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Abstract

We introduce online probabilistic label trees
(OPLTs), an algorithm that trains a label tree
classifier in a fully online manner without any
prior knowledge about the number of training
instances, their features and labels. OPLTs
are characterized by low time and space com-
plexity as well as strong theoretical guaran-
tees. They can be used for online multi-label
and multi-class classification, including the
very challenging scenarios of one- or few-shot
learning. We demonstrate the attractiveness
of OPLTs in a wide empirical study on sev-
eral instances of the tasks mentioned above.

1 Introduction

In modern machine learning applications, the label
space can be enormous, containing even millions of dif-
ferent labels. Problems of such scale are often referred
to as extreme classification. Some notable examples of
such problems are tagging of text documents (Dekel
and Shamir, 2010), content annotation for multimedia
search (Deng et al., 2011), and different types of rec-
ommendation, including webpages-to-ads (Beygelzimer
et al., 2009), ads-to-bid-words (Agrawal et al., 2013;
Prabhu and Varma, 2014), users-to-items (Weston
et al., 2013; Zhuo et al., 2020), queries-to-items (Medini
et al., 2019), or items-to-queries (Chang et al., 2020).
In these practical applications, learning algorithms run
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in rapidly changing environments. Hence, the space
of labels and features might grow over time as new
data points arrive. Retraining the model from scratch
every time a new label is observed is computationally
expensive, requires storing all previous data points, and
introduces long retention before the model can predict
new labels. Therefore, it is desirable for algorithms
operating in such a setting to work in an incremental
fashion, efficiently adapting to the growing label and
feature space.

To tackle extreme classification problems efficiently,
we consider a class of label tree algorithms that use a
hierarchical structure of classifiers to reduce the compu-
tational complexity of training and prediction. The tree
nodes contain classifiers that direct the test examples
from the root down to the leaf nodes, where each leaf
corresponds to one label. We focus on a subclass of label
tree algorithms that uses probabilistic classifiers. Ex-
amples of such algorithms for multi-class classification
include hierarchical softmax (HSM) (Morin and Bengio,
2005), implemented, for example, in fastText (Joulin
et al., 2016), and conditional probability estimation tree
(CPET) (Beygelzimer et al., 2009). The generalization
of this idea to multi-label classification is known under
the name of probabilistic label trees (PLTs) (Jasinska
et al., 2016), and has been recently implemented in
several state-of-the-art algorithms: Parabel (Prabhu
et al., 2018), extremeText (Wydmuch et al., 2018),
Bonsai Tree (Khandagale et al., 2019), and Atten-
tionXML (You et al., 2019). While some of the above
algorithms use incremental procedures to train node
classifiers, only CPET allows for extending the model
with new labels, but it only works for multi-class classi-
fication. For all the other algorithms, a label tree needs
to be given before training of the node classifiers.

In this paper, we introduce online probabilistic label
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trees (OPLTs), an algorithm for multi-class and multi-
label problems, which trains a label tree classifier in a
fully online manner. This means that the algorithm
does not require any prior knowledge about the number
of training instances, their features and labels. The tree
is updated every time a new label arrives with a new
example, in a similar manner as in CPET (Beygelzimer
et al., 2009), but the mechanism used there has been
generalized to multi-label data. Also, new features are
added when they are observed. This can be achieved
by feature hashing (Weinberger et al., 2009) as in the
popular Vowpal Wabbit package (Langford et al., 2007).
We rely, however, on a different technique based on
recent advances in the implementation of hash maps,
namely the Robin Hood hashing (Celis et al., 1985).

We require the model trained by OPLT to be equiv-
alent to a model trained as a tree structure would be
known from the very beginning. In other words, the
node classifiers should be exactly the same as the ones
trained on the same sequence of training data using the
same incremental learning algorithm, but with the tree
produced by OPLT given as an input parameter before
training them. We refer to an algorithm satisfying this
requirement as a proper online PLT. If the incremental
tree can be built efficiently, then we additionally say
that the algorithm is also efficient. These properties
are important as a proper and efficient online PLT al-
gorithm possesses similar guarantees as PLTs in terms
of computational complexity (Busa-Fekete et al., 2019)
and statistical performance (Wydmuch et al., 2018).

To our best knowledge, the only algorithm that also
addresses the problem of fully online learning in the ex-
treme multi-class and multi-label setting is the recently
introduced contextual memory tree (CMT) (Sun et al.,
2019), which is a specific online key-value structure
that can be applied to a wide spectrum of online prob-
lems. More precisely, CMT stores observed examples
in the near-balanced binary tree structure that grows
with each new example. The problem of mapping keys
to values is converted into a collection of classifica-
tion problems in the tree nodes, which predict which
sub-tree contains the best value corresponding to the
key. CMT has been empirically proven to be useful
for the few-shot learning setting in extreme multi-class
classification, where it has been used directly as a classi-
fier, and for extreme multi-label classification problems,
where it has been used to augment an online one-versus-
rest (OVR) algorithm. In the experimental study, we
compare OPLT with its offline counterparts and CMT
on both extreme multi-label classification and few-shot
multi-class classification tasks.

Some other existing extreme classification approaches
can be tried to be used in the fully online setting,
but the adaptation is not straightforward and there

does not exist any such algorithm. For example, the
efficient OVR approaches (e.g., DiSMEC (Babbar
and Schölkopf, 2017), PPDSparse (Yen et al., 2017),
ProXML (Babbar and Schölkopf, 2019)) work only
in the batch mode. Interestingly, one way of obtain-
ing a fully online OVR is to use OPLT with a 1-level
tree. Popular decision-tree-based approaches, such as
FastXML (Prabhu and Varma, 2014), also work in the
batch mode. An exception is LOMtree (Choromanska
and Langford, 2015)), which is an online algorithm. It
can be adapted to the fully online setting, but as shown
in (Sun et al., 2019) its performance is worse than the
one of CMT. Recently, the idea of soft trees, closely
related to the hierarchical mixture of experts (Jordan
and Jacobs, 1994), has gained increasing attention in
the deep learning community (Frosst and Hinton, 2017;
Kontschieder et al., 2015; Hehn et al., 2020). However,
it has been used neither in the extreme nor in the fully
online setting.

The paper is organized as follows. In Section 2, we
define the problem of extreme multi-label classification
(XMLC). Section 3 recalls the PLT model. Section 4
introduces the OPLT algorithm, defines the desired
properties and shows that the introduced algorithm
satisfies them. Section 5 presents experimental results.
The last section concludes the paper.

2 Extreme multi-label classification

Let X denote an instance space and L be a finite set
of m labels. We assume that an instance x ∈ X is
associated with a subset of labels Lx ⊆ L (the sub-
set can be empty); this subset is often called the set
of relevant or positive labels, while the complement
L\Lx is considered as irrelevant or negative for x. We
identify the set Lx of relevant labels with the binary
vector y = (y1, y2, . . . , ym), in which yj = 1⇔ j ∈ Lx.
By Y = {0, 1}m we denote the set of all possible la-
bel vectors. We assume that observations (x,y) are
generated independently and identically according to
a probability distribution P(x,y) defined on X × Y.
Notice that the above definition of multi-label classi-
fication includes multi-class classification as a special
case in which ‖y‖1 = 1 (‖ · ‖ denotes a vector norm).
In case of XMLC, we assume m to be a large number
but the size of the set of relevant labels Lx is usually
much smaller than m, that is |Lx| � m.

3 Probabilistic label trees

We recall the definition of probabilistic label trees
(PLTs), introduced in (Jasinska et al., 2016). PLTs
follow a label-tree approach to efficiently solve the prob-
lem of estimation of marginal probabilities of labels in
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Algorithm 1 IPLT.Train(T,Aonline,D)

1: HT = ∅ . Initialize a set of node probabilistic classifiers
2: for v ∈ VT do η̂(v) = NewClassifier(), HT = HT ∪ {η̂(v)} . Initialize binary classifier for each node in the tree
3: for i = 1→ n do . For each observation in the training sequence
4: (P,N) = AssignToNodes(T,xi,Lxi) . Compute its positive and negative nodes
5: for v ∈ P do Aonline.Update(η̂(v), (xi, 1)) . Update all positive nodes with a positive update with x

6: for v ∈ N do Aonline.Update(η̂(v), (xi, 0)) . Update all negative nodes with a negative update with x

7: return HT . Return the set of node probabilistic classifiers

multi-label problems. They reduce the original prob-
lem to a set of binary problems organized in the form
of a rooted, leaf-labeled tree with m leaves. We denote
a single tree by T , a root node by rT , and the set of
leaves by LT . The leaf lj ∈ LT corresponds to the label
j ∈ L. The set of leaves of a (sub)tree rooted in node
v is denoted by Lv. The set of labels corresponding to
all leaf nodes in Lv is denoted by Lv. The parent node
of v is denoted by pa(v), and the set of child nodes by
Ch(v). The path from node v to the root is denoted
by Path(v). The length of the path is the number of
nodes on the path, which is denoted by lenv. The set
of all nodes is denoted by VT . The degree of a node
v ∈ VT , being the number of its children, is denoted by
degv = |Ch(v)|.

PLT uses tree T to factorize conditional probabilities
of labels, ηj(x) = P(yj = 1|x) = P(j ∈ Lx|x). To this
end let us define for every y a corresponding vector z
of length |VT |,whose coordinates, indexed by v ∈ VT ,
are given by:

zv = J
∑
`j∈Lv

yj ≥ 1K . (1)

In other words, the element zv of z, corresponding to
the node v ∈ VT , is set to one iff y contains at least one
label corresponding to leaves in Lv. With the above
definition, it holds for any node v ∈ VT that:

ηv(x) = P(zv = 1 |x) =
∏

v′∈Path(v)

η(x, v′) , (2)

where η(x, v) = P(zv = 1|zpa(v) = 1,x) for non-root
nodes, and η(x, v) = P(zv = 1 |x) for the root (see,
e.g., Jasinska et al. (2016)). Notice that for leaf nodes
we get the conditional probabilities of labels, i.e.,

ηlj (x) = ηj(x) , for lj ∈ LT . (3)

For a given T it suffices to estimate η(x, v), for v ∈
VT , to build a PLT model. To this end one usually
uses a function class H : Rd 7→ [0, 1] which contains
probabilistic classifiers of choice, for example, logistic
regression. We assign a classifier from H to each node
of the tree T . We index this set of classifiers by the
elements of VT as H = {η̂(v) ∈ H : v ∈ VT }. Training
is performed usually on a dataset D = {(xi,yi)}ni=1

consisting of n tuples of feature vector xi ∈ Rd and

label vector yi ∈ {0, 1}m. Because of factorization (2),
node classifiers can be trained as independent tasks.

The quality of the estimates η̂j(x), j ∈ L, can be
expressed in terms of the L1-estimation error in each
node classifier, i.e., by |η(x, v)− η̂(x, v)|. PLTs obey
the following bound (Wydmuch et al., 2018).

Theorem 1. For any tree T and P(y|x) the following
holds for v ∈ VT :

|ηj(x)− η̂j(x)| ≤
∑

v′∈Path(lj)

ηpa(v′)(x) |η(x, v′)−η̂(x, v′)| ,

where for the root node ηpa(rT )(x) = 1.

Prediction for a test example x relies on searching
the tree. For metrics such as precision@k, the optimal
strategy is to predict k labels with the highest marginal
probability ηj(x). To this end, the prediction procedure
traverses the tree using the uniform-cost search to
obtain the top k estimates η̂j(x) (see Appendix B for
the pseudocode).

4 Online probabilistic label trees

A PLT model can be trained incrementally, on obser-
vations from D = {(xi,yi)}ni=1, using an incremental
learning algorithm Aonline for updating the tree nodes.
Such incremental PLT (IPLT) is given in Algorithm 1.
In each iteration, it first identifies the set of positive and
negative nodes using the AssignToNodes procedure
(see Appendix A for the pseudocode and description).
The positive nodes are those for which the current
training example is treated as positive (i.e, (x, zv = 1)),
while the negative nodes are those for which the ex-
ample is treated as negative (i.e., (x, zv = 0)). Next,
IPLT appropriately updates classifiers in the identi-
fied nodes. Unfortunately, the incremental training
in IPLT requires the tree structure T to be given in
advance.

To construct a tree, at least the number m of labels
needs to be known. More advanced tree construc-
tion procedures exploit additional information like fea-
ture values or label co-occurrence (Prabhu et al., 2018;
Khandagale et al., 2019). In all such algorithms, the
tree is built prior to the learning of node classifiers.
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Algorithm 2 OPLT.Init()

1: rT = NewNode(), VT = {rT } . Create the root of the tree
2: η̂(rT ) = NewClassifier(), HT = {η̂T (rT )} . Initialize a new classifier in the root

3: θ̂(rT ) = NewClassifier(), ΘT = {θ(rT )} . Initialize an auxiliary classifier in the root

Algorithm 3 OPLT.Train(S, Aonline, Apolicy)

1: for (xt,Lxt) ∈ S do . For each observation in S
2: if Lxt \ Lt−1 6= ∅ then UpdateTree(xt,Lxt , Apolicy) . If the obser. contains new labels, add them to the tree
3: UpdateClassifiers(xt,Lxt , Aonline) . Update the classifiers
4: send Ht, Tt = HT , VT . Send the node classifiers and the tree structure

Here, we analyze a different scenario in which an al-
gorithm operates on a possibly infinite sequence of
training instances, and the tree is constructed online,
simultaneously with incremental training of node clas-
sifiers, without any prior knowledge of the set of labels
or training data.

Let us denote a sequence of observations by S =
{(xi,Lxi)}∞i=1 and a subsequence consisting of the first
t instances by St. We use here Lxi

instead of yi as the
number of labels m, which is also the length of yi, in-
creases over time in this online scenario.1 Furthermore,
let the set of labels observed in St be denoted by Lt,
with L0 = ∅. An online algorithm returns at step t a
tree structure Tt constructed over labels in Lt and a set
of node classifiers Ht. Notice that the tree structure
and the set of classifiers change in each iteration in
which one or more new labels are observed. Below we
discuss two properties that are desired for such online
algorithms, defined in relation to the IPLT algorithm
given above.
Definition 1 (A proper online PLT algorithm). Let
Tt and Ht be respectively a tree structure and a set
of node classifiers trained on a sequence St using an
online algorithm B. We say that B is a proper online
PLT algorithm, when for any S and t we have that

• lj ∈ LTt
iff j ∈ Lt, i.e., leaves of Tt correspond to

all labels observed in St,

• and Ht is exactly the same as H =
IPLT.Train(Tt, Aonline,St), i.e., node classifiers
from Ht are the same as the ones trained incre-
mentally by Algorithm 1 on D = St and tree Tt
given as input parameter.

In other words, we require that whatever tree the on-
line algorithm produces, the node classifiers should be
trained in the same way as if the tree was known from
the very beginning of training. Thanks to that, we can
control the quality of each node classifier, as we are

1The same applies to xi as the number of features also
increases. However, we keep the vector notation in this
case, as it does not impact the algorithm’s description.

not missing any update. Since the model produced by
a proper online PLT is the same as of IPLT, the same
statistical guarantees apply to both of them.

The above definition can be satisfied by a naive al-
gorithm that stores all observations seen so far, uses
them in each iteration to build a tree and train node
classifiers with the IPLT algorithm from scratch. This
approach is costly. Therefore, we also demand an on-
line algorithm to be space and time-efficient in the
following sense.

Definition 2 (An efficient online PLT algorithm). Let
Tt and Ht be respectively a tree structure and a set
of node classifiers trained on a sequence St using an
online algorithm B. Let Cs and Ct be the space and
time training cost of IPLT trained on sequence St and
tree Tt. An online algorithm is an efficient online PLT
algorithm when for any S and t we have its space and
time complexity to be in constant factor of Cs and Ct,
respectively.

In this definition, we abstract from the actual imple-
mentation of IPLT. In other words, the complexity
of an efficient online PLT algorithm depends directly
on design choices for IPLT. The space complexity is
upper bounded by 2m− 1 (i.e., the maximum number
of node models), but it also depends on the chosen type
of node models and the way of storing them. Let us
also notice that the definition implies that the update
of a tree structure has to be in a constant factor of the
training cost of a single instance.

4.1 Online tree building and training of node
classifiers

Below we describe an online PLT algorithm that, as
we show in subsection 4.3, satisfies both properties
defined above. It is similar to CPET (Beygelzimer
et al., 2009), but extends it to multi-label problems
and trees of any shape. We refer to this algorithm as
OPLT.

The pseudocode is presented in Algorithms 2-7. In
a nutshell, OPLT proceeds observations from S se-
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Algorithm 4 OPLT.UpdateTree(x,Lx, Apolicy)

1: for j ∈ Lx \ Lt−1 do . For each new label in the observation
2: if LT = ∅ then Label(rT ) = j . If no labels have been seen so far, assign label j to the root node
3: else . If there are already labels in the tree
4: v, insert = Apolicy(x, j,Lx) . Select a variant of extending the tree
5: if insert then InsertNode(v) . Insert an additional node if needed
6: AddLeaf(j, v) . Add a new leaf for label j

Algorithm 5 OPLT.InsertNode(v)

1: v′ = NewNode(), VT = VT ∪ {v′} . Create a new node and add it to the tree nodes
2: if IsLeaf(v) then Label(v′) = Label(v), Label(v) = Null . If node v is a leaf reassign label of v to v′

3: else . Otherwise
4: Ch(v′) = Ch(v) . All children of v become children of v′

5: for vch ∈ Ch(v′) do pa(vch) = v′ . And v′ becomes their parent

6: Ch(v) = {v′}, pa(v′) = v . The new node v′ becomes the only child of v

7: η̂(v′) = Copy(θ̂(v)), HT = HT ∪ {η̂(v′)} . Create a classifier

8: θ̂(v′) = Copy(θ̂(v)), ΘT = ΘT ∪ {θ̂(v′)} . And an auxiliary classifier

quentially, updating node classifiers. For new incoming
labels, it creates new nodes according to a chosen tree
building policy which is responsible for the main logic
of the algorithm. Each new node v is associated with
two classifiers, a regular one η̂(v) ∈ HT , and an aux-
iliary one θ̂(v) ∈ ΘT , where HT and ΘT denote the
corresponding sets of node classifiers. The task of the
auxiliary classifiers is to accumulate positive updates.
The algorithm uses them later to initialize classifiers
associated with new nodes added to a tree. They can
be removed if a given node will not be used anymore to
extend the tree. A particular criterion for removing an
auxiliary classifier depends, however, on a tree building
policy.

The algorithm starts with OPLT.Init procedure, pre-
sented in Algorithm 2, that initializes a tree with only
a root node vrT and corresponding classifiers, η̂(vrT )

and θ̂(vrT ). Notice that the root has both classifiers
initialized from the very beginning without a label as-
signed to it. Thanks to this, the algorithm can properly
estimate the probability of P(y = 0 |x). From now on,
OPLT.Train, outlined in Algorithm 3, administrates
the entire process. In its main loop, observations from
S are proceeded sequentially. If a new observation con-
tains one or more new labels then the tree structure is
appropriately extended by calling UpdateTree. The
node classifiers are updated in UpdateClassifiers.
After each iteration t, the algorithm sends HT along
with the tree structure T , respectively as Ht and Tt, to
be used outside the algorithm for prediction tasks. We
assume that tree T along with sets of its all nodes VT
and leaves LT , as well as sets of classifiers HT and ΘT ,
are accessible to all the algorithms discussed below.

Algorithm 4, UpdateTree, builds the tree structure.
It iterates over all new labels from Lx. If there were no
labels in the sequence S before, the first new label taken

from Lx is assigned to the root node. Otherwise, the
tree needs to be extended by one or two nodes according
to a selected tree building policy. One of these nodes
is a leaf to which the new label will be assigned. There
are, in general, three variants of performing this step
illustrated in Figure 1. The first one relies on selecting
an internal node v whose number of children is lower
than the accepted maximum, and adding to it a child
node v′′ with the new label assigned to it. In the second
one, two new child nodes, v′ and v′′, are added to a
selected internal node v. Node v′ becomes a new parent
of child nodes of the selected node v, i.e., the subtree
of v is moved down by one level. Node v′′ is a leaf
with the new label assigned to it. The third variant
is a modification of the second one. The difference
is that the selected node v is a leaf node. Therefore
there are no children nodes to be moved to v′, but
label of v is reassigned to v′. The Apolicy method
encodes the tree building policy, i.e., it decides which
of the three variants to follow and selects the node v.
The additional node v′ is inserted by the InsertNode
method. Finally, a leaf node is added by the AddLeaf
method. We discuss the three methods in more detail
below.

Apolicy returns the selected node v and a Boolean vari-
able insert, which indicates whether an additional node
v′ has to be added to the tree. For the first variant,
v is an internal node, and insert is set to false. For
the second variant, v is an internal node, and insert is
set to true. For the third variant, v is a leaf node, and
insert is set to true. In general, the policy can be as
simple as selecting a random node or a node based on
the current tree size to construct a complete tree. It
can also be much more complex, guided in general by
x, current label j, and set Lx of all labels of x. Nev-
ertheless, as mentioned before, the complexity of this
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Algorithm 6 OPLT.AddLeaf(j, v)

1: v′′ = NewNode(), VT = VT ∪ {v′′} . Create a new node and add it to the tree nodes
2: Ch(v) = Ch(v) ∪ {v′′}, pa(v′′) = v, Label(v′′) = j . Add this node to children of v and assign label j to the node v′′

3: η̂(v′′) = InverseClassifier(θ̂(v)), HT = HT ∪ {η̂(v′′)} . Initialize a classifier for v′′

4: θ̂(v′′) = NewClassifier(), ΘT = ΘT ∪ {θ̂(v′′)} . Initialize an auxiliary classifier for v′′

v

v1

v2

y1

v3

y2

v

v

y2

v

y3

r

v1

v2

y1

v3

y2

v′′1

y5

v

v

y2

v

y3

v

v1

v′1

v2

y1

v3

y2

v′′1

y5

v

v

y2

v

y3

v

v1

v2

v′2

y1

v′′2

y5

v3

y2

v

v

y2

v

y3

(a) Tree Tt−1 after t−1 iter-
ations.

(b) Variant 1: A leaf node
v′′1 for label j added as a
child of an internal node v1.

(c) Variant 2: A leaf node
v′′1 for label j and an inter-
nal node v′1 (with all chil-
dren of v1 reassigned to it)
added as children of v1.

(d) Variant 3: A leaf node
v′′2 for label j and a leaf
node v′2 (with a reassigned
label of v2) added as chil-
dren of v2.

Figure 1: Three variants of tree extension for a new label j.

step should be at most proportional to the complexity
of updating the node classifiers for one label, i.e., it
should be proportional to the depth of the tree. We
propose two such policies in the next subsection.

The InsertNode and AddLeaf procedures involve
specific operations initializing classifiers in the new
nodes. InsertNode is given in Algorithm 5. It inserts
a new node v′ as a child of the selected node v. If
v is a leaf, then its label is reassigned to the new
node. Otherwise, all children of v become the children
of v′. In both cases, v′ becomes the only child of v.
Figure 1 illustrates inserting v′ as either a child of an
internal node (c) or a leaf node (d). Since, the node
classifier of v′ aims at estimating η(x, v′), defined as
P(zv′ = 1 | zpa(v′) = 1,x), its both classifiers, η̂(v′) and
θ̂(v′), are initialized as copies (by calling the Copy
function) of the auxiliary classifier θ̂(v) of the parent
node v. Recall that the task of auxiliary classifiers
is to accumulate all positive updates in nodes, so the
conditioning zpa(v′) = 1 is satisfied in that way.

Algorithm 6 outlines the AddLeaf procedure. It adds
a new leaf node v′′ for label j as a child of node v.
The classifier η̂(v′′) is created as an “inverse” of the
auxiliary classifier θ̂(v) from node v. More precisely,
the InverseClassifier procedure creates a wrapper
inverting the behavior of the base classifier. It predicts
1 − η̂, where η̂ is the prediction of the base classifier,
and flips the updates, i.e., positive updates become
negative and negative updates become positive. Finally,
the auxiliary classifier θ̂(v′′) of the new leaf node is
initialized.

The final step in the main loop of OPLT.Train up-
dates the node classifiers. The regular classifiers, η̂(v) ∈
HT , are updated exactly as in IPLT.Train given in

Algorithm 1. The auxiliary classifiers, θ(v) ∈ ΘT , are
updated only in positive nodes according to their defi-
nition and purpose.

Notice that OPLT.Train can also be run without
prior initialization with OPLT.Init if only a tree with
properly trained node and auxiliary classifiers is pro-
vided. One can create such a tree using a set of already
available observations D and then learn node and auxil-
iary classifiers using the same OPLT.Train algorithm.
Because all labels from D should be present in the
created tree, it is not updated by the algorithm. From
now on, OPLT.Train can be used again to correctly
update the tree for new observations.

4.2 Random and best-greedy policy

We discuss two policies Apolicy for OPLT that can be
treated as non-trivial generalization of the policy used
in CPET to the multi-label setting. CPET builds a
binary balanced tree by expanding leaf nodes, which
corresponds to the use of the third variant of the tree
structure extension only. As the result, it gradually
moves away labels that initially have been placed close
to each other. Particularly, labels of the first observed
examples will finally end in leaves at the opposite sides
of the tree. This may result in lowering the predictive
performance and increasing training and prediction
times. To address these issues, we introduce a solution,
inspired by (Prabhu et al., 2018; Wydmuch et al., 2018),
in which pre-leaf nodes, i.e., parents of leaf nodes, can
be of much higher arity than the other internal nodes.
In general, we guarantee that the arity of each pre-leaf
node is upper bounded by bmax, while all other internal
nodes by b, where bmax ≥ b.

Both policies, presented jointly in Algorithm 8, start
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Algorithm 7 OPLT.UpdateClassifiers(x,Lx, Aonline)

1: (P,N) = AssignToNodes(T,x,Lx) . Compute its positive and negative nodes
2: for v ∈ P do . For all positive nodes
3: Aonline.Update(η̂(v), (x, 1)) . Update classifiers with a positive update with x

4: if θ̂(v) ∈ Θ then Aonline.Update(θ̂(v), (x, 1)) . If aux. classifier exists, update it with a positive update with xi

5: for v ∈ N do Aonline.Update(η̂(v), (x, 0)) . Update all negative nodes with a negative update with x

Algorithm 8 Random and Best-greedy Apolicy(x, j,Lx)

1: if RunFirstFor(x) then . If the algorithm is run for the first time for the current observation x

2: v = rT . Set current node v to root node
3: while Ch(v) * LT ∧ Ch(v) = b do . While the node’s children are not only leaf nodes and arity is equal to b
4: if Random policy then v = SelectRandomly(Ch(v)) . If Random policy, randomly choose child node
5: else if Best-greedy policy then . In the case of Best-greedy policy
6: v = arg maxv′∈Ch(v)(1− α)η̂(x, v′) + α|Lv′ |−1 (log |Lv| − log |Ch(v)|) . Select child node with the best score

7: else v =GetSelectedNode() . If the same x is observed as the last time, select the node used previously

8: if |Ch(v) ∩ LT | = 1 then v = v′ ∈ Ch(v) : v′ ∈ LT . If node v has only one leaf, change the selected node to this leaf
9: SaveSelectedNode(v) . Save the selected node v
10: return (v, |Ch(v)| = bmax ∨ v ⊆ LT ) . Return node v, if num. of v’s children reached the max. or v is a leaf, insert a new node

with selecting one of the pre-leaves. The first policy
traverses a tree from top to bottom by randomly select-
ing child nodes. The second policy, in turn, selects a
child node using a trade-off between the balancedness
of the tree and fit of x, i.e., the value of η̂(x, v):

scorev = (1− α)η̂(x, v) + α
1

|Lv|
log

|Lpa(v)|
|Ch(pa(v))|

,

where α is a trade-off parameter. It is worth to no-
tice that both policies work in logarithmic time of the
number of internal nodes. Moreover, we run this selec-
tion procedure only once for the current observation,
regardless of the number of new labels. If the selected
node v has fewer leaves than bmax, both policies follow
the first variant of the tree extension, i.e., they add a
new child node with the new label assigned to node
v. Otherwise, the policies follow the second variant, in
which additionally, a new internal node is added as a
child of v with all its children inherited. In case the
selected node has only one leaf node among its children,
which only happens after adding a new label with the
second variant, the policy changes the selected node v
to the previously added leaf node.

The above policies have two advantages over CPET.
Firstly, new labels coming with the same observation
should stay close to each other in the tree. Secondly,
the policies allow for efficient management of auxiliary
classifiers, which basically need to reside only in pre-leaf
nodes, with the exception of leaf nodes added in the
second variant. The original CPET algorithm needs
to maintain auxiliary classifiers in all leaf nodes.

4.3 Theoretical analysis of OPLT

The OPLT algorithm has been designed to satisfy the
properness and efficiency property. The theorem below

states this fact formally.

Theorem 2. OPLT is a proper and efficient online
PLT algorithm.

We present the proof in Appendix C. To show the
properness, it uses induction for both the outer and
inner loop of the algorithm, where the outer loop iter-
ates over observations (xt,Lxt), while the inner loop
over new labels in Lxt . The key elements to prove
this property are the use of the auxiliary classifiers and
the analysis of the three variants of the tree structure
extension. The efficiency is proved by noticing that the
algorithm creates up to two new nodes per new label,
each node having at most two classifiers. Therefore, the
number of updates is no more than twice the number of
updates in IPLT. Moreover, any node selection policy
in which cost is proportional to the cost of updating
IPLT classifiers for a single label meets the efficiency
requirement. Notably, the policies presented above
satisfy this constraint. Note that training of IPLT
can be performed in logarithmic time in the number
of labels under the additional assumption of using a
balanced tree with constant nodes arity (Busa-Fekete
et al., 2019). Because presented policies aim to build
trees close to balanced, the time complexity of the
OPLT training should also be close to logarithmic in
the number of labels.

5 Experiments

In this section, we empirically compare OPLT and
CMT on two tasks, extreme multi-label classifica-
tion and few-shot multi-class classification. We imple-
mented OPLT in C++, based on recently introduced
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Table 1: Datasets used for experiments on extreme
multi-label classification task and few-shot multi-class
classification task. Notation: N – number of samples,
m – number of labels, d – number of features, S – shot

Dataset Ntrain Ntest m d

AmazonCat 1186239 306782 13330 203882
Wiki10 14146 6616 30938 101938
WikiLSHTC 1778351 587084 325056 1617899
Amazon 490449 153025 670091 135909

ALOI 97200 10800 1001 129
WikiPara-S S × 10000 10000 10000 188084

napkinXC (Jasinska-Kobus et al., 2020).2 We use
online logistic regression to train node classifiers with
the AdaGrad (Duchi et al., 2011) updates.

For CMT, we use a Vowpal Wabbit (Langford et al.,
2007) implementation (also in C++), provided by cour-
tesy of its authors. It uses linear models also incremen-
tally updated by AdaGrad, but all model weights are
stored in one large continuous array using the hashing
trick. However, it requires at least some prior knowl-
edge about the size of the feature space since the size of
the array must be determined beforehand, which can be
hard in a fully online setting. To address the problem
of unknown features space, we store weights of OPLT
in an easily extendable hash map based on Robin Hood
Hashing (Celis et al., 1985), which ensures very efficient
insert and find operations. Since the model sparsity
increases with the depth of a tree for sparse data, this
solution might be much more efficient in terms of used
memory than the hashing trick and does not negatively
impact predictive performance.

For all experiments, we use the same, fixed hyper-
parameters for OPLT. We set learning rate to 1, Ada-
grad’s ε to 0.01 and the tree balancing parameter α to
0.75, since more balanced trees yield better predictive
performance (see Appendix F for empirical evaluation
of the impact of parameter α on precision at k, train
and test times, and the tree depth). The only excep-
tion is the degree of pre-leaf nodes, which we set to 100
in the XMLC experiment, and to 10 in the few-shot
multi-class classification experiment. For CMT we use
hyper-parameters suggested by the authors. According
to the appendix of (Sun et al., 2019), CMT achieves
the best predictive performance after 3 passes over
training data. For this reason, we give all algorithms
the maximum of 3 such passes and report the best
results (see Appendix D and E for the detailed results
after 1 and 3 passes). We repeated all the experiments
5 times, each time shuffling the training set and report

2Repository with the code and scripts to reproduce the
experiments: https://github.com/mwydmuch/napkinXC

the mean performance. We performed all the experi-
ments on an Intel Xeon E5-2697 v3 2.6GHz machine
with 128GB of memory.

5.1 Extreme multi-label classification

In the XMLC setting, we compare performance in terms
of precision at {1, 3, 5} and the training time (see Ap-
pendix D for prediction times and propensity scored pre-
cision at {1, 3, 5}) on four benchmark datasets: Ama-
zonCat, Wiki10, WikiLSHTC and Amazon, taken from
the XMLC repository (Bhatia et al., 2016). We use the
original train and test splits. Statistics of these datasets
are included in Table 1. In this setting, CMT has been
originally used to augment an online one-versus-rest
(OVR) algorithm. In other words, it can be treated
as a specific index that enables fast prediction and
speeds up training by performing a kind of negative
sampling. In addition to OPLT and CMT we also
report results of IPLT and Parabel (Prabhu et al.,
2018). IPLT is implemented similarly to OPLT, but
uses a tree structure built-in offline mode. Parabel is,
in turn, a fully batch variant of PLT. Not only the tree
structure, but also node classifiers are trained in the
batch mode using the LIBLINEAR library (Fan et al.,
2008). We use a single tree variant of this algorithm.
Both IPLT and Parabel are used with the same tree
building algorithm, which is based on a specific hierar-
chical 2-means clustering of labels (Prabhu et al., 2018).
Additionally, we report the results of an OPLT with
warm-start (OPLT-W) that is first trained on a sample
of 10% of training examples and a tree created using
hierarchical 2-means clustering on the same sample.
After this initial phase, OPLT-W is trained on the
remaining 90% of data using the Best-greedy policy
(see Appendix G for the results of OPLT-W trained
with different sizes of the warm-up sample and com-
parison with IPLT trained only on the same warm-up
sample).

Results of the comparison are presented in Table 2.
Unfortunately, CMT does not scale very well in the
number of labels nor in the number of examples, result-
ing in much higher memory usage for massive datasets.
Therefore, we managed to obtain results only for Wiki10
and AmazonCat datasets using all available 128GB of
memory. OPLT with both extension policies achieves
results as good as Parabel and IPLT and significantly
outperforms CMT on AmazonCat and Wiki10 datasets.
For larger datasets OPLT with Best-greedy policy
outperforms the Random policy but obtains worse
results than its offline counterparts, with trees built
with hierarchical 2-means clustering, especially on the
WikiLSHTC dataset. OPLT-W, however, achieves
results almost as good as IPLT what proves that good
initial structure, even with only some labels, helps to

https://github.com/mwydmuch/napkinXC
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Table 2: Mean precision at {1, 3, 5} (%) and CPU train time of Parabel, IPLT, CMT, OPLT for XMLC tasks.

AmazonCat Wiki10 WikiLSHTC Amazon
Algo. P@1 P@3 P@5 ttrain P@1 P@3 P@5 ttrain P@1 P@3 P@5 ttrain P@1 P@3 P@5 ttrain

Parabel 92.58 78.53 63.90 10.8m 84.17 72.12 63.30 4.2m 62.78 41.22 30.27 14.4m 43.13 37.94 34.00 7.2m
IPLT 93.11 78.72 63.98 34.2m 84.87 74.42 65.31 18.3m 60.80 39.58 29.24 175.1m 43.55 38.69 35.20 79.4m

CMT 89.43 70.49 54.23 168.2m 80.59 64.17 55.25 35.1m - - - - - - - -
OPLTR 92.66 77.44 62.52 99.5m 84.34 73.73 64.31 30.3m 47.76 30.97 23.37 330.1m 38.42 34.33 31.32 134.2m
OPLTB 92.74 77.74 62.91 84.1m 84.47 73.73 64.39 27.7m 54.69 35.32 26.31 300.0m 41.09 36.65 33.42 111.9m
OPLT-W 93.14 78.68 63.92 43.7m 85.22 74.68 64.93 28.2m 59.23 38.39 28.38 205.7m 42.21 37.60 34.25 98.3m
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Figure 2: Online progressive performance of CMT and OPLT with respect to the number of samples on few-shot
multi-class classification tasks.

Table 3: Mean accuracy of prediction (%) and train
CPU time of CMT, OPLT for few-shot multi-class
classification tasks.

ALOI Wikipara-3 Wikipara-5
Algo. Acc. ttrain Acc. ttrain Acc. ttrain

CMT 71.98 207.1s 3.28 63.1s 4.21 240.9s
OPLTR 66.50 20.3s 27.34 16.4s 40.67 27.6s
OPLTB 67.26 18.1s 24.66 15.6s 39.13 27.2s

build a good tree in an online way. In terms of training
times, OPLT, as expected, is slower than IPLT due to
additional auxiliary classifiers and worse tree structure,
both leading to a larger number of updates.

5.2 Few-shot multi-class classification

In the second experiment, we compare OPLT with
CMT on three few-shot learning multi-class datasets:
ALOI (Geusebroek et al., 2005), 3 and 5-shot versions of
WikiPara. Statistics of these datasets are also included
in Table 1. CMT has been proven in (Sun et al., 2019)
to perform better than two other logarithmic-time on-
line multi-class algorithms, LOMTree (Choromanska
and Langford, 2015) and Recall Tree (Daumé et al.,
2017) on these specific datasets. We use here the same
version of CMT as used in a similar experiment in the
original paper (Sun et al., 2019).

Since OPLT and CMT operate online, we compare
their performance in two ways: 1) using online pro-

gressive validation (Blum et al., 1999), where each
example is tested ahead of training and 2) using of-
fline evaluation on the test set after seeing the whole
training set. Figure 2 summarizes the results in
terms of progressive performance. In the same fash-
ion as in (Sun et al., 2019), we report entropy reduc-
tion of accuracy from the constant predictor, calcu-
lated as log2(Accalgo) − log2(Accconst), where Accalgo
and Accconst is mean accuracy of the evaluated al-
gorithm and the constant predictor. In Table 3, we
report results on the test datasets. In online and of-
fline evaluation, OPLT performs similar to CMT on
ALOI dataset, while it significantly dominates on the
WikiPara datasets.

6 Conclusions

In this paper, we introduced online probabilistic label
trees, an algorithm that trains a label tree classifier
in a fully online manner, without any prior knowledge
about the number of training instances, their features
and labels. OPLTs can be used for both multi-label
and multi-class classification. They outperform CMT
in almost all experiments, scaling at the same time
much more efficiently on tasks with a large number of
examples, features and labels.
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