(X×Ω) |f(x,w)− Ew[f(x,w)]|, and let δ ∈ (0, 1), ε = (ε1, ε2) where ε1 > 0

and ε2 > 0. Define βt =
(√

2(γt−1 + ln(3/δ)) +B
)2

and τ = max
{

2Ld1
ε1

, 16B̃Ld1
ε22

}
. Then, the following (1) and

(2) hold with probability at least 1− δ:

(1) The algorithm terminates after at most T iterations, where T is the smallest positive integer satisfying

T−1β
1/2
T

(√
2TC1γT + C2

)
+ T−1

√
2TB̃β

1/2
T

(√
8TC1γT + 2C2

)
+ 5TβT (C1γT + 2C2) ≤ min{ε1, ε2}/2.

Here, C1 and C2 are given by C1 = 16
ln(1+σ−2) and C2 = 16 ln 18

δ .

(2) When the algorithm is terminated, the estimated Pareto set Π̂ is the ε-accurate Pareto Set.

Proof. We omit the proof of (1) because its proof is the same as in the proof of Theorem 4.2. We only prove (2).
From (37) and Lemma C.1–C.2, the following holds for any x ∈ X :

|F1(x)− F1([x])| ≤ L‖x− [x]‖1

=
ε1
2
, (38)

|F2(x)− F2([x])| ≤
√

4B̃L‖x− [x]‖1

=
ε2
2
. (39)

Assume that (10) holds. Let Z̃ be a Pareto front for X̃ . Then, for any y ∈ Z̃, it holds that

y ∈
⋃

(y′1,y
′
2)∈Z

(−∞, y′1]× (−∞, y′2], (40)

where Z is the Pareto front for X . Similarly, let

Z−(ε/2) =
⋃

(y′1,y
′
2)∈Z

(−∞, y′1 − ε1/2)× (−∞, y′2 − ε2/2).

Then, for any y′′ ∈ Z−(ε/2), there exists x ∈ X such that

y′′1 < F1(x)− ε1/2, y′′2 < F2(x)− ε2/2.

Here, from (38) and (39) we have

F1(x) ≤ F1([x]) + ε1/2, F2(x) ≤ F2([x]) + ε2/2.

Algorithm 1 Multi-objective MVA-BO (MO-MVA-BO)

Input: GP prior GP(0, k), {βt}t∈N, Non-negative vector ε = (ε1, ε2).
t← 0.
repeat

Compute Π̂t,Mt.
Compute λt(x) for any x ∈Mt ∪ Π̂t.
Choose xt = argmaxx∈Mt∪Π̂t

λt(x).
Sample wt ∼ p(w).
Observe yt ← f(xt,wt) + ηt.
Update the GP by adding ((xt,wt), yt).
t← t+ 1.
Compute Ut.

until Mt = ∅ and Ut = ∅
Output: Π̂t.

Thus, it holds that y′′1 < F1([x]) and y′′2 < F2([x]). This implies that

Z−(ε/2) ⊂ {y ∈ R | ∃x ∈ X̃ , y � F (x)} ≡ A.

Here, since Z−(ε/2) is the open set, noting that Z−(ε/2) ⊂ A we get Z−(ε/2) ⊂ int(A), where int(A) is the
interior of A. In addition, from the definition of the interior and boundary (frontier), we obtain int(A)∩∂A = ∅.
Therefore, from ∂A = Z̃ and Z−(ε/2) ⊂ int(A), it holds that Z−(ε/2) ∩ Z̃ = ∅. Hence, for any y ∈ Z̃,
y /∈ Z−(ε/2). Thus, by using this and (40), from Lemma C.3, it holds that

Z̃ ⊂ Z∗(ε/2).

Hence, for any y ∈ Z̃, there exists a ∈ Z such that

y1 = a1 − ε′1, y2 = a2 − ε′2, 0 ≤ ε′1 ≤ ε1/2, 0 ≤ ε′2 ≤ ε2/2. (41)

Furthermore, from Theorem 4.2, for any x ∈ Π̂t, there exists y† ∈ Z̃ such that

y†1 ≤ F1(x) + ε1/2, y
†
2 ≤ F2(x) + ε2/2.

By combining this and (41), we get

a1 = y†1 + ε′1 ≤ F1(x) + ε1/2 + ε′1 ≤ F1(x) + ε1,

a2 = y†2 + ε′2 ≤ F2(x) + ε2/2 + ε′2 ≤ F2(x) + ε2.

Therefore, we have F (Π̂t) ⊂ Zε.

Furthermore, let x ∈ Π. For [x] ∈ X̃ , since Π̂t is the (ε/2)-accurate Pareto set for X̃ , there exists x′ ∈ Π̂t such
that F ([x]) �ε/2 F (x′). Moreover, form (38) and (39), it holds that F (x) ≤ F ([x]) + ε/2. This implies that

F (x) � F ([x]) + ε/2 � F (x′) + ε. Therefore, for any x ∈ Π, there exits x′ ∈ Π̂t such that x �ε x′. Thus, Π̂t is
the ε-accurate Pareto set for X . �

D Algorithms and Computational Details

D.1 Pseudo-codes

We show the pseudo-codes of our proposed algorithms corresponding to multi-objective and constraint optimiza-
tion scenarios in Algorithm 1 and 2, respectively.

D.2 Computation of l
(F1)
t , u

(F1)
t , l

(F2)
t and u

(F2)
t

In the case that Ω is continuous set, l
(F1)
t , u

(F1)
t , l

(F2)
t and u

(F2)
t depend on the integral of w. However, these

integrals cannot be computed analytically except for special cases (e.g., in the case that p(w) is Normal, and

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

Algorithm 2 Constrained MVA-BO (Co-MVA-BO)

Input: GP prior GP(0, k), {βt}t∈N, Threshold h, Non-negative vector ε = (ε1, ε2).
M0 ← X , S0 ← ∅, t← 0.
Compute λ0(x) for any x ∈M0

while maxx∈Mt
λt(x) � min{ε1, ε2} do

Choose xt = argmaxx∈Mt
λt(x).

Sample wt ∼ p(w).
Observe yt ← f(xt,wt) + ηt.
Update the GP by adding ((xt,wt), yt).
t← t+ 1.
Compute St, Mt.
Compute λt(x) for any x ∈Mt

end while
if St 6= ∅ then

Output x̂t = argmaxx∈St
l
(F1)
t (x).

end if

k is Gaussian kernel). Thus, we suppose that the user approximate these integrals based on some numerical
integration scheme. The computational drawback of the numerical integration is its scalability to the dimension
of w. In Girard (2004), they computed these types of integrals via polynomial approximation of integrand

by Taylor expansion. Their method can be applied for l
(F1)
t and u

(F1)
t , but not for l

(F2)
t and u

(F2)
t due to the

non-differentiable points of integrands. We leave the efficient computation of l
(F2)
t and u

(F2)
t in the case of

high-dimensional w to future works.

D.3 Computational Complexity

Multi-task and Constraint Optimization Scenarios We consider the computational complexity of each
one loop of the proposed method in the multi-task and the constrained optimization scenarios. Hereafter,
we assume that all integrals of proposed algorithms are computed through the quadrature which leverages M

representative points. First, in order to compute l
(F1)
t (x), u

(F1)
t (x), l

(F2)
t (x) and u

(F2)
t (x) for all x ∈ X , we need

to compute the confidence interval of f at M |X | representative points. The computation of the confidence bound
at one point needs O(t2), where t represents the current number of steps. (Note that t also represents the number
of training samples of the GP.) Therefore, to compute confidence bounds of F1 and F2, O(|X |Mt2) computations
are required. Finally, we need to update the GP posterior at the end of the loop through O(t3) calculations thus
total cost of one loop becomes O(|X |Mt2 + t3).

Multi-objective Optimization Scenario In the multi-objective scenario, to compute Π̂t, we need to find

the pessimistic Pareto set which is based on F
(pes)
t . Given the set of finite 2D vectors, an algorithm to identify

its Pareto set efficiently is proposed in Kung et al. (1975) and requires O(|X | log |X |) costs. Next, |Π̂t||X \ Π̂t|
comparisons are required to compute Mt and Ut. In worst case, this can be O(|X |2) costs. However, in practice,
this becomes much smaller costs for most loops. Finally, considering the costs to compute confidence bound and
the GP posterior update, total cost of one loop becomes O(|X |2 + |X |Mt2 + t3).

In our multi-objective scenario, we can modify our MO-MVA-BO to the ε-PAL style algorithm (Zuluaga et al.,

2016), by considering the intersections of Q
(F1)
t and Q

(F2)
t through every step. This modified version of algorithm

can reduce O(|X |2+|X |Mt2+t3) to O(|X | log |X |+|X |Mt2+t3) costs. However, in practice, we found intersected
confidence bounds sometimes degenerate the algorithm performance especially when the kernel hyperparameters
are updated online. For example, we suppose that an erroneous hyperparameter is estimated in one step and a
narrower confidence bounds is constructed compared to that of true kernel. Then, the algorithm that takes the
intersection is affected by erroneously narrow confidence bound in all the subsequent steps.

Finally, MO-MVA-BO requires a large amount of cost when X is huge. Especially in the case where x is high-
dimensional, the number of elements of X tends to swell in practice. As discussed in Section 5.5 in Zuluaga
et al. (2016), one way to overcome this issue is to consider the extension of the algorithm which is not rely on
the discretization of X , and we defer it to future works.

Figure 1: Simple examples of HV and ĤVt. The red points in the left figure represent the values of F1 and F2

at points in Pareto set Π. Given a reference point (green star), hyper volume HV is computed as the area of
the region filled in light red. The blue points in the right figure represent the values of F1 and F2 at points in
estimated Pareto set Π̂t, and estimated hyper volume ĤVt is computed as the area of the region filled in light
blue.

E Additional Experiments

In this section, we show the details of §5 and additional experimental results.

E.1 Implementation Details

Methods for Comparison In our experiments, we used following methods for comparison:

Random Sampling (RS) This method chooses the next point xt from X uniformly at random. In
the simulator-based setting, (xt,wt) is chosen from X × Ω uniformly at random.

Uncertainty Sampling (US) This method defines the next point xt as xt =
argmaxx∈X

∫
Ω
σt−1(x,w)p(w)dw. In the simulator-based setting, (xt,wt) is defined as

(xt,wt) = argmax(x,w∈(X×Ω))σt−1(x,w).

BQOUCB This method defines next point xt as xt = argmaxx∈Xu
(F1)
t (x). In the simulator-based

setting, this method chooses wt as wt = argmaxw∈Ωσt−1(xt,w) after the selection of xt.

BO-VO This method defines next point xt as xt = argmaxx∈X
∫

Ω
u

(F2)
t (x,w)p(w)dw. In simulator-

based experiments, wt is chosen in the same way of BQOUCB.

Hyper volume Computation Hyper volume HV is defined as the area between Pareto front and a pre-
specified reference point. At every step t, the estimated hyper volume ĤVt is computed by using estimated
Pareto set Π̂t instead of Pareto set Π. Figure 1 illustrates the example of HV and ĤVt. In our experiments, we
defined reference point as (minx∈XF1(x),minx∈XF2(x)) , and computed HV− ĤVt as the performance measure.

Constraint Optimization Experiments In constraint optimization experiments, we adopted RS, US, and

BQOUCB for comparison. We defined x̂t as x̂t = argmaxx∈St
l
(F1)
t (x) in RS and US, and x̂t = argmaxx∈X l

(F1)
t (x) in

BQOUCB. Moreover, we adopted ADA-BQO-UCB which is the adaptive version of BQOUCB. ADA-BQO-UCB chooses next

point in the same way of BQOUCB, but its x̂t is defined as x̂t = argmaxx∈St
l
(F1)
t (x). To measure performances,

we used utility gap measure (Hernández-Lobato et al., 2016), which is commonly used as a performance measure
in constraint Bayesian optimization problems. At every step t, we reported the following utility gap:

UtilityGapt =

{
F1(x∗)− F1(x̂t) if F2(x̂t) ≥ h,
F1(x∗)−minx∈X F1(x) otherwise

,

as a performance measure.

Others To make initial points, we combined 2(d1 + 1) randomly selected points from X with the same number
of sample w which is sampled from p(w). In simulator-based setting, we chose 2(d1 + d2 + 1) initial points

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

randomly from X × Ω. To compute Q
(F1)
t and Q

(F2)
t , we set β

1/2
t = 2 in the multi-task and multi-objective

scenarios, and β1/2 = 1 in the constraint optimization scenario because the theoretically recommended values
of βt are well-known to be overly conservative. In §E.2.3, we analyzed the effect of βt selection experimentally.
Furthermore, to simplify experiments, we set ε = (0, 0) and ε = 0 in multi-objective and constraint optimization
experiments respectively.

E.2 Artificial-data Experiments

E.2.1 GP Test Function

We experimented with test functions of GPs, which are defined by Gaussian kernel and 5/2-Matérn kernel
respectively. In 5/2-Matérn kernel experiments, we used k((x,w), (x′,w′)) = σ2

ker(1 +
√

5r + 5
3r

2) exp (−
√

5r),

where r =
√
‖xj − x′j‖2/l2 + ‖wj −w′j‖2/l2 with l = 0.25 and σker = 1. In multi-task optimization scenario, we

varied α with {0.25, 0.5, 0.75}. In constraint optimization scenario, we set h = −1. Other settings are the same
as section 5.1. Figure 2, 3 and 4 show the experimental results of multi-task, multi-objective, and constraint
optimization scenario, respectively. We also conducted experiments in the simulator-based setting. Figure 5, 6
and 7 show the experimental results of multi-task, multi-objective, and constraint optimization scenario in the
simulator-based setting, respectively.

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (rbf, alpha=0.25)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (rbf, alpha=0.5)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (rbf, alpha=0.75)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−2

10−1

Re
gr

et

GP Test Functions (matern52, alpha=0.25)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

Re
gr

et

GP Test Functions (matern52, alpha=0.5)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

Re
gr

et

GP Test Functions (matern52, alpha=0.75)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

Figure 2: Average performances of multi-task optimization experiments with GP test functions. The top and
bottom figures show the results of experiments with Gaussian and 5/2-Matérn kernels, respectively. The left,
middle and right figures correspond to the results with α = 0.25, 0.5 and 0.75, respectively.

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (rbf)

RS
US
MO-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (matern52)

RS
US
MO-MVA-BO

Figure 3: Average performances of multi-objective optimization experiments with GP test functions. The left,
and right figures correspond to the results with Gaussian and 5/2-Matérn kernels, respectively.

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (rbf)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 50 100 150 200 250 300
Iteration

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (matern52)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

Figure 4: Average performances of constraint optimization experiments with GP test functions. The left, and
right figures correspond to the results with Gaussian and 5/2-Matérn kernels, respectively.

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (rbf, alpha=0.25)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (rbf, alpha=0.5)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (rbf, alpha=0.75)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

Re
gr

et

GP Test Functions (matern52, alpha=0.25)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (matern52, alpha=0.5)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1
Re

gr
et

GP Test Functions (matern52, alpha=0.75)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

Figure 5: Average performances of multi-task optimization experiments with GP test functions in the simulator-
based setting.

E.2.2 Benchmark Functions for Optimization

We conducted experiments with following benchmark functions; Mccormick (2D), Himmelblau (2D), Branin
(2D), Bird (2D), Rosenbrock (2D) and Rosenbrock (3D). In the multi-task scenario, we set α = 0.5 in all
benchmarks. In the multi-objective and constraint optimization scenario, we multiplied −1 to the function
values of benchmarks except for Bird as preprocessing. Furthermore, We defined h as the 75-th percentile of
F2 values in each benchmark. Figure 8 shows the results with these functions. We also show results of the
simulator-based setting in Figure 9.

E.2.3 Sensitivity to the choice of βt

In this subsection, we analyzed the effect of the choice βt. We conducted experiments in the same settings as
section E.2.1. Figure 10 shows the results with various βt. The result suggests that small βt tends to be good
performance. In the multi-task and the multi-objective scenarios, the performance differences between these βt
seem trivial, however, it is not in constraint scenario. In the constraint scenario, the choice of βt directly affects
the classification whether the solution is feasible or not. Large βt makes this classification rule too conservative
and induces poor performance in the early stage of optimizations.

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

0 25 50 75 100 125 150 175 200
Iteration

10−5

10−4

10−3

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (rbf)

RS
US
MO-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (matern52)

RS
US
MO-MVA-BO

Figure 6: Average performances of multi-objective optimization experiments with GP test functions in the
simulator-based setting.

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (rbf)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 50 100 150 200 250 300
Iteration

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (matern52)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

Figure 7: Average performances of constraint optimization experiments with GP test functions in the simulator-
based setting.

E.2.4 Noisy Input Setting

In this subsection, we conducted experiments with GP test functions with noisy-input setting described in section
3.2. First, we divided [−0.5, 0.5]2 into 20 uniformly spaced grid points in each dimension and set these grid points
as X . Furthermore, we divided [−0.5, 0.5]2 into 10 uniformly spaced grid points and set these grid points as ∆.
We defined p(ξ) = φ(ξ1)φ(ξ2)/Z and Z =

∑
ξ∈∆ φ(ξ1)φ(ξ2), where φ is the density function of the standard

Normal distribution. To create test functions, we first divided [−1.0, 1.0]2 into 25 uniformly spaced grid points in
each dimension and generated the sample path from the GP prior. After that, we created the 50 test functions
in the same way of §5.1, and conducted 10 runs for each function and reported the average performance of a
total of 500 experiments. Other settings are same as §E.2.1. Figure 11 shows the results of experiments in the
noisy-input setting.

E.3 Real-data Experiments

E.3.1 Newsvendor Problem under Dynamic Consumer Substitution

The goal of this problem is to find the optimal inventory level of products to maximize the profit, which is
computed by a stochastic simulation. Given the initial inventory levels of products which is noted as x, and the
purchasing behaver of customers which is noted as w, the simulator outputs the profit f(x,w) after I customers
visit. The details of the simulation process are in section 6.6 of Toscano-Palmerin and Frazier (2018). In our
experiment, we considered the two products setting whose costs of products are c1 = 4 and c2 = 13, and the
prices are p1 = 10 and p2 = 23, respectively, and chose I = 50. Furthermore, we divided [0, I] × [0, I] into 50
uniformly spaced grids in each dimension, and set these grid points as X . We also divided [wst

1 , w
ed
1]× [wst

2 , w
ed
2]

into 10 uniformly spaced grids, where [wst
j , w

ed
j] is the 99.9% confidence interval of wj , and set these grid

points as Ω. We used ARD 5/2-Matérn kernel k((x,w), (x′,w′)) = σ2
ker(1 +

√
5r + 5

3r
2) exp (−

√
5r), where

0 10 20 30 40 50
Iteration

10−4

10−3

10−2

10−1

100

101

Re
gr
et

Mccormick

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 10 20 30 40 50
Iteration

10−5

10−4

10−3

10−2

10−1

100

101

Hy
pe

r-v
ol

um
e

Ga
p

Mccormick

RS
US
MO-MVA-BO

0 10 20 30 40 50
Iteration

10−2

10−1

100

Ut
ilit

y
Ga

p

Mccormick

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 10 20 30 40 50
Iteration

10−2

10−1

100

101

102

Re
gr
et

Himmelblau

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 20 40 60 80 100
Iteration

10−3

10−1

101

103

Hy
pe

r-v
ol

um
e

Ga
p

Himmelblau

RS
US
MO-MVA-BO

0 20 40 60 80 100
Iteration

100

101

102

Ut
ilit

y
Ga

p

Himmelblau

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 10 20 30 40 50
Iteration

10−3

10−2

10−1

100

101

Re
gr
et

Branin

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 20 40 60 80 100
Iteration

10−4

10−3

10−2

10−1

100

101

102

103

Hy
pe

r-v
ol

um
e

Ga
p

Branin

RS
US
MO-MVA-BO

0 10 20 30 40 50
Iteration

10−4

10−3

10−2

10−1

100

101

Ut
ilit

y
Ga

p

Branin

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 20 40 60 80 100
Iteration

100

101

Re
gr
et

Bird

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 20 40 60 80 100
Iteration

102

103

Hy
pe

r-v
ol

um
e

Ga
p

Bird

RS
US
MO-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

100

101

Ut
ilit

y
Ga

p
Bird

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 10 20 30 40 50
Iteration

10−4

10−3

10−2

10−1

100

101

102

Re
gr

et

Rosenbrock (2D)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 20 40 60 80 100
Iteration

10−4

10−3

10−2

10−1

100

101

102

103

Hy
pe

r-v
ol

um
e

Ga
p

Rosenbrock (2D)

RS
US
MO-MVA-BO

0 10 20 30 40 50
Iteration

10−1

100

Ut
ilit

y
Ga

p

Rosenbrock (2D)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 20 40 60 80 100
Iteration

10−4

10−3

10−2

10−1

100

101

102

Re
gr

et

Rosenbrock (3D)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−1

100

101

102

103

104

Hy
pe

r-v
ol

um
e

Ga
p

Rosenbrock (3D)

RS
US
MO-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

100

101

102

Ut
ilit

y
Ga

p

Rosenbrock (3D)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

Figure 8: Average performance in 50 simulations of experiments with benchmark functions. The left, middle
and right figures represent the multi-task, multi-objective and constraint optimization experiments, respectively.

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

0 10 20 30 40 50
Iteration

10−4

10−3

10−2

10−1

100

Re
gr
et

Mccormick

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 10 20 30 40 50
Iteration

10−5

10−4

10−3

10−2

10−1

100

101

Hy
pe

r-v
ol

um
e

Ga
p

Mccormick

RS
US
MO-MVA-BO

0 10 20 30 40 50
Iteration

10−2

10−1

100

Ut
ilit

y
Ga

p

Mccormick

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 10 20 30 40 50
Iteration

10−2

10−1

100

101

102

Re
gr
et

Himmelblau

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 20 40 60 80 100
Iteration

10−3

10−2

10−1

100

101

102

103

104

Hy
pe

r-v
ol

um
e

Ga
p

Himmelblau

RS
US
MO-MVA-BO

0 10 20 30 40 50
Iteration

100

101

Ut
ilit

y
Ga

p

Himmelblau

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 10 20 30 40 50
Iteration

10−2

10−1

100

101

Re
gr
et

Branin

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 20 40 60 80 100
Iteration

10−3

10−2

10−1

100

101

102

103

Hy
pe

r-v
ol

um
e

Ga
p

Branin

RS
US
MO-MVA-BO

0 10 20 30 40 50
Iteration

10−3

10−2

10−1

100

101

Ut
ilit

y
Ga

p

Branin

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 20 40 60 80 100
Iteration

10−2

10−1

100

101

Re
gr
et

Bird

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 20 40 60 80 100
Iteration

102

103

Hy
pe

r-v
ol

um
e

Ga
p

Bird

RS
US
MO-MVA-BO

0 20 40 60 80 100 120 140
Iteration

10−1

100

101

Ut
ilit

y
Ga

p

Bird

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 10 20 30 40 50
Iteration

10−4

10−3

10−2

10−1

100

101

Re
gr

et

Rosenbrock (2D)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 20 40 60 80 100
Iteration

10−5

10−3

10−1

101

103

Hy
pe

r-v
ol

um
e

Ga
p

Rosenbrock (2D)

RS
US
MO-MVA-BO

0 10 20 30 40 50
Iteration

100

Ut
ilit

y
Ga

p

Rosenbrock (2D)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 20 40 60 80 100
Iteration

10−4

10−3

10−2

10−1

100

101

102

Re
gr

et

Rosenbrock (3D)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−2

10−1

100

101

102

103

104

Hy
pe

r-v
ol

um
e

Ga
p

Rosenbrock (3D)

RS
US
MO-MVA-BO

0 20 40 60 80 100 120 140
Iteration

100

101

102

Ut
ilit

y
Ga

p

Rosenbrock (3D)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

Figure 9: Average performance of experiments with benchmark functions in the simulator-based setting.

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et
GP Test Functions (rbf)

beta=1
beta=2
beta=3
beta=4
beta=5

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (rbf)
beta=1
beta=2
beta=3
beta=4
beta=5

0 25 50 75 100 125 150 175 200
Iteration

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (rbf)
beta=1
beta=2
beta=3
beta=4
beta=5

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

Re
gr

et

GP Test Functions (matern52)
beta=1
beta=2
beta=3
beta=4
beta=5

0 25 50 75 100 125 150 175 200
Iteration

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (matern52)
beta=1
beta=2
beta=3
beta=4
beta=5

0 25 50 75 100 125 150 175 200
Iteration

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (matern52)

beta=1
beta=2
beta=3
beta=4
beta=5

Figure 10: Average performances of experiments with various βt. The left, middle and right figures represent
the multi-task (α = 0.5), multi-objective and constraint optimization experiments, respectively.

r =
√∑d1

j=1(xj − x′j)2/l
(x)2
j +

∑d2
j=1(wj −w′j)2/l

(w)2
j , and tuned all hyperparameters by maximizing marginal

likelihood at every 10 steps. Furthermore, we set α = 0.5 in the multi-task scenario.

E.3.2 Portfolio Optimization Problem

The goal of this problem is to find the optimal hyperparameters of the trading strategy to maximize the average
daily return over a period of four years, which is computed in the simulation with CVXPortfolio (Boyd et al.,
2017). A control parameter x corresponds to three parameters; a risk and a trade aversion parameters, and a
holding cost multiplier, whose domains are defined as [0.1, 1000], [5.5, 8] and [0.1, 100], respectively. A environ-
mental parameter w corresponds to two parameters; a bid-ask spread and a borrow cost, which are assumed
as random variables whose densities are uniform over [10−4, 10−2] and [10−4, 10−3], respectively. To simplify
experiments, we respectively divided the domains of control parameters into 10 uniformly spaced grid points and
set these grid points as X . We also applied the same procedure to the domains of environmental parameters to
define Ω. Furthermore, as in Cakmak et al. (2020), to avoid prohibitive costs of the simulation in the experiment,
we defined the true oracle function as a surrogate function obtained as the posterior mean function of the GP,
whose training data are evaluations of the actual simulator across 1000 points of Sobol sampling design (Owen,
1998). To define true oracle function, we used the ARD Gaussian kernel whose hyperparameters are tuned by
maximizing the marginal likelihood, and assume that it is known in all the algorithms. Furthermore, we set
α = 0.25 in the multi-task scenario.

Mean-Variance Analysis in Bayesian Optimization under Uncertainty

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (rbf)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (rbf)

RS
US
MO-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−2

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (rbf)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−2

10−1

Re
gr

et

GP Test Functions (matern52)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (matern52)

RS
US
MO-MVA-BO

0 50 100 150 200 250 300 350 400
Iteration

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (matern52)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

Figure 11: Average performance of noisy input experiments. The left, middle and right figures represent the
multi-task (α = 0.5), multi-objective and constraint optimization experiments, respectively. The top and bottom
figures show the results of Gaussian and 5/2-Matérn kernel, respectively.

0 25 50 75 100 125 150 175 200
Iteration

10−6

10−5

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (rbf)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−5

10−4

10−3

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (rbf)

RS
US
MO-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−2

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (rbf)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−4

10−3

10−2

10−1

Re
gr

et

GP Test Functions (matern52)

RS
US
BQOUCB
ADA-BQOUCB
BO-VO
ADA-BO-VO
MT-MVA-BO

0 25 50 75 100 125 150 175 200
Iteration

10−3

10−2

10−1

Hy
pe

r-v
ol

um
e

Ga
p

GP Test Functions (matern52)

RS
US
MO-MVA-BO

0 50 100 150 200 250 300 350 400
Iteration

10−1

100

Ut
ilit

y
Ga

p

GP Test Functions (matern52)

RS
US
BQOUCB
ADA-BQOUCB
Co-MVA-BO

Figure 12: Average performance of noisy input experiments in the simulator-based setting.

References

Stephen Boyd, Enzo Busseti, Steven Diamond, Ronald Kahn, Kwangmoo Koh, Peter Nystrup, and Jan Speth.
Multi-period trading via convex optimization. 3, 04 2017. doi: 10.1561/2400000023.

Sait Cakmak, Raul Astudillo, Peter Frazier, and Enlu Zhou. Bayesian optimization of risk measures. arXiv
preprint arXiv:2007.05554, 2020.

Agathe Girard. Approximate methods for propagation of uncertainty with Gaussian process models. PhD thesis,
Citeseer, 2004.

José Miguel Hernández-Lobato, Michael A Gelbart, Ryan P Adams, Matthew W Hoffman, and Zoubin Ghahra-
mani. A general framework for constrained Bayesian optimization using information-based search. The Journal
of Machine Learning Research, 17(1):5549–5601, 2016.

Johannes Kirschner and Andreas Krause. Information directed sampling and bandits with heteroscedastic noise.
In Proc. International Conference on Learning Theory (COLT), July 2018.

Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. On finding the maxima of a set of vectors.
Journal of the ACM (JACM), 22(4):469–476, 1975.

Art B Owen. Scrambling Sobol’and Niederreiter–Xing points. Journal of complexity, 14(4):466–489, 1998.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 1015–1022, 2010. URL https:

//icml.cc/Conferences/2010/papers/422.pdf.

Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization with Gaussian
processes. In International Conference on Machine Learning, pages 997–1005, 2015.

Yanan Sui, Vincent Zhuang, Joel W. Burdick, and Yisong Yue. Stagewise safe Bayesian optimization with
Gaussian processes. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 4788–4796, 2018. URL http://proceedings.mlr.press/v80/sui18a.html.

Saul Toscano-Palmerin and Peter I. Frazier. Bayesian optimization with expensive integrands. CoRR,
abs/1803.08661, 2018. URL http://arxiv.org/abs/1803.08661.

Marcela Zuluaga, Andreas Krause, and Markus Püschel. e-pal: An active learning approach to the multi-
objective optimization problem. Journal of Machine Learning Research, 17(104):1–32, 2016. URL http:

//jmlr.org/papers/v17/15-047.html.

https://icml.cc/Conferences/2010/papers/422.pdf
https://icml.cc/Conferences/2010/papers/422.pdf
http://proceedings.mlr.press/v80/sui18a.html
http://arxiv.org/abs/1803.08661
http://jmlr.org/papers/v17/15-047.html
http://jmlr.org/papers/v17/15-047.html

	Proofs
	Proof of Lemma 3.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Details of Section 3.3
	Noisy Input Setting
	Simulator Based Experiment

	Extension to Continuous Set
	Algorithms and Computational Details
	Pseudo-codes
	Computation of lt(F1), ut(F1), lt(F2) and ut(F2)
	Computational Complexity

	Additional Experiments
	Implementation Details
	Artificial-data Experiments
	GP Test Function
	Benchmark Functions for Optimization
	Sensitivity to the choice of t
	Noisy Input Setting

	Real-data Experiments
	Newsvendor Problem under Dynamic Consumer Substitution
	Portfolio Optimization Problem

