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Abstract

We consider active learning (AL) in an uncer-
tain environment in which trade-off between
multiple risk measures need to be considered.
As an AL problem in such an uncertain en-
vironment, we study Mean-Variance Analy-
sis in Bayesian Optimization (MVA-BO) set-
ting. Mean-variance analysis was developed
in the field of financial engineering and has
been used to make decisions that take into ac-
count the trade-off between the average and
variance of investment uncertainty. In this
paper, we specifically focus on BO setting
with an uncertain component and consider
multi-task, multi-objective, and constrained
optimization scenarios for the mean-variance
trade-off of the uncertain component. When
the target blackbox function is modeled by
Gaussian Process (GP), we derive the bounds
of the two risk measures and propose AL al-
gorithm for each of the above three scenar-
ios based on the risk measure bounds. We
show the effectiveness of the proposed AL
algorithms through theoretical analysis and
numerical experiments.

1 Introduction

Decision making in an uncertain environment has been
studied in various domains. For example, in financial
engineering, the mean-variance analysis (Markowitz,
1952; Markowitz and Todd, 2000; Keeley and Furlong,
1990) has been introduced as a framework for making
investment decisions, taking into account the trade-off
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between the return (mean) and the risk (variance) of
the investment. In this paper we study active learning
(AL) in an uncertain environment. In many practical
AL problems, there are two types of parameters called
design parameters and environmental parameters. For
example, in a product design, while the design param-
eters are fully controllable, the environmental param-
eters vary depending on the environment in which the
product is used. In this paper, we examine AL prob-
lems under such an uncertain environment, where the
goal is to efficiently find the optimal design parameters
by properly taking into account the uncertainty of the
environmental parameters.

Concretely, let f(x,w) be a blackbox function indicat-
ing the performance of a product, where x ∈ X is the
set of controllable design parameters and w ∈ Ω is the
set of uncontrollable environmental parameters whose
uncertainty is characterized by a probability distribu-
tion p(w). We particularly focus on the AL problem
where the mean and the variance of the environmental
parameters,

Ew[f(x,w)] =

∫
Ω

f(x,w)p(w)dw, (1a)

Vw[f(x,w)] =

∫
Ω

(f(x,w)− Ew[f(x,w)])
2
p(w)dw,

(1b)

respectively, are taken into account. Specifically, we
work on these two measures in three different scenar-
ios: multi-task learning scenario, multi-objective op-
timization scenario, and constrained optimization sce-
nario. In the first scenario, we study one of multi-
task formulations in which a weighted sum of these
two measures is maximized 1. In the second scenario,
we discuss how to obtain the Pareto frontier of these
two measures in an AL setting. In the third scenario,
we consider optimizing one of the two measures under
some constraint on the other measure. We refer to

1This formulation is also referred as a scalarization ob-
jective in multi-objective optimization.
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these problems and the proposed framework for solv-
ing them as Mean-Variance Analysis in Bayesian Op-
timization (MVA-BO). Figure 1 shows an illustration
of a multi-task learning scenario.

In this study, we employ a Gaussian process (GP)
to model the uncertainty of the blackbox function
f(x,w). In a conventional GP-based AL problem
(without uncontrollable environmental parametersw),
the acquisition function (AF) is designed based on how
the uncertainty of the blackbox function changes when
an input point is selected and the blackbox function is
evaluated. On the other hand, in MVA-BO, we need
to know how the uncertainties of the mean function
(1a) and the variance function (1b) change by evalu-
ating the blackbox function at the selected input point.
Note that we face the difficulty of not being able to di-
rectly evaluate the target functions (1a) and (1b). It
has been shown in a previous study (O’Hagan, 1991)
that, when f(x,w) follows a GP, the mean function
(1a) also follows a GP. Unfortunately, however, the
variance function (1b) does not follow a GP, indicat-
ing that we need to develop a new method to quantify
how the uncertainty of the variance function changes
by evaluating the blackbox function at the selected
input point. In this study, we extend the GP-UCB
algorithm (Srinivas et al., 2010) to realize MVA-BO
in the above mentioned three scenarios by overcoming
these technical difficulties. We demonstrate the effec-
tiveness of the proposed MVA-BO framework through
theoretical analyses and numerical experiments.

Related Work Various problem setups and meth-
ods have been studied for AL and Bayesian optimiza-
tion (BO) problems when there are multiple target
functions. One of such problem setup is multi-task
BO (Swersky et al., 2013). In this problem setup, the
AF is designed to select input points that commonly
contribute to optimizing multiple target functions.
Another popular problem setup is multi-objective
BO (Emmerich, 2005; Zuluaga et al., 2016; Suzuki
et al., 2020). The goal of a multi-objective optimiza-
tion is to obtain so-called Pareto-optimal solutions.
The AF in this problem setup is designed to efficiently
identify solutions on the Pareto frontier. Another com-
mon problem setup is constrained BO (Gardner et al.,
2014; Gelbart et al., 2014; Hernández-Lobato et al.,
2016; Takeno et al., 2021). The goal of this problem
setup is to find the optimal solution to a constrained
optimization problem in a situation where both the
objective function and constraint function are black-
box functions that are costly to evaluate. The AF in
this problem setup is designed to select input points
that are useful not only for maximizing the objective
function but also for identifying the feasible region. In
this paper, we study these three scenarios as concrete

examples of MVA-BO. Unlike conventional multi-task,
multi-objective and constrained BOs, the main tech-
nical challenges of MVA-BO are that the two target
functions (1a) and (1b) cannot be directly evaluated
and that the latter does not follow a GP.

Various studies have been published on BO under
various types of uncertainty. The most relevant one
to our study is on Bayesian quadrature optimization
(BQO) (Toscano-Palmerin and Frazier, 2018), the goal
of which is to optimize the mean function (1a). When
the blackbox function follows a GP, the mean func-
tion (1a) also follows a GP, suggesting that one can
efficiently solve BQO problems by properly modifying
the AFs in conventional BO. By replacing the inte-
grand in (1a) with different measures, one can consider
various types of AL problems under uncertainty (Be-
land and Nair, 2017; Iwazaki et al., 2020a,b; Cakmak
et al., 2020). Another line of research dealing with
uncontrollable and uncertain factors in BO is known
as robust BO (Bogunovic et al., 2018; Nguyen et al.,
2020; Kirschner et al., 2020; Bogunovic et al., 2020;
Inatsu et al., 2021). The goal of robust BO is to make
robust decisions that appropriately take into account
various types of uncertainty. For example, input un-
certainty in BO has been studied, in which probabilis-
tic noise is inevitably added to the input points when
evaluating the target blackbox function. Although re-
search on BO in an uncertain environment has steadily
progressed over the past few years, to our knowledge,
there are no AL nor BO studies that take into ac-
count the trade-offs between multiple measures such
as mean-variance analysis.

Decision making under uncertainty is being examined
in the field of robust optimization (Ben-Tal et al., 2009;
Beyer and Sendhoff, 2007; Ben-Tal and Nemirovski,
2002), with especially applications to financial engi-
neering in mind (Schied, 2006; Alexander and Bap-
tista, 2002; Fabozzi et al., 2007). It has been pointed
out that when making decisions under uncertainty, it
is important to balance multiple measures appropri-
ately, as represented by the Nobel prize-winning mean-
variance analysis in portfolio theory (Markowitz, 1952;
Markowitz and Todd, 2000; Keeley and Furlong, 1990).
Various risk measures, such as Value at Risk (VaR),
have been proposed in financial engineering, and these
multiple risk measures are used in combination, de-
pending on the purpose of the decision making. How-
ever, to our knowledge, there have not been AL or
BO studies that have appropriately taken into account
multiple measures.
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Figure 1: 2D synthetic example under a multi-task
scenario. The horizontal and vertical axes represent
the design and environmental parameters x and w,
respectively. Blue and yellow dotted lines indicate the
points where expected value F1(x) and negative stan-
dard deviation F2(x) of f(x,w) are maximum. Our
goal is to identify the point on the red line that simul-
taneously maximize both of F1 and F2 .

2 Preliminaries

2.1 Problem Setup

Let f : X × Ω → R be a blackbox function which is
expensive to evaluate, where X and Ω are a finite set 2

and a compact convex set, respectively. We assume
that a variable w ∈ Ω is probabilistically fluctuated
by a known density function p(w) 3. At every step t,
a user selects the next input point xt ∈ X , whereas
wt ∈ Ω will be given as a realization of the random
variable. Next, the user gets a noisy observation yt =
f(xt,wt)+ηt, where ηt is independent Gaussian noise
from N (0, σ2).

Throughout the paper, we assume that f is an ele-
ment of reproducing kernel Hilbert space (RKHS) and
has a bounded norm (Srinivas et al., 2010). Let k
be a positive definite kernel with ∀(x,w) ∈ (X ×
Ω), k((x,w), (x,w)) ≤ 1, and Hk be an RKHS cor-
responding to k. In this paper, for some positive con-
stant B, we assume f ∈ Hk with ‖f‖Hk

≤ B, where
‖ · ‖Hk

denotes the Hilbert norm defined on Hk.

Models Our algorithm is built on a GP model (Ras-
mussen and Williams, 2006). First, we assume

2We discuss the case where X is a continuous set in
Appendix C.

3 A probability mass function can be similarly consid-
ered when Ω is a finite set. In that case, the subsequent
discussions still hold if integral operations are replaced by
summation operations.

GP(0, k) as a prior of f , where GP(µ, k) is a GP char-
acterized by a mean function µ and a kernel function
k. Given a sequence of instances {((xi,wi), yi)}ti=1,
the posterior distribution of f(x,w) is the Gaussian
distribution with the mean and the variance defined
as follows:

µt(x,w) = kt(x,w)>
(
Kt + σ2It

)−1
yt,

σ2
t (x,w) = k ((x,w), (x,w))

− kt(x,w)>
(
Kt + σ2It

)−1
kt(x,w),

where kt(x,w) ∈ Rt is a vector whose ith element is
k((x,w), (xi,wi)), It is the identity matrix of size t,
and Kt is the t×t kernel matrix whose (i, j)th element
is k((xi,wi), (xj ,wj)).

We use the quantity called maximum information gain,
which is often used in the standard GP-based opti-
mization literatures (Srinivas et al., 2010; Chowdhury
and Gopalan, 2017). The maximum information gain
at step t is defined as

γt = max
x1,...,xt

1

2
ln det(It + σ−2Kt).

Finally, we introduce the following lemma to construct
the confidence bound of f based on the posterior mean
µt and the variance σ2

t .

Lemma 2.1. Fix f ∈ Hk with ‖f‖Hk
≤ B. Given

δ ∈ (0, 1), let βt =
(√

2(γt−1 + ln 1/δ) +B
)2

. Then,

with probability at least 1− δ, for any x ∈ X , w ∈ Ω,
t ≥ 1,

|f(x,w)− µt−1(x,w)| ≤ β1/2
t σt−1(x,w). (2)

This lemma is easily derived by combining the def-
inition of γt and Theorem 3.11 in Abbasi-Yadkori
(2013). Based on Lemma 2.1, the confidence bound
Qt(x,w) := [lt(x,w), ut(x,w)] of f(x,w) can be com-
puted by

lt(x,w) = µt−1(x,w)− β1/2
t σt−1(x,w),

ut(x,w) = µt−1(x,w) + β
1/2
t σt−1(x,w).

2.2 Target Functions and Scenarios

We consider the expectation and variance of f(x,w)
under the uncertainty of p(w) as (1a) and (1b) in §1.
Using Ew [f(x,w)] and Vw [f(x,w)], we define the fol-
lowing target functions F1 and F2:

F1(x) = Ew [f(x,w)] , F2(x) = −
√
Vw [f(x,w)]. (3)

We consider these two functions as the targets of deci-
sion making processes in the following three scenarios.
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Multi-task (MT)-Scenario First, we formulate
the problem as a single-objective optimization problem
whose objective function is defined as a weighted sum
of F1 and F2. Given a user-specified weight α ∈ [0, 1],
let G be a new objective function defined as

G(x) = αF1(x) + (1− α)F2(x).

Here, the goal is to find x∗ := argmaxx∈XG(x) effi-
ciently. For analyzing the theoretical properties, we
introduce the notion of an ε-accurate solution. Let x̂t
be an estimated solution obtained by the algorithm at
step t. Given a fixed constant ε ≥ 0, we say that x̂t is
ε-accurate if the following inequality holds:

G(x̂t) ≥ G(x∗)− ε.

In §4, for an arbitrarily small ε, we show that our
algorithm can find an ε-accurate solution with high
probability after finite step T .

Multi-objective (MO)-Scenario We also con-
sider another formulation based on the Pareto op-
timality criterion. Hereafter, we use the vector
representation of the objective functions: F (x) =
(F1(x), F2(x)). First, let � be a relational operator
defined over X × X or R2 × R2. Given x,x′ ∈ X ,
we write x � x′ or F (x) � F (x′) provided that
F1(x) ≤ F1(x′) and F2(x) ≤ F2(x′) hold simultane-
ously. An operator ≺ is similarly defined.

The goal of this scenario is to identify the following
Pareto set Π efficiently:

Π = {x ∈ X | ∀x′ ∈ Ex,F (x) � F (x′)},

where Ex = {x′ ∈ X | F (x) 6= F (x′)}. Moreover,
Pareto front Z is defined by

Z = ∂{y ∈ R2 | ∃x ∈ X ,y � F (x)},

where ∂A denote the boundary of the set A.

Next, we introduce the notion of an ε-accurate Pareto
set (Zuluaga et al., 2016), which is an idea similar
to the ε-accurate solution in the multi-task scenario.
Given a non-negative vector ε = (ε1, ε2), we define the
relational operator �ε, which is the relaxed version of
�. For x,x′ ∈ X , we write x �ε x′ or F (x) �ε F (x′)
if F1(x) ≤ F1(x′) + ε1 and F2(x) ≤ F2(x′) + ε2 hold
simultaneously. Then, the ε-Pareto front is defined as:

Zε = {y ∈ R2 | ∃y′ ∈ Z, y � y′ and ∃y′′ ∈ Z, y′′ �ε y}.

We say that the estimated Pareto set Π̂t of the algo-
rithm is an ε-accurate Pareto set if the following two
conditions are satisfied:

1. F (Π̂t) ⊂ Zε, where F (Π̂t) :=
{
F (x) | x ∈ Π̂t

}
.

2. For any x ∈ Π, there is at least one point x′ ∈ Π̂t

such that x �ε x′.

Intuitively, these conditions indicate that the differ-
ence of true Pareto front Z and estimated Pareto front,
which is constructed by Π̂t, is at most ε. We refer to
Zuluaga et al. (2016) for more detail explanations of
ε-Pareto front.

Constrained (Co)-Scenario As an example of
constrained optimization scenario, we consider the fol-
lowing problem:

x∗ = arg max
x∈X

F1(x) s.t. F2(x) ≥ h,

where h > 0 is a user-specified known threshold pa-
rameter. Moreover, to provide theoretical guarantees,
we define an ε-accurate solution to be a solution x̂
which satisfies F1(x̂) ≥ F1(x∗)−ε1 and F2(x̂) ≥ h−ε2
for a non-negative vector ε = (ε1, ε2).

We emphasize that, although there are many existing
studies on multi-task, multi-objective, and constrained
BO, these existing methods cannot be directly applied
to our problem setups because the objective functions
F1 and F2 are not observed directly.

3 Proposed Method

First, we explain the basic idea of our proposed algo-
rithms. To handle F1 and F2 efficiently, one simple
way is to consider the predicted distributions of F1

and F2, and apply existing methods. However, it is
difficult to handle the predicted distribution of F2 al-
though f is modeled by a GP. In this paper, we first
derive the intervals in which F1 and F2 exist with high
probability from the confidence bound of f , and con-
struct the algorithm based on these derived intervals.
Hereafter, with a slight abuse of notation, we refer to
these derived intervals as the confidence bounds of F1

and F2.

3.1 Confidence Bounds of Target Functions

The following Lemma 3.1 plays a central role in our
proposed methods.

Lemma 3.1. Let βt =
(√

2(γt−1 + ln 1/δ) +B
)2

,

and let

l̃
(sq)
t (x,w)

=

{
0, l̃t(x,w) ≤ 0 ≤ ũt(x,w)

min
{
l̃2t (x,w), ũ2

t (x,w)
}

otherwise
,

ũ
(sq)
t (x,w) = max

{
l̃2t (x,w), ũ2

t (x,w)
}
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where l̃t(x,w) = lt(x,w) − Ew[ut(x,w)] and
ũt(x,w) = ut(x,w) − Ew[lt(x,w)]. Then, with prob-
ability at least 1− δ, for any x ∈ X , t ≥ 1,

F1(x) ∈ Q(F1)
t (x) := [l

(F1)
t (x), u

(F1)
t (x)],

F2(x) ∈ Q(F2)
t (x) := [l

(F2)
t (x), u

(F2)
t (x)]

where

l
(F1)
t (x) =

∫
Ω

lt(x,w)p(w)dw,

u
(F1)
t (x) =

∫
Ω

ut(x,w)p(w)dw,

l
(F2)
t (x) = −

√∫
Ω

ũ
(sq)
t (x,w)p(w)dw,

u
(F2)
t (x) = −

√∫
Ω

l̃
(sq)
t (x,w)p(w)dw.

Lemma 3.1 is derived by considering the intervals
where target functions F1 and F2 exist when the state-
ment (which occurs with probability 1− δ) in Lemma
2.1 holds. The details of proofs are in Appendix A.

3.2 Algorithms

Multi-task (MT)-Scenario In the multi-task sce-
nario, our algorithm chooses the next input point xt
based on the upper confidence bound (UCB) of the
function G in which the lower and the upper bounds
are given by

l
(G)
t (x) = αl

(F1)
t (x) + (1− α)l

(F2)
t (x),

u
(G)
t (x) = αu

(F1)
t (x) + (1− α)u

(F2)
t (x).

At every step t, the next input point xt of our algo-

rithm is defined by xt = argmaxx∈Xu
(G)
t (x). For the-

oretical discussion, we define the estimated solution at
step t as x̂t = xt̂ with t̂ = argmaxt′∈{1,...,t}lt′(xt′).
This pessimistic estimated solution is often employed
in the other GP-based optimization literatures (e.g.,
Bogunovic et al., 2018; Kirschner et al., 2020). Here-
after, we call this strategy Multi-Task (MT)-MVA-BO
and the pseudo-code is presented in algorithm 1.

Multi-objective (MO)-Scenario From the confi-

dence bounds of F1 and F2, we define F
(opt)
t and F

(pes)
t

by F
(opt)
t (x) =

(
u

(F1)
t (x), u

(F2)
t (x)

)
and F

(pes)
t (x) =(

l
(F1)
t (x), l

(F2)
t (x)

)
, which respectively represent the

optimistic and pessimistic predictions of the objective
functions at step t. First, based on pessimistic predic-
tions, we define the estimated Pareto set Π̂t at step t
by

Π̂t =
{
x ∈ X

∣∣∣ ∀x′ ∈ E(pes)
t,x , F

(pes)
t (x) � F (pes)

t (x′)
}
,

Algorithm 1 Multi-task MVA-BO (MT-MVA-BO)

Input: GP prior GP(0, k), {βt}t≤T , α ∈ (0, 1).
for t = 0 to T do

Compute u
(G)
t (x) for any x ∈ X .

Choose xt = argmaxx∈Xu
(G)
t (x).

Sample wt ∼ p(w).
Observe yt ← f(xt,wt) + ηt.
Update the GP by adding ((xt,wt), yt).

end for
x̂T = xt̂ where t̂ = argmaxt′∈{1,...,T}l

(G)
t′ (xt′).

Output: x̂T .

where E
(pes)
t,x =

{
x′ ∈ X

∣∣∣ F (pes)
t (x) 6= F

(pes)
t (x′)

}
.

Furthermore, using Π̂t, the potential Pareto set Mt

is defined by

Mt =
{
x ∈ X \ Π̂t

∣∣∣ ∀x′ ∈ Π̂t, F
(opt)
t (x) �ε F (pes)

t (x′)
}
.

Here, Mt is the set which excludes the points that
are ε-dominated by other points with high probabil-
ity. At every step t, our algorithm chooses xt based
on the uncertainty defined by the confidence bounds
of F1 and F2. In this paper, we adopt the diameter

λt(x) of rectangle Rectt(x) =
[
l
(F1)
t (x), u

(F1)
t (x)

]
×[

l
(F2)
t (x), u

(F2)
t (x)

]
as the uncertainty of x:

λt(x) = max
y,y′∈Rectt(x)

‖y − y′‖2. (4)

Namely, the next input point xt is defined by xt =
argmaxx∈Mt∪Π̂t

λt(x) at every step t.

Our proposed algorithm terminates when the esti-
mated Pareto set Π̂t is guaranteed to be an ε-Pareto
set with high probability. To this end, our algorithm
checks the uncertainty set Ut defined by

Ut =
{
x ∈ Π̂t |∃x′ ∈ Π̂t \ {x},

F
(pes)
t (x) + ε ≺ F (opt)

t (x′)
}
.

Here, Ut is the set of points where it is not possible to
decide whether it is an ε-Pareto solution based on the
current confidence bounds. Our algorithm terminates
at step t where both Mt = ∅ and Ut = ∅ hold. Here-
after, we call this algorithm Multi-Objective (MO)-
MVA-BO.

Constrained (Co)-Scenario Let

M
(cons)
t =

{
x ∈ X | u(F2)

t (x) ≥ h− ε2
}
,

M
(obj)
t =

{
x ∈ X | u(F1)

t (x) ≥ max
x′∈St

l
(F1)
t (x′)− ε1

}
.
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Using these definitions, we define a potentially optimal

solution set Mt = M
(cons)
t ∩ M (obj)

t . Note that an
element in the complement of Mt is not likely to be
an ε-accurate solution with high probability. In the
proposed algorithm, the most uncertain point in the
potentially optimal set Mt is selected as the next input
point, i.e., xt = argmaxx∈Mt

λt(x), where λt is defined
in (4). Furthermore, we define the estimated optimal

solution as x̂t = argmaxx∈St
l
(F1)
t (x) where

St =
{
x ∈ X | l(F2)

t (x) ≥ h− ε2
}
.

In order to ensure that x̂t is an ε-accurate solution,
the uncertainties of the function values F1 and F2 for
the potentially optimal solution should be sufficiently
small. The algorithm terminates if it satisfies

max
x∈Mt

λt(x) ≤ min{ε1, ε2}.

Hereafter, we call this algorithm Constrained (Co)-
MVA-BO. Due to the space limitation, we show the
pseudo-codes of MO-MVA-BO and Co-MVA-BO in
Appendix D.

3.3 Extensions and Practical Considerations

Our algorithms and theoretical analyses can be ex-
tended to several different setups.

The details are presented in Appendix B.

3.3.1 Extension to Noisy Input

Our method can be extended to the noisy input setting
(Beland and Nair, 2017; Frhlich et al., 2020), in which
the input point xt is fluctuated by noise ξ ∈ ∆ which
follows the known density p(ξ) defined over ∆. At
every step t, the user chooses xt and obtains input yt
as yt = f(xt + ξ) + ηt, ξ ∼ p(ξ). In this setting, we
can define F1 and F2 based on

Eξ[f(x+ ξ)] =

∫
∆

f(x+ ξ)p(ξ)dξ,

Vξ[f(x+ ξ)] =

∫
∆

{f(x+ ξ)− Eξ̂[f(x+ ξ̂)]}2p(ξ)dξ.

We can apply the same algorithms as those in section
3.2 by constructing the confidence bounds via a way
similar to that in section 3.1.

3.3.2 Simulator-Based Experiment

In some applications, it is reasonable to assume that
the environmental variable w randomly varies accord-
ing to p(w) only in the usage phase, while it is con-
trollable during the optimization phase. Such scenarios
have often been considered in similar studies reported

in the BO literature under uncertain environment (Be-
land and Nair, 2017; Toscano-Palmerin and Frazier,
2018; Kirschner et al., 2020; Nguyen et al., 2020). Our
algorithms and theories can be extended to such setup
by choosing wt = argmaxw∈Ωσt−1(xt,w) after the se-
lection of xt.

4 Theoretical Results

In this section, we show the theoretical results of the
proposed algorithms. The proofs are presented in Ap-
pendix A. Note that although our proposed algorithms
inherent to the existing confidence bound-based meth-
ods (Srinivas et al., 2010; Sui et al., 2015; Zuluaga
et al., 2016), our theoretical guarantees are non-trivial
because the theoretical property of our derived confi-
dence bounds is different from those in existing works.

The following Theorem 4.1 provides the convergence
property of MT-MVA-BO.

Theorem 4.1. Fix positive definite kernel k, and
assume f ∈ Hk with ‖f‖Hk

≤ B. Let δ ∈
(0, 1) and ε > 0, and set βt according to βt =(√

2(γt−1 + ln(3/δ)) +B
)2

at every step t. Further-

more, for any t ≥ 1, define x̂t by x̂t = xt̂ with

t̂ = argmaxt′∈{1,...,t}l
(G)
t′ (xt′). When applying MT-

MVA-BO under the above conditions, with probability
at least 1− δ, x̂T is an ε-accurate solution, where T is
the smallest positive integer which satisfies RT /T ≥ ε
with

RT =(1− α)

√
2TB̃β

1/2
T

(√
8TC1γT + 2C2

)
+ 5TβTCT

+ αβ
1/2
T

(√
2TC1γT + C2

)
. (5)

Here, B̃ = max(x,w)∈(X×Ω) |f(x,w)− Ew[f(x,w)]|
and C1 = 16

log(1+σ−2) , C2 = 16 log 18
δ , CT = C1γT +

2C2.

The second term of RT is induced from confidence
bound of F1. When α = 1, we can find that RT =
O(
√
TβT γT ) and it recovers the result of the existing

result which only focuses on the maximization of F1

(Kirschner et al., 2020) 4.

The first term of RT is specific to our setting. This is
induced from the confidence bound of F2, and depends
on the complexity parameter B̃ which characterizes
the variation of function f(x,w) around its expecta-
tion. Noting that k((x,w), (x,w)) ≤ 1 holds for any
(x,w) ∈ X × Ω, f(x,w) is bounded as f(x,w) =

4 Although Kirschner et al. (2020) considers the dis-
tributionally robust setting of maximization of F1, their
algorithm can be applied to the non-robust setting by con-
sidering the singleton set of the distribution.
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〈f, k((x,w), ·)〉Hk
≤ B for any (x,w) ∈ X × Ω by ap-

plying the Schwarz’s inequality. Therefore, we can find
that the parameter B̃ is roughly bounded as B̃ ≤ 2B.

Furthermore, we can obtain more explicit form of The-
orem 4.1 by substituting bounds on γT . For example,
γT = O((log T )d1+d2+1) in Gaussian kernel. In this
case, RT becomes sub-linear (i.e. limT→∞RT /T = 0).
Hence, for arbitrarily small ε > 0, Theorem 4.1 guar-
antees that MT-MVA-BO returns an ε-accurate solu-
tion within finite steps with high probability.

Finally, we present the similar convergence results for
MO-MVA-BO and Co-MVA-BO in Theorem 4.2 and
4.3, respectively.

Theorem 4.2. Fix positive definite kernel k, and
assume f ∈ Hk with ‖f‖Hk

≤ B. Let δ ∈
(0, 1) and ε > 0, and set βt according to βt =(√

2(γt−1 + ln(3/δ)) +B
)2

at every step t. When ap-

plying MO-MVA-BO under the above conditions, the
following 1. and 2. hold with probability at least 1− δ:

1. The algorithm terminates at most step T where T
is the smallest positive integer that satisfies the
following inequality:√

4TB̃β
1/2
T

(√
2TC1γT + C2

)
+ 5TβTCT

+ β
1/2
T

(√
2TC1γT + C2

)
≤ T min{ε1, ε2}.

(6)

2. When the algorithm terminates, estimated Pareto
set Π̂t is an ε-accurate Pareto set.

Theorem 4.3. Let k be a positive-definite kernel,
and let f ∈ Hk with ‖f‖Hk

≤ B. Also let δ ∈
(0, 1) and ε1 > 0, ε2 > 0, and define βt =(√

2(γt−1 + ln(3/δ)) +B
)2

. Then, with probability at

least 1− δ, the following 1. and 2. hold:

1. Co-MVA-BO algorithm in §3 terminates after at
most T iterations, where T is the smallest positive
integer satisfying√

2TB̃β
1/2
T

{√
8TC1γT + 2C2

}
+ 5TβTCT

+ β
1/2
T

{√
2TC1γT + C2

}
≤ T min{ε1, ε2}.

(7)

2. If x∗ exists, then St′ 6= ∅ at the termination step

t′ ≤ T . Moreover, x̂t′ = argmaxx∈St′
l
(F1)
t (x) is

an ε-accurate solution.

5 Numerical Experiments

We conducted intensive numerical experiments on a
variety of artificial and real datasets. Due to the space

limitation, we only show a part of the results. See Ap-
pendix E for more experimental results and detailed
experimental setups. As the common baselines in the
three scenarios, we adopted random sampling (RS) and
uncertainty sampling (US). RS chooses xt from X uni-
formly at random, and US chooses xt such that it
achieves the largest average posterior variance.

In the multi-task scenario, we computed the regret,
G(x∗) − G(x̂t), at every step t, where xt is the esti-
mated solution defined by the algorithms. We defined

x̂t as x̂t = argmaxt′=1,...,tl
(G)
t (xt′)

5 in RS, US, and
proposed method (MT-MVA-BO). To show the effect of
difference of objective functions, we also considered
two methods BQOUCB and BO-VO. The former is the
method designed to maximize F1, and this method is
also considered for comparison in existing BO stud-
ies under uncertainty (Nguyen et al., 2020; Kirschner
et al., 2020). The latter is the variant of our method
corresponding to the case of α = 0. These methods

choose xt as the maximizing point of u
(F1)
t (x) and

u
(F2)
t (x) respectively. In addition, estimated solution

x̂t is defined by x̂t = argmaxt′=1,...,tl
(F1)
t (xt′) and

x̂t = argmaxt′=1,...,tl
(F2)
t (xt′), respectively. We also

compared with the adaptive versions of these meth-
ods ADA-BQOUCB and ADA-BO-VO, which choose xt in
the same way as BQOUCB and BO-VO, but the estimated

solutions are defined as x̂t = argmaxt′=1,...,tl
(G)
t (xt′).

We set α so that maximums of the mean function F1,
the variance function F2 and the target function G be-
come different. The values of α that we used in each
experiments are in appendix.

In the multi-objective scenario, we adopted RS and
US for comparison. We computed the gap of hyper-
volume (Emmerich, 2005), HV − ĤVt to measure the
performance, where HV and ĤVt denote the hyper-
volumes computed based on the true Pareto set Π and
the estimated Pareto set Π̂t, respectively.

In the constrained optimization scenario, we adopted
RS, US, and BQOUCB for comparison. We defined

x̂t = argmaxx∈St
l
(F1)
t (x) in RS and US, whereas

x̂t = argmaxx∈X l
(F1)
t (x) in BQOUCB. We considered

ADA-BQO-UCB, an adaptive version of BQOUCB, which
chooses the next point in the same way as what BQOUCB

does, but x̂t is defined as x̂t = argmaxx∈St
l
(F1)
t (x). To

measure performances, we used the utility gap measure
which is commonly used as a performance measure in
constrained BO (Hernández-Lobato et al., 2016). As
a performance measure, at every step t, we report the

5 Note that this definition is slightly different from that
of Theorem 4.1. As described by Bogunovic et al. (2018),
this definition is more suitable than that of Theorem 4.1
when the kernel hyperparameters are updated online.
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utility gap defined as F1(x∗) − F1(x̂t) if F2(x̂t) ≥ h,
whereas F1(x∗)−minx∈X F1(x) otherwise.

GP Test Functions First, we conducted experi-
ments with true oracle functions f generated from
2D GP prior. We divided [−1, 1]2 into 25 uniformly
spaced grid points in each dimension and generated
the sample path from the GP prior. Then, we cre-
ated the GP model with these grid points and set the
true oracle function as its GP posterior mean. Here,
we created 50 sample paths from different seeds, and
conducted 10 runs for each function and report the av-
erage performance of a total of 500 experiments. To
create a GP sample path, we used the Gaussian ker-
nel k((x,w), (x′,w′)) = σ2

ker exp((‖x − x′‖22 + ‖w −
w′‖22)/(2l2)) with σker = 1, l = 0.25 and assume that
it is known in all the algorithms. The noise variance
was set to be σ2 = 10−4. The domain spaces X and Ω
are set to be 100 grid points evenly allocated in [−1, 1].
The density was set to be p(w) =

∑
w∈Ω φ(w)/Z,

Z =
∑
w∈Ω φ(w) where φ is p.d.f. of standard nor-

mal distribution.

Benchmark Functions We also conducted exper-
iments with 6 benchmark functions commonly used
in BO study. Due to the space limitation, we
only show the results of 3D Rosenbrock function.
First, we scaled the input domain to [−1, 1]3 and
divided it with 100 grid points in each dimension.
Here, we set the first two dimensions as X and the
remaining one dimension as Ω. Furthermore, we
set p(w) in the same way as the experiments with
GP test functions. We used ARD Gaussian kernel
k((x,w), (x′,w′)) = σ2

ker exp(
∑d1
i=1(xi −x′i)2/2l

(x)2
i +∑d2

j=1(wj−w′j)2/2l
(w)2
j ). Unlike the experiments with

GP test functions, we assumed that the hyperparam-
eters are unknown, and they are estimated by maxi-
mizing the marginal likelihood at every 10 step in the
algorithms. We set the noise variance as σ2 = 10−4

and report the average performance of 50 simulations
with different seeds.

Real-data We applied the proposed methods to two
real-world problems: Portfolio optimization problem
and Newsvendor problem under dynamic consumer
substitution (Mahajan and Van Ryzin, 2001). The goal
of the former problem is to optimize hyperparamters
of a trading strategy under uncertainty of market con-
ditions, while the goal of the latter problem is to op-
timize the initial inventory levels under uncertainty of
customer behaviors. In the former problem, the con-
trol parameter x corresponds to the risk and trade
aversion parameters, and the holding cost multiplier,
respectively. The environmental parameters w are the
bid-ask spread and the borrow cost, which are assumed

to be uniformly distributed over certain ranges. In the
latter problem, the control parameter x and w respec-
tively correspond to the initial inventory level of prod-
ucts and the uncertain purchasing behaviors of cus-
tomers, which follow mutually independent Gamma
distributions. These problems are also considered in
existing BO studies under uncertainty environment
(Toscano-Palmerin and Frazier, 2018; Cakmak et al.,
2020). As in these previous studies (Toscano-Palmerin
and Frazier, 2018; Cakmak et al., 2020), we conducted
the experiments in the simulator-based setting de-
scribed in section 3.3.2. The average performances of
30 simulations with different seeds are reported.

Results Figure 2 shows the results of a GP test func-
tion, a benchmark data (Rosenbrock), and two real
data (Portfolio and Newsvendor). In all the datasets
and all the three scenarios, the proposed methods
MVA-BO (in red color) showed better or at least com-
parable performances than other methods. In the ex-
periments of the multi-task and constraint optimiza-
tion scenario, we also confirmed that the regrets of
BQOUCB, BO-VO, ADA-BQOUCB, and ADA-BO-VO stop de-
creasing at an early stage. Note that these are reason-
able results because target functions of these methods
are inconsistent with our settings.

6 Conclusion

We introduced mean-variance analysis within the con-
text of Bayesian Optimization under uncertainty. We
developed algorithms for multi-task, multi-objective
and constrained optimization scenarios, analyzed their
convergence properties, and demonstrated their effec-
tiveness through numerical experiments.
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Figure 2: Experimental results on two artificial datasets (GP test function and Rosenbrock function) and two
real datasets (Portfolio and Newsvendor) in multi-task (left), multi-objective (center) and constrained (right)
optimization scenarios. Average performances and error bars (2 × standard error) over multiple trials are plotted
for each method in each setup. In almost all the datasets and scenarios, the proposed MVA-BO methods (MT-
MVA-BO, MO-MVA-BO, Co-MVA-BO in red colors) showed better performances than other methods. More
results on other datasets and other problem setups are presented in Appendix E.
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