
Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, James Zou

A Detailed algorithm description and proof of Theorem 1

Algorithm 4 Compute the pseudoinverse of
∑k
i=1 xix

ᵀ
i

1: procedure PseudoInv(x1, . . . , xk)

2: c1, . . . , ck, u1, . . . , uk ← Gram-Schmidt(x1, . . . , xk) . xi =
∑k
j=1 cijuj .

3: C ←
∑k
i=1 cic

ᵀ
i

4: λ1, a1, . . . , λk, ak ← Eigendecompose(C) . Eigenvalue λi has corresponding eignevector ai
5: for i = 1, . . . , k do
6: vi ←

∑k
j=1 aijuj

7: end for
8: return λ−1

1 , v1, . . . , λ
−1
k , vk

9: end procedure

Algorithm 5 Fast multiplication by pseudoinverse

1: procedure FastMult(S−1,∇L) . S−1 must be given in its low-rank form S−1 =
∑k
i=1 λ

−1
i viv

ᵀ
i

2: return
∑k
i=1(λ−1

i (vᵀi ∇L))vi . Compute according to the specified parenthesization
3: end procedure

We take a gradient step in the direction specified by the synthetic LKO points (xi, ŷ
\k
i), i = 1, . . . , k. That is, we

update

θres = θfull − α
k∑
i=1

(θfullᵀxi − ŷ\ki)xi. (3)

Ordinarily, the parameter α is a scalar which specifies the step size. For our purposes, we will replace α with a
“step matrix” A.

Proof of Theorem 1. Recalling that ŷ
\k
i = θ\kᵀxi, we can rewrite equation (3):

θfull −A
k∑
i=1

(θfullᵀxi − ŷ\ki)xi = θfull −A
k∑
i=1

(θfullᵀxi − θ\kᵀxi)xi

= θfull −A

(
k∑
i=1

xix
ᵀ
i

)
(θfull − θ\k). (4)

Let B =
∑k
i=1 xix

ᵀ
i . Note that range(B) = span{x1, . . . , xk}

∆
= Vk. Due to the form that B has, we can efficiently

compute its eigendecomposition B = V ΛV ᵀ, where Λ = diag(λ1, . . . , λk, 0, . . . , 0), λ1, . . . , λk are the nonzero
eigenvalues of B, and V V ᵀ = I. We then define

A = V Λ†V ᵀ, Λ† = diag(λ−1
1 , . . . , λ−1

k , 0, . . . , 0). (5)

This choice of A gives us AB =
∑k
i=1 viv

ᵀ
i = projVk , and therefore the update (4) is equivalent to

θfull + projVk(θ\k − θfull). (6)

This establishes the first claim in Theorem 1. It remains to perform the computational cost calculation. We
analyze the computational cost of the algorithm by breaking it down into several submodules.

Step 1: Computing ŷ
\k
i , i = 1, . . . , k

By Theorem 4, this step can be accomplished in O(k3) time.

Step 2: Finding the eigendecomposition of
∑k
i=1 xix

ᵀ
i

We will show that this step can be completed in O(k2d) time. We compute the eigendecomposition of B ≡∑k
i=1 xix

ᵀ
i as follows.

Approximate Data Deletion from Machine Learning Models

I. Perform Gram-Schmidt on x1, . . . , xk to recover u1, . . . , uk and coefficients cij . computational cost: O(k2d).

(a) In the i-th step, we set wi = xi − ((xᵀi u1)u1 + · · ·+ (xᵀi ui−1)ui−1), followed by ui = wi/‖wi‖. Naively
computing the dot products, scalar-vector products, and vector sums for step i takes O(id) time.

Summing over the steps, the total time to perform Gram-Schmidt is
∑k
i=1O(id) = O(k2d).

(b) From the i-th step of Gram-Schmidt, we see that

xi = (xᵀi u1)u1 + · · ·+ (xᵀi ui−1)ui−1 + ‖wi‖ui

∴ cij =


xᵀi uj , 1 ≤ j < i

‖wi‖, j = i

0, j > i

We can store these coefficients as we compute them during the Gram-Schmidt procedure without
increasing the asymptotic time complexity of this step.

II. Eigendecompose the k × k matrix C =
∑k
i=1 cic

ᵀ
i and recover the eigendecomposition of B. computational

cost: O(k2d).

(a) We claim that the first k eigenvalues of B are identical to the eigenvalues of C, and that the eigenvectors
of B can easily be recovered from the eigenvectors of C. In particular, if a1, . . . , ak ∈ Rk are the
eigenvectors of C, then vi = ai1u1 + . . .+ aikuk is the i-th eigenvector of B.

To see this, note that R(B) = span{x1, . . . , xk}, so any eigenvector for a nonzero eigenvalue of B must
be in the span of the xi. Since u1, . . . , uk have the same span as the xi, if v is an eigenvector for B
with nonzero eigenvalue λ, we can write v = b1u1 + · · ·+ bkuk. Let b = (b1, . . . , bk)ᵀ ∈ Rk. We can also

rewrite B =
∑k
i=1 xix

ᵀ
i =

∑k
i,j,`=1 cijci`uju

ᵀ
` . Combining these facts yields

Bv =

k∑
i,j,`=1

b`ci`cijuj

=

k∑
i,j=1

(cᵀi b)cijuj

= λb1u1 + · · ·+ λbkuk.

Since the ujs are linearly independent, we can equate coefficients. Doing so shows that λbj =∑k
i=1(cᵀi b)cij for all j = 1, . . . , k. Vectorizing these equations, we have that

Cb =

k∑
i=1

ci(c
ᵀ
i b) = λb.

This chain of equalities holds in reverse order as well, so we conclude that v is an eigenvector for B with
nonzero eigenvalue λ iff b is an eigenvector for C with eigenvalue λ. Since we know that the remaining
eigenvalues of B are 0, it suffices to find an eigendecomposition of C. Forming C takes O(k3) time,
and finding its eigendecomposition can be done (approximately) in O(k3) time, see (Pan and Chen,
1999). Finally, converting each eigenvector ai for C into an eigenvector for B takes O(kd) time (we set
vi = ai1u1 + · · ·+ aikuk), so converting all k of them takes O(k2d) time.

(b) Since we know B is rank k, the remaining eigenvalues are 0 and any orthonormal extension of the
orthonormal eigenvectors v1, . . . , vk computed in step 2 will suffice to complete an orthonormal basis of
eigenvectors for Rd. Let vk+1, . . . , vd be any such extension. This gives us a complete orthonormal basis
of eigenvectors v1, . . . , vd for Rd with associated eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk > λk+1 = . . . = λd = 0.
We now define A as in equation (5). Observe that since (Λ†)ii = 0 for i > k, we can compute A without
needing to know the values of vk+1, . . . , vd:

A =

k∑
i=1

λ−1
i viv

ᵀ
i . (7)

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, James Zou

Step 3: Performing the update

We will show that this step can be completed in O(kd) time. Recall the form of the projective residual update:

θres = θfull −A
k∑
i=1

(θfullᵀxi − ŷ′i)xi.

I. Form the vector ∇L =
∑k
i=1(θfullᵀxi − ŷ′i)xi. (This is the gradient of the loss on the synthetic datapoints.)

computational cost: O(kd).

II. Compute the step A∇L. computational cost: O(kd).

(a) Rather than performing the computationally expensive operations of forming the matrix A, then doing
a d× d matrix-vector multiplication, we use the special form of A. Namely, we have

A∇L =

(
k∑
i=1

λ−1
i viv

ᵀ
i

)
s

=

k∑
i=1

(λ−1
i (vᵀi s))vi. (8)

(b) Each term in the summand (8) can be computed in O(d) time, so we can compute the entire sum in
O(kd) time.

III. Update θres = θfull −A∇L. computational cost: O(d).

Since we have assumed k ≤ d, the total computational cost of the algorithm is therefore O(k3)+O(k2d)+O(kd) =
O(k2d) as desired.

Note that the crucial step of computing the exact leave-k-out predicted y-values may vary depending on the the
specific instance of least squares we found ourselves in (e.g. with or without regularization or weighting, see
Appendix E), but the rest of the algorithm remains exactly the same.

B Performance analysis for outlier removal

In this section we prove Theorem 5. We also quantify the behavior of the true step θfull − θ\1 as the outlier size λ
grows.

Proposition 7. Let Dfull be as in Theorem 5. As λ → ∞, θfull − θ\1 → CΣ̂−1x1, where Σ̂ is the empirical
covariance matrix for the dataset D\1 and C is a (data-dependent) scalar constant.

Proof. Departing slightly from the notation in section 2, let X and Y denote the feature matrix and response
vector, respectively, for the dataset D\1. The exact values of θfull and θ\1 are then given by

θ\1 = (XᵀX)−1XY

θfull = (XᵀX + λ2x1x
ᵀ
x)−1(XY + λ2y1x1).

We can expand the expression for θfull with the Sherman-Morrison formula:

θfull =

[
(XᵀX)−1 − λ2(XᵀX)−1x1x

ᵀ
1(XᵀX)−1

1 + λ2xᵀ1(XᵀX)−1x1

]
· (XY + λ2y1x1). (9)

Approximate Data Deletion from Machine Learning Models

From equation (9), we see that the actual step is

θfull − θ\1 = λ2y1(XᵀX)−1x1 −
λ2(XᵀX)−1x1x

ᵀ
1(XᵀX)−1

1 + λ2xᵀ1(XᵀX)−1x1
(XY + λ2y1x1)

= (XᵀX)−1

y1 λ
2

[
I − λ2x1x

ᵀ
1(XᵀX)−1

1 + λ2xᵀ1(XᵀX)−1x1

]
x1︸ ︷︷ ︸

(I)

− λ2x1x
ᵀ
1(XᵀX)−1

1 + λ2xᵀ1(XᵀX)−1x1
XY︸ ︷︷ ︸

(II)

 . (10)

Let us analyze the behavior of the terms (I) and (II) in equation (10) as λ→∞. Term (II) is straightforward:
the λ2 terms dominate both the numerator and the denominator, so we have

(II) −→ x1x
ᵀ
1(XᵀX)−1XY

xᵀ1(XᵀX)−1x1
=
xᵀ1(XᵀX)−1XY

xᵀ1(XᵀX)−1x1
x1 as λ→∞.

The term (I) is slightly more delicate, since the first-order behavior of (I) without multiplication by λ2 tends to 0;
however, the multiplication by λ2 means that this term does not vanish. Observing that (I) can be rewritten as

λ2

[
1− λ2xᵀ1(XᵀX)−1x1

1 + λ2xᵀ1(XᵀX)−1x1

]
x1,

we have reduced our analysis of (I) to determining the leading order behavior of a function of the form

f(λ) ≡ λ2

[
1− cλ2

1 + cλ2

]
. (11)

(In our case, c = xᵀ1(XᵀX)−1x1.) A Taylor expansion of (11) shows that f(λ) = c−1 +O(λ−2), and thus we have

(I) −→ x1

xᵀ1(XᵀX)−1x1
as λ→∞.

Substituting the limits of (I) and (II) into equation (10), we see that

θfull − θ\1 → (XᵀX)−1

[
y1

xᵀ1(XᵀX)−1x1
x1 −

xᵀ1(XᵀX)−1XY

xᵀ1(XᵀX)−1x1
x1

]

=
y1 − xᵀ1(XᵀX)−1XY

xᵀ1(XᵀX)−1x1︸ ︷︷ ︸
C′

(XᵀX)−1x1. (12)

The result follows by multiplying and dividing (12) by a factor of n (so C = C ′/n and the other factor of n gets
pulled into (XᵀX)−1 to yield Σ̂−1).

Proof of Theorem 5. We will analyze θinf − θ\1 and show that the limit of this difference is the same as that of
θfull − θ\1 as λ→∞; it immediately follows that θinf → θfull. By the exactness of the Newton update for linear
regression, we have

θ\1 = θfull + (XᵀX)−1λ2(θfullᵀx1 − y1)x1.

By definition, the influence parameters are given by

θinf = θfull + (XᵀX + λ2x1x
ᵀ
1)−1λ2(θfullᵀx1 − y1)x1.

Subtracting these two expressions yields

θinf − θ\1 = λ2(θfullᵀx1 − y1) · [(XᵀX + λ2x1x
ᵀ
1)−1 − (XᵀX)−1]x1. (13)

We analyze the terms in the RHS of (13) separately.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, James Zou

First, note that by the Sherman-Morrison formula, we have

[(XᵀX + λ2x1x
ᵀ
1)−1 − (XᵀX)−1]x1 =

−λ2(XᵀX)−1x1x
ᵀ
1(XᵀX)−1

1 + λ2xᵀ1(XᵀX)−1x1
x1

=
−λ2xᵀ1(XᵀX)−1x1

1 + λ2xᵀ1(XᵀX)−1x1
(XᵀX)−1x1 (14)

→ −(XᵀX)−1x1. (15)

Equation (15) follows since the numerator and denominator of (14) have the same leading order behavior in λ.

Next, we analyze the term θfullᵀx1− y1. We begin by substituting the expression for θfull and once more applying
the Sherman-Morrison formula:

xᵀ1θ
full − y1 = xᵀ1(XᵀX + λ2x1x

ᵀ
1)−1(XY + λ2x1y1)− y1

= xᵀ1

[
(XᵀX)−1 − λ2(XᵀX)−1x1x

ᵀ
1(XᵀX)−1

1 + λ2xᵀ1(XᵀX)−1x1

]
(XY + λ2x1y1)− y1

= xᵀ1(XᵀX)−1


(
I − λ2x1x

ᵀ
1(XᵀX)−1

1 + λ2xᵀ1(XᵀX)−1x1

)
XY︸ ︷︷ ︸

(i)

+y1

(
λ2

[
I − λ2x1x

ᵀ
1(XᵀX)−1

1 + λ2xᵀ1(XᵀX)−1x1

]
x1

)
︸ ︷︷ ︸

(ii)

− y1

(16)

We rearrange (i) and (ii) and then Taylor expand:

(i) = XY − λ2xᵀ1(XᵀX)−1XY

1 + λ2xᵀ1(XᵀX)−1x1
x1

= XY − xᵀ1(XᵀX)−1XY

xᵀ1(XᵀX)−1x1
x1 −

xᵀ1(XᵀX)−1XY

(xᵀ1(XᵀX)−1x1)2
λ−2x1 +O(λ−4)

(ii) = λ2

[
1− λ2xᵀ1(XᵀX)−1x1

1 + λ2xᵀ1(XᵀX)−1x1

]
x1

=
x1

xᵀ1(XᵀX)−1x1
− λ−2x1

(xᵀ1(XᵀX)−1x1)2
+O(λ−4)

Substituting these equations into equation (16) yields

xᵀ1θ
full − y1 = xᵀ1(XᵀX)−1

[
XY − xᵀ1(XᵀX)−1XY

xᵀ1(XᵀX)−1x1
x1 +

y1x1

xᵀ1(XᵀX)−1x1

− xᵀ1(XᵀX)−1XY

(xᵀ1(XᵀX)−1x1)2
λ−2x1 −

λ−2y1x1

(xᵀ1(XᵀX)−1x1)2

]
− y1 +O(λ−4)

=

(
xᵀ1(XᵀX)−1XY − xᵀ1(XᵀX)−1XY

xᵀ1(XᵀX)−1x1
xᵀ1(XᵀX)−1x1 +

y1x
ᵀ
1(XᵀX)−1x1

xᵀ1(XᵀX)−1x1
− y1

)

+

(
xᵀ1(XᵀX)−1XY − y1

xᵀ1(XᵀX)−1x1

)
λ−2 +O(λ−4)

=
xᵀ1(XᵀX)−1XY − y1

xᵀ1(XᵀX)−1x1
λ−2 +O(λ−4). (17)

Approximate Data Deletion from Machine Learning Models

Finally, we substitute the expressions from equations (15) and (17) into (13) to obtain

θinf − θ\1 =

(
− (XᵀX)−1x1x

ᵀ
1(XᵀX)−1

xᵀ1(XᵀX)−1x1
+O(λ−2)

)
λ2

(
xᵀ1(XᵀX)−1XY − y1

xᵀ1(XᵀX)−1x1
λ−2 +O(λ−4)

)
x1

=
y1 − xᵀ1(XᵀX)−1XY

xᵀ1(XᵀX)−1x1
(XᵀX)−1x1 +O(λ−2).

Note that this has the same limiting value as θfull − θ\1 as λ→∞ (see equation (12)) and we are done.

C Proof of Theorem 4

We prove Theorem 4 for the case of ordinary least squares. We generalize this logic to weighted, ridge regularized
least squares in Appendix D.

Proof of Theorem 4. We make use of the analytic form of the parameters for least squares linear regression. Given
a dataset {(xi, yi)}ni=1, we have θfull = (XᵀX)−1XY , with X,Y defined as in section 2. The predictions for the
fitted model on the dataset are then given by

Ŷ = Xθfull = (X(XᵀX)−1Xᵀ)︸ ︷︷ ︸
H

Y, (18)

where H = X(XᵀX)−1Xᵀ is the so-called hat matrix. As previously mentioned, we assume that we already have
access to H after the model has been trained on the full dataset.

Next, observe that

θ\k = argmin
θ

[
k∑
i=1

(θᵀxi − ŷ\ki)2 +

n∑
i=k+1

(θᵀxi − yi)2

]
since θ\k minimizes both sums individually. It follows from equation (18) that HY ′ = Ŷ\k, where Y ′ =

(ŷ
\k
1 , . . . , ŷ

\k
k , yk+1, . . . , yn)ᵀ and Ŷ\k = (ŷ

\k
1 , . . . , ŷ

\k
n)ᵀ.

This relation HY ′ = Ŷ\k allows us to derive a system of linear equations between ŷ
\k
i for i = 1, . . . , k. Namely, if

we define ri = yi − ŷi, r = (r1, . . . , rk)ᵀ, r
\k
i = yi − ŷ\ki , and r\k = (r

\k
1 , . . . , r

\k
k)ᵀ, we have

r
\k
i =

ri +
∑
j 6=i hijr

\k
j

1− hii
, (19)

where hij are the entries of H. Vectorizing equation (19) and solving yields

r\k = (I − T)−1(r1
1−h11

, . . . , rk
1−hkk)ᵀ, (20)

where Tij = 1{i 6= j} hij
1−hjj . Since this is a system of k linear equations in k unknowns, we can solve it in time

O(k3) via simple Gaussian elimination. The values ŷ
\k
i can then be easily recovered in an additional O(k) time

by noting that ŷ
\k
i = yi − r\ki .

D Generalization of Theorem 4 to weighted, ridge regularized least squares

Refer to Appendix C. We can generalize our method for computing the predictions of the LKO model to weighted
least squares with ridge regularization. Let w � 0 ∈ Rn denote a (fixed) weight vector and λ ≥ 0 be the
regularization strength, which we require to be fixed independent of the number of samples. The weighted,
regularized loss is given by

Lfull(θ) =
1

2

(
n∑
i=1

wi(θ
ᵀxi − yi)2 + λ‖θ‖2

)

=
1

2
[(Xθ − Y)ᵀW (Xθ − Y) + λ‖θ‖2].

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, James Zou

The gradient is therefore

∇Lfull(θ) = XᵀWXθ −XᵀWY + λθ (21)

Using equation (21), we see that ∇Lfull = 0 when

θfull = (XᵀWX + λI)−1XᵀWY.

Predictions are therefore given by

Xθfull = X(XᵀWX + λI)−1XᵀW︸ ︷︷ ︸
Hλ,w

Y.

If we replace H in equation (18) with Hλ,w, the same logic carries through. Note that the regularization strength
needs to be fixed for us to use the same trick, i.e. to write

θ\k = argmin
θ

k∑
i=1

wi(θ
ᵀxi − ŷ\ki)2 +

n∑
i=k+1

wi(θ
ᵀxi − yi)2 + λ‖θ‖2

with ŷ
\k
i = θ\kᵀxi the predicted y-value for the LKO model. In this case, we can compute the LKO prediction

values efficiently (O(k3) time when we precompute Hλ,w). Theorem 4 therefore holds in this more general setting
as well.

E Proof of Theorem 6

Proof. For logistic regression, we use the loss function

L(θ) =

n∑
i=1

[yi log hθ(xi) + (1− yi) log(1− hθ(xi))] +
1

2
λ‖θ‖2,

where (xi, yi) ∈ Rd × {0, 1} are the data, and the classifier hθ(x) is given by

hθ(x) =
1

1 + exp{−θᵀx}
.

We compute the gradient and Hessian of the loss:

∇L(θ) =

n∑
i=1

(hθ(xi)− yi)xi + λθ = X̄ᵀ(h̄θ − Ȳ) + λθ (22)

∇2L(θ) =

n∑
i=1

hθ(xi)(1− hθ(xi))xixᵀi + λI = X̄ᵀS̄θX̄ + λI, (23)

where X̄ ∈ Rn×d is the data matrix whose rows are xᵀi , h̄θ ∈ Rn is the vector of model predictions, Ȳ ∈ Rn is the
vector of labels, and S̄θ = diag({hθ(xi)(1− hθ(xi)}ni=1) ∈ Rn×n. Using these formulas, we can compute a Newton
step for the LKO loss when we start at the minimizer θfull for the full loss.

Now let X = (xk+1 · · ·xn)ᵀ ∈ R(n−k)×d, Y = (yk+1, . . . , yn)ᵀ ∈ Rn−k, hθfull = (hθfull(xk+1), . . . , hθfull(xn))ᵀ ∈
Rn−k, Sθfull = diag({hθfull(xi)(1 − hθfull(xi)}ni=k+1) be the LKO quantities corresponding to the terms defined
above. By definition, we have

θNewton = θfull − [∇2L\k(θfull)]−1∇LLKO(θfull)

= θfull + (XᵀSθfullX + λI)−1(Xᵀ(Y − hθfull)− λθfull)

= (XᵀSθfullX + λI)−1XᵀSθfull(Xθ
full + S−1

θfull
(Y − hθfull))

= (XᵀSθfullX + λI)−1XᵀSθfullZ, (24)

Approximate Data Deletion from Machine Learning Models

where Z ≡ Xθfull +S−1
θfull(Y −hθfull). Observe that equation (24) is the solution to the LKO weighted least squares

problem

min
θ

n∑
i=k+1

hθfull(xi)(1− hθfull(xi))(θᵀxi − zi)2 + λ‖θ‖2, (25)

where zi is the i-th component of Z̄ ≡ X̄θfull + S̄−1
θfull

(Ȳ − h̄θfull). By adapting the PRU to this situation, we can
compute a fast approximation to the Newton step.

We can compute the vector Z̄ ≡ X̄θfull + S̄−1
θfull

(Ȳ − h̄θfull), as well as the matrix Hλ,h̄
θfull
≡ X̄(X̄ᵀS̄θfullX̄ +

λI)−1X̄ᵀS̄θfull , offline. Observe that Hλ,h̄
θfull

is the hat matrix for the “full” least squares problem

min
θ

n∑
i=1

hθfull(xi)(1− hθfull(xi))(θᵀxi − zi)2 + λ‖θ‖2. (26)

For consistency with the rest of the paper, let θ\k be the exact solution to (25) (so θ\k = θNewton). By the result

of Theorem 4, we can compute the LKO model predictions ẑ
\k
i ≡ θ\kᵀxi, i = 1, . . . , k in O(k3) time. Observe

that the gradient of the (unregularized, unweighted, quadratic) loss on the synthetic points (xi, ẑ
\k
i) is

k∑
i=1

(θfullx
i − ẑ\k)xi =

(
k∑
i=1

xix
ᵀ
i

)
(θfull − θ\k). (27)

We are now in a setting exactly analogous to equation (4), even though θfull was the minimizer for the original
cross-entropy objective rather than (26). By mimicking the proof of Theorem 1 from this point, we can derive the
exact same results. Namely, the step taken by the projective residual update is equal to projspan(x1,...,xk)(θ

\k−θfull).

By definition of θ\k and of the Newton step, it follows that θ\k − θfull = ∆Newton. Combining these two facts
yields the statement of Theorem 6. The computational cost calculation is identical to the calculation in Theorem
1.

F Synthetic data construction

We first generate a matrix of n d-dimensional covariates X ∈ Rn×d; we do this by drawing the rows xᵀi of X

according to xi
i.i.d.∼ N(0,Σ), where Σ is randomly selected via sklearn.datasets.make spd matrix (Pedregosa

et al., 2011). Once X is generated, the response vector Y ∈ Rn is generated by randomly selecting a (fixed)
“true” underlying parameter θ∗ ∈ Rd, and setting Y = Xθ∗ + ε, where ε ∼ N(0, σ2In) is the error vector. For our
experiments, we set the noise level σ2 = 1; for reasonable values of σ2 this parameter does not play a large role in
the outcome of the experiments. For all of the synthetic experiments, when deleting a group of size k, we always
assume that it is the first k datapoints which are being deleted. (That is, we delete the datapoints specified by
the first k rows of X and the first k entries of Y .) For all of the synthetic datasets, we take n = 10d.

For the runtime experiment, no modifications are made to the general setup. We vary the dimension d between
d = 1000 and d = 3000 and the group size k between k = 1 and k = 100.

For the L2 experiment, we first construct X̃ and Ỹ according to the general procedure above. We then obtain the
data X,Y by multiplying the first k rows of X̃ and the first k entries of Ỹ (that is, the points which will eventually
be deleted) by a factor λ to demonstrate the effectiveness of each method at removing outlier datapoints. This is
the setting described in section 4.1.

The modifications for the FIT experiment are slightly more involved. We construct sparse data with three key
properties: (1) only the deleted feature vectors xi, i = 1, . . . , k have nonzero d-th entry (this is the “injected
feature”); (2) the deleted feature vectors all lie on the same low-dimensional subspace; (3) the response for the
deleted points is perfectly correlated with the special feature. The exact steps for this procedure are as follows:

1. Construct X̃ according to the general procedure. (Pick a random covariance Σ and draw the rows xᵀi of X̃

according to xi
i.i.d.∼ N(0,Σ).)

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, James Zou

2. The “injected feature” will be the last (d-th) entry of each vector xi. Since only the group being removed
has the injected feature, we set the last entry in rows k + 1 to n of X̃ equal to 0; the first k rows keep their
original final entry.

3. Sparsify X̃ so that it has a fraction of approximately p nonzero entries. Let X̃[i, j] denote the (i, j)-th entry
of X̃.

(a) Sparsify the first k rows of X̃ simultaneously: for each j = 1, . . . , d− 1, set X̃[i, j] = 0 for all i = 1, . . . , k
with probability 1− p.

(b) Sparsify the remaining entries of X̃: for each i = k + 1, . . . , n and j = 1, . . . , d− 1, set X[i, j] = 0 with
probability 1− p.

4. Let X be the matrix resulting from performing operations 1-3 on X̃. Set Ỹ according to the general procedure:
Ỹ = Xθ∗ + ε.

5. Let Ỹ [i] denote the i-th entry of Ỹ . For i = 1, . . . , k, set Ỹ [i] = w∗X[i, d], where w∗ is the pre-specified “true”
weight of the injected feature.

For the sparse logistic regression experiment, the matrix of covariates X is generated according to the procedure
above. The labels Y are then generated so that the logistic model is well-specified, as described in section 6.2.

To generate data for the FIT for logistic regression, the procedure is the same as the one outlined for linear
regression above (and as outlined in Section 5) with some minor changes. WLOG assume that the points to be
deleted are (X[i, :], Y [i])ki=1. We require the following:

1. The k points to be deleted all belong to the positive class, i.e. Y [i] = 1, i = 1, . . . , k.

2. The k points to be deleted are classified correctly by the full model, i.e. X[i, :]ᵀθfull > 0, i = 1, . . . , k. (X[i, :]
denotes the i-th row of the data matrix X.)

3. The k points to be deleted have injected feature equal to 1, while the points that remain all have injected
feature equal to 0. That is, X[i, d] = 1 for i = 1, . . . , k and X[i, d] = 0 for all i > k.

G Baseline values for synthetic linear regression experiments

All of the experimental results in the main body of the paper are given relative to an absolute baseline value. In
Tables 7, 8, and 9, we report the medians of the absolute baseline values to which we are comparing for each
of the three synthetic experiments (runtime, L2, and feature injection, respectively) for linear regression. The
baseline values follow the trends we would expect. In particular, the runtimes increase sharply as the dimension
increases and slowly as the group size increases (Table 7); the unique feature weight originally learned by the
model is close to its true value, 10 (Table 8); and the distance between θfull and θ\k increases with the number of
points removed, as well as the dissimilarity of these points to the rest of the dataset as measured by the multiplier
λ (Table 9).

Table 7: Median exact retraining runtimes in seconds for table 2. The method used was a Newton step with the
Sherman-Morrison formula.

d = 1000 d = 1500 d = 2000 d = 2500 d = 3000

k = 1 0.08 0.27 0.67 1.19 2.25

k = 5 0.08 0.31 0.67 1.33 2.22

k = 10 0.08 0.31 0.63 1.33 2.04

k = 25 0.08 0.32 0.62 1.36 2.06

k = 50 0.09 0.33 0.64 1.40 2.11

Approximate Data Deletion from Machine Learning Models

Table 8: Median baseline weights on injected feature
for table 3.

p = 0.25 0.1 0.05

k = 5 8.97 10.61 11.03

k = 50 10.23 9.73 10.10

k = 100 9.51 9.99 10.01

Table 9: Median baseline L2 parameter distances for
table 4.

λ = 1 λ = 10 λ = 100

k = 5 0.018 0.175 0.192

k = 50 0.057 0.523 0.572

k = 100 0.082 0.761 0.842

H Detailed experimental results for logistic regression

Here we give the complete results—inlcuding the results for Newton’s method, as well as the IQR for each
setting—for the logistic regression experiments. As explained in appendix E, the logistic PRU computes a
projection of the Newton step onto a lower-dimensional subspace. (In fact, for both linear and logistic regression,
the PRU computes a projection of the Newton step. It just happens that for linear regression, the Newton step is
exact, while this is no longer the case for logistic regression.) As a result, retraining via Newton’s method is more
accurate than retraining via the PRU. The PRU’s advantage lies in its combination of accuracy and speed. While
slightly less accurate than Newton’s method, the PRU can be up to thousands of time faster. Indeed, since the
computational cost of Newton’s method for logistic regression is the same as the computational cost of exact
retraining for linear regression, the PRU has the same favorable runtime comparisons as in Table 2.

Table 10: Complete results for the sparse logistic FIT. For larger group sizes and sparse data, the PRU is able
to completely remove the injected feature. With any strictly positive regularization, Newton’s method will
completely remove the injected feature, but its computational cost is vastly slower than that of the PRU (see
Table 2).

p = 0.5 p = 0.1 p = 0.05

k = 25 (inf) 0.82 (0.79 - 0.82) 0.76 (0.73 - 0.80) 0.78 (0.77 - 0.79)
k = 25 (pru) 0.86 (0.83 - 0.88) 0.69 (0.64 - 0.70) 0.44 (0.40 - 0.50)
k = 25 (nwt) 0.0 (0.0 - 0.0) 0.0 (0.0 - 0.0) 0.0 (0.0 - 0.0)

k = 50 (inf) 0.81 (0.78 - 0.84) 0.82 (0.81 - 0.83) 0.82 (0.80 - 0.84)
k = 50 (pru) 0.81 (0.78 - 0.84) 0.48 (0.48 - 0.54) 0.02 (0.00 - 0.03)
k = 50 (nwt) 0.0 (0.0 - 0.0) 0.0 (0.0 - 0.0) 0.0 (0.0 - 0.0)

k = 100 (inf) 0.82 (0.81 - 0.83) 0.85 (0.83 - 0.86) 0.84 (0.82 - 0.85)
k = 100 (pru) 0.71 (0.69 - 0.71) 0.00 (0.00 - 0.01) 0.0 (0.0 - 0.0)
k = 100 (nwt) 0.0 (0.0 - 0.0) 0.0 (0.0 - 0.0) 0.0 (0.0 - 0.0)

Table 11: Complete results for the sparse logistic L2 experiment. For sparse data and moderate group deletion
sizes, the PRU’s performance surpasses the performance of the influence method. The PRU becomes nearly as
accurate as Newton’s method while maintaining a faster runtime.

p = 0.5 p = 0.1 p = 0.05

k = 25 (inf) 0.85 (0.81 - 0.87) 0.78 (0.75 - 0.80) 0.78 (0.77 - 0.79)
k = 25 (pru) 0.86 (0.84 - 0.87) 0.80 (0.79 - 0.81) 0.65 (0.63 - 0.69)
k = 25 (nwt) 0.08 (0.07 - 0.09) 0.02 (0.02 - 0.03) 0.01 (0.01 - 0.02)

k = 50 (inf) 0.85 (0.82 - 0.86) 0.83 (0.81 - 0.83) 0.82 (0.80 - 0.84)
k = 50 (pru) 0.85 (0.83 - 0.86) 0.69 (0.68 - 0.72) 0.20 (0.18 - 0.25)
k = 50 (nwt) 0.08 (0.07 - 0.09) 0.03 (0.02 - 0.03) 0.01 (0.01 - 0.02)

k = 100 (inf) 0.85 (0.84 - 0.85) 0.86 (0.84 - 0.87) 0.84 (0.82 - 0.85)
k = 100 (pru) 0.80 (0.79 - 0.81) 0.24 (0.21 - 0.24) 0.13 (0.12 - 0.14)
k = 100 (nwt) 0.09 (0.08 - 0.09) 0.03 (0.02 - 0.04) 0.01 (0.01 - 0.01)

