
Online probabilistic label trees

A Training in PLT

The pseudocode with a brief description of the training algorithm for IPLTs is given in the main text. Here
we discuss it in more detail. The algorithm first initializes all node classifiers. The training relies on a proper
assignment of training examples to nodes. To train probabilistic classifiers η̂(v), v ∈ VT , in all nodes of a tree
T , we need to properly filter training examples as given in (2). In each iteration the algorithm identifies for a
given training example a set of positive and negative nodes, i.e., the nodes for which a training example is treated
respectively as positive (i.e, (x, zv = 1)), or negative (i.e., (x, zv = 0)). The AssignToNodes method is given in
Algorithm 9. It initializes the positive nodes to the empty set and the negative nodes to the root node (to deal
with y of all zeros). Next, it traverses the tree from the leaves corresponding to the labels of the training example
to the root adding the visited nodes to the set of positive nodes. It also removes each visited node from the set of
negative nodes, if it has been added to this set before. All children of the visited node, which are not in the set of
positive nodes, are then added to the set of negative nodes. If the parent node of the visited node has already
been added to positive nodes, the traversal on this path stops.

By using the positive and negative nodes, the procedure updates the corresponding classifiers with an online
learner Aonline of choice. Note that all node classifiers are trained in fact independently as updates in any node do
not influence the training of the other nodes. The output of the algorithm is a set of probabilistic classifiers H.

Algorithm 9 IPLT/OPLT.AssignToNodes(T,x,Lx)

1: P = ∅, N = {rT } . Initialize sets of positive and negative nodes
2: for j ∈ Lx do . For all labels of the training example
3: v = `j . Set v to a leaf corresponding to label j
4: while v 6= Null and v 6∈ P do . On a path to the root or the first positive node (excluded)
5: P = P ∪ {v} . Assign a node to positive nodes
6: N = N \ {v} . Remove the node from negative nodes if added there before
7: for v′ ∈ Ch(v) do . For all its children
8: if v′ 6∈ P then N = N ∪ {v′} . If a child is not a positive node assign it to negative nodes

9: v = pa(v) . Move up along the path

10: return (P,N) . Return a set of positive and negative nodes for the training example

B Prediction in PLT

Algorithm 10 outlines the prediction procedure for PLTs that returns top k labels. It is based on the uniform-cost
search. Alternatively, one can use beam search.

Algorithm 10 IPLT/OPLT.PredictTopLabels(T,H, k,x)

1: ŷ = 0, Q = ∅, . Initialize prediction vector to all zeros and a priority queue, ordered descending by η̂v(x)
2: k′ = 0 . Initialize counter of predicted labels
3: Q.add((rT , η̂(x, rT ))) . Add the tree root with the corresponding estimate of probability
4: while k′ < k do . While the number of predicted labels is less than k
5: (v, η̂v(x)) = Q.pop() . Pop the top element from the queue
6: if IsLeaf(v) then . If the node is a leaf
7: ŷLabel(v) = 1 . Set the corresponding label in the prediction vector

8: k′ = k′ + 1 . Increment the counter
9: else . If the node is an internal node
10: for v′ ∈ Ch(v) do . For all child nodes
11: η̂v′(x) = η̂v(x)× η̂(x, v′) . Compute η̂v′ (x) using η̂(v′) ∈ H
12: Q.add((v′, η̂v′(x))) . Add the node and the computed probability estimate

13: return ŷ . Return the prediction vector

C The proof of the result from Section 4.3

Theorem 2 concerns two properties, properness and efficiency, of an OPLT algorithm. We first prove that the
OPLT algorithm satisfies each of the properties in two separate lemmas. The final proof of the theorem is then
straightforward.



K. Jasinska-Kobus, M. Wydmuch, D. Thiruvenkatachari, K. Dembczyński

Lemma 1. OPLT is a proper OPLT algorithm.

Proof. We need to show that for any S and t the two of the following hold. Firstly, that the set LTt
of leaves of

tree Tt built by OPLT correspond to Lt, the set of all labels observed in St. Secondly, that the set Ht of classifiers
trained by OPLT is exactly the same as H = IPLT.Train(Tt, Aonline,St), i.e., the set of node classifiers trained
incrementally by Algorithm 1 on D = St and tree Tt given as input parameter. We will prove it by induction with
the base case for S0 and the induction step for St, t ≥ 1, with the assumption that the statement holds for St−1.

For the base case of S0, tree T0 is initialized with the root node rT with no label assigned and set H0 of node
classifiers with a single classifier assigned to the root. As there are no observations, this classifier receives no
updates. Now, notice that IPLT.Train, run on T0 and S0, returns exactly the same set of classifiers H that
contains solely the initialized root node classifier without any updates (assuming that initialization procedure is
always the same). There are no labels in any sequence of 0 observations and also T0 has no label assigned.

The induction step is more involved as we need to take into account the internal loop, which extends the tree
with new labels. Let us consider two cases. In the first one, observation (xt,Lxt

) does not contain any new label.
This means that that the tree Tt−1 will not change, i.e., Tt−1 = Tt. Moreover, node classifiers from Ht−1 will get
the same updates for (xt,Lxt) as classifiers in IPLT.Train, therefore Ht = IPLT.Train(Tt, Aonline,St). It also
holds that lj ∈ LTt

iff j ∈ Lt, since Lt−1 = Lt. In the second case, observation (xt,Lxt
) has m′ = |Lxt

\ Lt−1|
new labels. Let us make the following assumption for the UpdateTree procedure, which we later prove that
it indeed holds. Namely, we assume that the set Ht′ of classifiers after calling the UpdateTree procedure is
the same as the one being returned by IPLT.Train(Tt, Aonline,St−1), where Tt is the extended tree. Moreover,
leaves of Tt correspond to all observed labels seen so far. If this is the case, the rest of the induction step is the
same as in the first case. All updates to classifiers in Ht′ for (xt,Lxt) are the same as in IPLT.Train. Therefore
Ht = IPLT.Train(Tt, Aonline,St).

Now, we need to show that the assumption for the UpdateTree procedure holds. To this end we also use
induction, this time on the number m′ of new labels. For the base case, we take m′ = 1. The induction step is
proved for m′ > 1 with the assumption that the statement holds for m′ − 1.

For m′ = 1 we need consider two scenarios. In the first scenario, the new label is the first label in the sequence.
This label will be then assigned to the root node rT . So, the structure of the tree does not change, i.e., Tt−1 = Tt.
Furthermore, the set of classifiers also does not changed, since the root classifier has already been initialized. It
might be negatively updated by previous observations. Therefore, we have Ht′ = IPLT.Train(Tt, Aonline,St−1).
Furthermore, all observed labels are appropriately assigned to the leaves of Tt. In the second scenario, set Lt−1 is
not empty. We need to consider in this scenario the three variants of tree extension illustrated in Figure 1.

In the first variant, tree Tt−1 is extended by one leaf node only without any additional ones. AddNode
creates a new leaf node v′′ with the new label assigned to the tree. After this operation the tree contains all
labels from St. The new leaf v′′ is added as a child of the selected node v. This new node is initialized as
η̂(v′′) = InverseClassifier(θ̂(v)). Recall that InverseClassifier creates a wrapper that inverts the behavior
of the base classifier. It predicts 1− η̂, where η̂ is the prediction of the base classifier, and flips the updates, i.e.,
positive updates become negative and negative updates become positive. From the definition of the auxiliary
classifier, we know that θ̂(v) has been trained on all positives updates of η̂(v). So, η̂(v′′) is initialized with a state
as if it was updated negatively each time η̂(v) was updated positively in sequence St−1. Notice that in St−1 there
is no observation labeled with the new label. Therefore η̂(v′′) is the same as if it was created and updated using
IPLT.Train. There are no other operations on Tt−1, so we have that Ht′ = IPLT.Train(Tt, Aonline,St−1).

In the second variant, tree Tt−1 is extended by internal node v′ and leaf node v′′. The internal node v′ is added
in InsertNode. It becomes a parent of all child nodes of the selected node v and the only child of this node.
Thus, all leaves of the subtree of v does not change. Since v′ is the root of this subtree, its classifier η̂(v′) should
be initialized as a copy of the auxiliary classifier θ̂(v), which has accumulated all updates from and only from
observations with labels assigned to the leaves of this subtree. The addition of the leaf node v′′ can be analyzed
as in the first variant. Since nothing else has changed in the tree and in the node classifiers, we have that
Ht′ = IPLT.Train(Tt, Aonline,St−1). Moreover, the tree contains the new label, so the statement holds.

The third variant is similar to the second one. Tree Tt−1 is extended by two leaf nodes v′ and v′′ being children of
the selected node v. Insertion of leaf v′ is similar to insertion of node v′ in the second variant, with the difference
that v does not have any children and its label has to be reassigned to v′. The new classifier in v′ is initialized



Online probabilistic label trees

as a copy of the auxiliary classifier θ̂(v), which contains all updates from and only from observations with the
label assigned previously to v. Insertion of v′′ is exactly the same as in the second variant. From the above, we
conclude that Ht′ = IPLT.Train(Tt, Aonline,St−1) and that Tt contains all labels from Tt−1 and the new label.
In this way, we prove the base case.

The induction step is similar to the second scenario of the base case. The only difference is that we do not extent
tree Tt−1, but an intermediate tree with m′ − 1 new labels already added. Because of the induction hypothesis,
the rest of the analysis of the three variants of tree extension is exactly the same. This ends the proof that the
assumption for the inner loop holds. At the same time, it finalizes the entire proof.

Lemma 2. OPLT is an efficient OPLT algorithm.

Proof. The OPLT maintains one additional classifier per each node in comparison to IPLT. Hence, for a single
observation, there is at most one update more for each positive node. Furthermore, the time and space cost of
the complete tree building policy is constant per a single label, if implemented with an array list. In this case,
insertion of any new node can be made in amortized constant time, and the space required by the array list is
linear in the number of nodes. Concluding the above, the time and space complexity of OPLT is in constant
factor of Ct and Cs, the time and space complexity of IPLT respectively. This proves that OPLT is an efficient
OPLT algorithm.

Theorem 2. OPLT is a proper and efficient online PLT algorithm.

Proof. The theorem directly follows from Lemma 1 and Lemma 2.

D Detailed results of OPLT and CMT on extreme multi-label classification tasks

In Table 4, complementary to Table 2, we report performance on propensity scored precision at {1, 3, 5} (Jain
et al., 2016) defined as:

PSP@k =
1

k

∑
j∈L̂x

qjJỹj = 1K ,

where qj = 1 + C(Nj +B)−A is inverse propensity of label j, where Nj is the number of data points annotated
with label j in the observed ground truth dataset of size N , A, B are dataset specific parameters and C =
(logN − 1)(B + 1)A. For Wiki10 and AmazonCat datasets we use A = 0.55, B = 1.5, for WikiLSHTC
A = 0.5, B = 0.4, and for Amazon A = 0.6, B = 2.6 as recommended in (Jain et al., 2016). Since values of qj
are higher for infrequent labels, propensity scored precision at k promotes the accurate prediction on harder to
predict tail labels. As in the case of the results in terms of standard precision at k, OPLT outperforms CMT,
being slightly worse than its offline counterparts IPLT and Parabel, especially on the WikiLSHTC dataset.

Table 4: Mean propensity weighted precision at {1, 3, 5} (%) of Parabel, IPLT, CMT, OPLT for XMLC tasks.
Notation: PP@k – propensity weighted precision at k-position, R – Random policy, B – Best-greedy policy.

AmazonCat-13K Wiki10-31K WikiLSHTC-320K Amazon-670K
Algorithm PP@1 PP@3 PP@5 PP@1 PP@3 PP@5 PP@1 PP@3 PP@5 PP@1 PP@3 PP@5

Parabel 50.89 63.60 71.27 11.73 12.70 13.68 25.91 31.50 34.77 25.39 28.57 31.21
IPLT 49.97 63.13 70.77 12.26 13.75 14.80 24.16 29.09 32.29 25.25 28.85 32.12

CMT 47.48 54.25 56.03 9.68 9.66 9.67 - - - - - -
OPLTR 48.98 60.67 67.51 11.64 13.07 14.12 16.12 19.70 22.68 20.28 24.04 27.35
OPLTB 49.30 61.55 68.64 11.59 13.19 14.26 20.69 24.87 28.14 23.41 27.26 30.49
OPLT-W 49.86 62.91 70.44 11.69 13.41 14.43 22.56 27.10 30.23 23.65 27.62 30.95

In Table 5, we show detailed results of the empirical study we performed to evaluate OPLTs comprehensively.
In addition to precision at {1, 3, 5} and train times, we also report test times. We present the results for every
algorithm that is using an incremental learning algorithm, updating the tree nodes (IPLT, CMT, and OPLT)



K. Jasinska-Kobus, M. Wydmuch, D. Thiruvenkatachari, K. Dembczyński

after 1 and 3 passes over the training dataset. We also present the results of OPLT-W with a warm-start sample
of size 5, 10, and 15% of the training dataset (warm-up dataset). In all cases, the initial tree was created using
hierarchical 2-means clustering on the warm-up sample and later extended using Best-greedy policy. The
results show that IPLT and OPLT achieve good results after just one pass over datasets. Prediction times of
OPLT are slightly worse than IPLT, probably due to the worst tree structure, the prediction times of OPLT
with warm-start are better than OPLT build from scratch. The reported prediction times of Parabel are given
for the batch prediction. The prediction times seem to be faster, but Parabel needs to decompress the model
during prediction, which makes it less suitable for online prediction. It is only efficient when the batches are
sufficiently large.

Table 5: Mean precision at {1, 3, 5} (%), train and test CPU time (averaged over 5 runs) of Parabel, IPLT,
CMT, OPLT for XMLC tasks. Notation: P@k – precision at k-position, T – CPU time, R – Random policy, B
– Best-greedy policy, w – percentage of the training dataset sampled for warm-start, p – number of passes over
train dataset, ∗ – offline prediction, depends on the test dataset size. Highlighted values are presented in the
main paper in Table 2.

AmazonCat Wiki10
Algorithm P@1 P@3 P@5 ttrain ttest/N P@1 P@3 P@5 ttrain ttest/N

Parabel 92.58 78.53 63.90 11.51m ∗0.3ms 84.17 72.12 63.30 4.00m ∗0.9ms
IPLTp=1 93.11 78.72 63.98 34.2m 0.6ms 84.87 74.42 65.31 18.3m 10.1ms
IPLTp=3 93.19 78.64 63.92 115.7m 0.6ms 84.37 73.90 64.70 46.8m 10.4ms

CMTp=1 87.51 69.49 53.99 45.8m 1.1ms 80.59 64.17 55.05 35.1m 16.5ms
CMTp=3 89.43 70.49 54.23 168.3m 1.5ms 79.86 64.72 55.25 120.9m 20.4ms
OPLTR,p=1 92.66 77.44 62.52 99.5m 1.7ms 84.34 73.73 64.41 30.3m 14.1ms
OPLTR,p=3 92.65 77.43 62.59 278.3m 1.4ms 83.09 72.25 63.33 86.5m 18.2ms
OPLTB,p=1 92.74 77.74 62.91 84.1m 1.5ms 84.47 73.73 64.39 27.7m 16.4ms
OPLTB,p=3 92.77 77.70 62.93 251.9m 1.4ms 83.39 72.50 63.48 86.7m 18.2ms

OPLT-Ww=5%,p=1 93.14 78.67 63.85 40.6m 0.8ms 85.10 74.44 64.77 28.7m 16.6ms
OPLT-Ww=5%,p=3 93.11 78.50 63.75 134.3m 0.8ms 83.93 73.34 63.75 75.9m 17.0ms
OPLT-Ww=10%,p=1 93.14 78.68 63.92 43.7m 0.9ms 85.22 74.68 64.93 28.2m 17.8ms
OPLT-Ww=10%,p=3 93.10 78.51 63.79 133.9m 0.8ms 84.75 74.02 64.33 83.9m 18.3ms
OPLT-Ww=15%,p=1 93.17 78.75 63.95 50.1m 1.0ms 85.42 74.50 64.94 28.2m 17.5ms
OPLT-Ww=15%,p=3 93.15 78.54 63.82 121.6m 0.8ms 84.69 73.90 64.29 79.1m 19.5ms

WikiLSHTC Amazon
Algorithm P@1 P@3 P@5 ttrain ttest/N P@1 P@3 P@5 ttrain ttest/N

Parabel 62.78 41.22 30.27 15.4m ∗0.3ms 43.13 37.94 34.00 7.6m ∗0.3ms
IPLTp=1 58.14 37.94 28.14 69.0m 2.1ms 40.78 35.88 32.28 33.2m 5.1ms
IPLTp=3 60.80 39.58 29.24 175.1m 2.6ms 43.55 38.69 35.20 79.4m 6.2ms

OPLTR,p=1 46.36 29.85 22.53 103.0m 6.4ms 36.27 32.13 29.01 46.1m 17.0ms
OPLTR,p=3 47.76 30.97 23.37 330.1m 7.9ms 38.42 34.33 31.32 134.2m 18.2ms
OPLTB,p=1 53.32 34.22 25.52 88.6m 4.8ms 38.42 34.03 30.73 36.7m 10.0ms
OPLTB,p=3 54.69 35.32 26.31 300.0m 5.8ms 41.09 36.65 33.42 111.9m 13.0ms

OPLT-Ww=5%,p=1 57.46 36.95 27.35 82.5m 3.6ms 39.45 34.85 31.44 35.3m 9.1ms
OPLT-Ww=5%,p=3 58.51 37.92 28.04 249.8m 4.6ms 41.96 37.39 34.07 100.0m 11.1ms
OPLT-Ww=10%,p=1 58.20 37.50 27.73 71.9m 3.0ms 39.71 35.03 31.57 36.6m 9.1ms
OPLT-Ww=10%,p=3 59.23 38.39 28.38 205.7m 3.4ms 42.21 37.60 34.25 98.3m 11.3ms
OPLT-Ww=15%,p=1 58.68 37.85 27.97 72.1m 2.8ms 40.11 35.35 31.84 34.0m 8.3ms
OPLT-Ww=15%,p=3 59.66 38.67 28.57 196.0m 3.1ms 42.41 37.70 34.29 85.1m 9.1ms



Online probabilistic label trees

E Detailed results of OPLT and CMT on few-shot multi-class classification tasks

In Table 6 we present additional results for experiments on few-shot multi-class classification. We report results
on the test set after 1 and 3 passes. In addition to accuracy and train times, we also report test times after 1 and
3 passes over the training dataset.

Table 6: Mean accuracy of prediction (%) and train and test CPU time of CMT, OPLT for few-shot multi-class
classification tasks. Notation: Acc – accuracy, T – CPU time, N – number of samples in test set, R – Random
policy, B – Best-greedy policy, p – number of passes over train dataset. Highlighted values are presented in the
main paper in Table 3.

ALOI Wikipara 1-shot Wikipara 3-shot Wikipara 5-shot
Algorithm Acc. ttrain ttest/N Acc. ttrain ttest/N Acc. ttrain ttest/N Acc. ttrain ttest/N

CMTp=1 17.63 37.8s 0.78ms 2.22 7.1s 0.51ms 3.22 20.9s 0.76ms 4.15 81.1s 3.22ms
OPLTR,p=1 62.58 6.0s 0.12ms 1.51 2.6s 0.82ms 13.31 6.7s 1.83ms 26.06 11.6s 2.61ms
OPLTB,p=1 63.91 6.1s 0.12ms 0.80 2.2s 0.55ms 11.40 6.4s 1.67ms 23.12 10.3s 2.48ms

CMTp=3 71.98 207s 0.57ms 2.48 21.3s 0.37ms 3.28 63.1s 0.49ms 4.21 240.9s 1.22ms
OPLTR,p=3 66.50 29.3s 0.11ms 8.99 4.6s 1.14ms 27.34 16.4s 2.64ms 40.67 27.6s 2.83ms
OPLTB,p=3 67.26 18.1s 0.10ms 3.31 4.4s 0.87ms 24.66 15.6s 2.37ms 39.13 27.2s 2.54ms

F Performance of OPLT with Best-greedy policy and different α values

In Table 7, OPLT with Best-greedy policy and different values of tree balancing parameter α is compared to
IPLT and OPLT with Random policy. All other parameters of the model were set as described in Section 5.1.
It shows that for α ≥ 0.75, OPLT achieves the tree depth close or the same as perfectly balanced tree build for
IPLT, at the same time having the best predictive performance and the shortest training and prediction time
among OPLT variants.

G Performance analysis of OPLT with warm-start

In Table 8, we compare OPLT with warm-start (OPLT-W) with two variants of IPLT. In the first variant,
IPLT is trained only on the warm-up training dataset, and in the second variant, IPLT uses a tree created on
warm-up, but then updated with all examples from the training set but without updating the tree structure.
In both variants, IPLT cannot predict labels that are not present in the initial warm-up dataset. All other
parameters of the model were set as described in Section 5.1. This experiment shows the significant gain in
predictive performance on WikiLSHTC and Amazon datasets by extending a tree with newly observed labels over
the IPLT variants that do not take new labels into account.



K. Jasinska-Kobus, M. Wydmuch, D. Thiruvenkatachari, K. Dembczyński

Table 7: Mean precision at {1, 3, 5} (%), train time, test time and tree depth (averaged over 5 runs) of OPLT with
Best-greedy policy with different α values compared with IPLT and OPLT with Random policy. Notation:
P@k – precision at k-position, t – CPU time, d(T ) – tree depth, R – Random policy, B – Best-greedy policy,
α – tree balancing parameter, percentage of the training dataset sampled for warm-start, p – number of passes
over train dataset.

AmazonCat Wiki10
Algorithm P@1 P@3 P@5 ttrain ttest/N d(T ) P@1 P@3 P@5 ttrain ttest/N d(T )

IPLTp=3 93.10 78.52 63.81 115.7m 0.6ms 10.0 83.49 73.06 64.12 46.8m 10.4ms 11.0
OPLTR,p=3 92.65 77.43 62.59 278.3m 1.4ms 10.0 83.09 72.25 63.33 86.5m 18.2ms 11.0

OPLTB,α=0.25,p=3 92.77 77.77 62.99 303.1m 1.5ms 30.0 82.93 72.41 63.38 88.2m 20.0ms 24.6
OPLTB,α=0.375,p=3 92.80 77.72 62.93 250.2m 1.5ms 18.0 83.10 72.43 63.37 84.6m 18.9ms 17.2
OPLTB,α=0.5,p=3 92.79 77.74 62.95 257.6m 1.4ms 14.0 83.09 72.48 63.45 86.0m 18.7ms 14.0
OPLTB,α=0.625,p=3 92.77 77.74 62.96 245.2m 1.4ms 12.0 83.25 72.50 63.48 87.3m 19.6ms 12.6
OPLTB,α=0.75,p=3 92.77 77.70 62.93 248.9m 1.4ms 11.0 83.39 72.50 63.48 86.7m 18.2ms 12.0
OPLTB,α=0.875,p=3 92.73 77.64 62.85 207.7m 1.2ms 10.0 83.41 72.50 63.44 82.2m 17.6ms 11.0

WikiLSHTC Amazon
Algorithm P@1 P@3 P@5 ttrain ttest/N d(T ) P@1 P@3 P@5 ttrain ttest/N d(T )

IPLTp=3 60.80 39.58 29.24 175.1m 2.6ms 14.0 43.55 38.69 35.20 79.4m 6.2ms 15.0
OPLTR,p=3 47.76 30.97 23.37 330.1m 7.9ms 14.8 38.42 34.33 31.32 134.2m 18.2ms 16.0

OPLTB,α=0.25,p=3 53.14 34.36 25.69 337.8m 6.3ms 68.4 38.83 34.72 31.69 139.2m 16.4ms 38.4
OPLTB,α=0.375,p=3 53.47 34.57 25.81 309.1m 6.9ms 30.8 39.17 35.04 31.99 126.6m 16.2ms 21.2
OPLTB,α=0.5,p=3 53.77 34.74 25.93 294.3m 6.0ms 21.8 39.47 35.26 32.17 123.5m 14.1ms 17.8
OPLTB,α=0.625,p=3 54.01 34.90 26.04 298.7m 6.1ms 18.0 40.06 35.79 32.65 118.9m 14.0ms 16.0
OPLTB,α=0.75,p=3 54.69 35.32 26.31 297.0m 5.8ms 16.0 41.09 36.65 33.42 111.9m 13.0ms 16.0
OPLTB,α=0.875,p=3 54.56 35.22 26.25 285.4m 5.8ms 15.0 41.18 36.75 33.53 110.1m 12.7ms 15.0

Table 8: Mean precision at {1, 3, 5} (%, averaged over 5 runs) of IPLT trained only on warm-start training
dataset and IPLT with a tree created on warm-start training dataset (IPLT-U) and updated with all examples
without updating the tree and OPLT with warm-start (OPLT-W). Notation: P@k – precision at k-position, w –
percentage of the training dataset sampled for warm-start, p – number of passes over train dataset.

AmazonCat Wiki10 WikiLSHTC Amazon
Algorithm P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5 P@1 P@3 P@5

IPLTw=5%,p=3 88.49 70.48 55.49 80.69 61.68 51.85 38.95 22.74 16.37 10.98 9.55 8.77
IPLT-Uw=5%,p=3 93.15 78.54 63.62 83.95 72.99 63.20 54.70 34.54 25.27 29.54 22.65 18.22
OPLT-Ww=5%,p=3 93.11 78.50 63.75 83.93 73.34 63.75 58.51 37.92 28.04 41.96 37.39 34.07

IPLTw=10%,p=3 89.92 72.97 57.99 80.79 65.46 55.38 44.59 26.71 19.35 15.77 13.70 12.45
IPLT-Uw=10%,p=3 93.12 78.58 63.79 84.38 73.52 63.88 57.47 36.81 27.05 35.41 28.84 24.06
OPLT-Ww=10%,p=3 93.10 78.51 63.79 84.75 74.02 64.33 59.23 38.39 28.38 42.21 37.60 34.25

IPLTw=15%,p=3 90.69 74.17 59.25 81.61 67.28 57.18 47.63 29.03 21.11 19.38 16.79 15.24
IPLT-Uw=15%,p=3 93.13 78.62 63.85 84.65 73.93 64.24 58.55 37.71 27.77 37.90 31.87 27.19
OPLT-Ww=15%,p=3 93.15 78.54 63.82 84.69 73.90 64.29 59.66 38.67 28.57 42.41 37.70 34.29


