
Scalable Gaussian Process Variational Autoencoders

A Experimental details

Here we report the details and parameter settings for our experiments to foster reproducibility.

A.1 Moving ball experiment

For the moving ball experiment described in Section 4.1, we use the same neural networks architectures and
training setting as in Pearce (2020).

Table A.1: Parameter settings for the moving ball experiment.

Parameter Value

Nr. of feedforward layers in inference network 2
Nr. of feedforward layers in generative network 2
Width of a hidden feedforward layer 500
Dimensionality of latent space (L) 2
Activation function tanh
Learning rate 0.001
Optimizer Adam
Nr. of epochs 25000
Nr. of frames in each video (N) 30
Dimension of each frame 32× 32

A squared-exponential GP kernel with length scale l = 2 was used. For the exact data generation procedure, we
refer to Pearce (2020). During training, 35 videos were generated in each epoch. The test MSE is reported on a
held-out set of 350 videos. For the Adam optimizer (Kingma and Ba, 2014), the default Tensforflow parameters
are used.

A.2 MNIST experiment

For the rotated MNIST experiment described in Section 4.2, we used the same neural networks architectures as
in Casale et al. (2018): three convolutional layers followed by a fully connected layer in the inference network
and vice-versa in the generative network.

Table A.2: Neural networks architectures for the MNIST experiment.

Parameter Value

Nr. of CNN layers in inference network 3
Nr. of CNN layers in generative network 3
Nr. of filters per CNN layer 8
Filter size 3× 3
Nr. of feedforward layers in inference network 1
Nr. of feedforward layers in generative network 1
Activation function in CNN layers ELU
Dimensionality of latent space (L) 16

The SVGP-VAE model is trained for 1000 epochs with a batch size of 256. The Adam optimizer (Kingma and Ba,
2014) is used with its default parameters and a learning rate of 0.001. Moreover, the GECO algorithm (Rezende
and Viola, 2018) was used for training our SVGP-VAE model in this experiment. The reconstruction parameter
in GECO was set to κ = 0.020 in all reported experiments.

For the GP-VAE model from Casale et al. (2018), we used the same training procedure as reported in Casale
et al. (2018). We have observed in our reimplementation that a joint optimization at the end does not improve
performance. Hence, we report results for the regime where the VAE parameters are optimized for the first 100
epochs, followed by 100 epochs during which the GP parameters are optimized. Moreover, we could not get their
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proposed low-memory modified forward pass to work, so in our reimplementation the entire dataset is loaded
into the memory at one point during the forward pass. Our reimplementation of the GP-VAE model from Casale
et al. (2018) is publicly available at https://github.com/ratschlab/SVGP-VAE.

For both models, the GP kernel proposed in Casale et al. (2018) is used. For more details on the kernel, we
refer to Appendix B.3. Note that the auxiliary data X is only partially observed in this experiment — for
both models we use a GP-LVM to learn the missing parts of X. For both models, we use Principal Component
Analysis (PCA) to initialize the GP-LVM vectors, as it was observed to lead to a slight increase in performance.
PCA is also used in SVGP-VAE to initialize the inducing points. For more details see Appendix C.1.

A.3 SPRITES experiment

For the SPRITES experiment described in Section 4.3, we used similar neural networks architectures as for the
rotated MNIST experiment. Details are provided in Table A.3.

Table A.3: Neural networks architectures for the SPRITES experiment.

Parameter Value

Nr. of CNN layers in inference network 6
Nr. of CNN layers in generative network 6
Nr. of filters per CNN layer 16
Filter size 3× 3
Nr. of feedforward layers in inference network 1
Nr. of feedforward layers in generative network 1
Activation function in CNN layers ELU
Dimensionality of latent space (L) 64

The SVGP-VAE model is trained for 50 epochs with a batch size of 500. The Adam optimizer (Kingma and Ba,
2014) is used with its default parameters and a learning rate of 0.001. Moreover, the GECO algorithm (Rezende
and Viola, 2018) was used for training our SVGP-VAE model in this experiment. The reconstruction parameter
in GECO was set to κ = 0.0075.

The auxiliary data X is fully unobserved in this experiment. Recall that in SPRITES, the auxiliary data has
two parts X = [Xs, Xa], with Xs ∈ RN×p1 containing information about the character style and Xa ∈ RN×p2
containing information about the specific action/pose. Let xi = [xs,i xa,i] denote auxiliary data for the i-th
image (corresponding to the i-th row of the X matrix). A product kernel between two linear kernels is used:3

kθ(xi,xj) =
xTs,ixs,j

‖xs,i‖‖xs,j‖
·

xTa,ixa,j

‖xa,i‖‖xa,j‖
+ σ2 · δij .

The kernel normalization and the addition of the diagonal noise are used to improve the numerical stability of
kernel matrices.

To learn the action part of the auxiliary data Xa, we rely on a GP-LVM (Lawrence, 2004), that is, we try to
directly learn the matrix A ∈ R72×p2 consisting of GP-LVM vectors that each represent a specific action/pose.
Since we want to extrapolate to new characters during the test phase4, the GP-LVM approach can not be used
to learn the part of the auxiliary data that captures the character style information Xs. This would require
rerunning the optimization at test time to obtain a corresponding GP-LVM vector for the new, previously unseen
style. To get around this, we introduce the representation network rζ : RK → Rp1 , similar to what is done in
Eslami et al. (2018b), with which we aim to amortize the learning of the unobserved parts of the auxiliary data.
Specifically, the representation for the i-th character style is then

si = f
(
rζ(y1), . . . , rζ(yNi

)
)
∈ Rp1 ,

3δij = 1 if i = j and 0 else.
4Note that an easier version of the SPRITES experiment would be to generate actions for characters already seen

during the training phase. Such a conditional generation task would closely resemble the one from the face experiment in
Casale et al. (2018).

https://github.com/ratschlab/SVGP-VAE
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where Yi = [y1 . . .yNi
]T ∈ RNi×K represents all images of the i-th character, and f is a chosen aggregation

function (in our experiment we used the sum function). Instead of the GP-LVM vectors, the parameters of the
representation network ζ are jointly optimized with the rest of the SVGP-VAE parameters. During training,
we pass all 50 images (50 different actions) for each character through rζ to obtain the corresponding style
representation. During the test phase, we first pass 36 actions through rζ and then use the resulting style
representation vector to conditionally generate the remaining 36 actions. To help with the stability of training,
we additionally pretrain the representation network on the classification task using the training data. Concretely,
we train a classifier on top of the representations of the training data rζ(yi), i = 1, ..., N . The (pretraining) label
for each representation is a given character ID.5

The details on the architecture of the representation network are provided in Table A.4 (it is essentially a
downsized inference network).

Table A.4: The architecture for the representation network rζ and some additional parameters in the SPRITES
experiment.

Parameter Value

Nr. of CNN layers 3
Nr. of filters per CNN layer 16
Filter size 2× 2
Nr. of pooling layers 1
Activation function in CNN layers ELU
Dimensionality of style representation (p1) 16
Dimensionality of action GP-LVM vectors (p2) 8
Nr. of epochs for pretraining of rζ 400

A.4 On the training of GP-VAE models (a practitioner’s perspective)

While working on implementations of different GP-VAE models, we have noticed that balancing the absolute
magnitudes of the reconstruction and the KL-term is critical for achieving optimal results, even more so than
in standard VAE models. In Fortuin et al. (2020), this was tackled by introducing a weighting β parameter,
whereas in Casale et al. (2018) a CV search on the noise parameter σ2

y of the likelihood pψ(yi|zi) is performed.
One downside of both solutions is that they introduce (yet) another training hyperparameter that needs to be
manually tuned for every new dataset/model architecture considered.

To get around this, we instead used the GECO algorithm (Rezende and Viola, 2018) to train our SVGP-VAE in
the rotated MNIST experiment. Compared to the original GECO algorithm in Rezende and Viola (2018), where
the maximization objective is the KL divergence between a standard Gaussian prior and the variational distri-
bution, the GECO maximization objective in the SVGP-VAE is composed of a cross-entropy term EqS [log q̃φ(·)]
and a sparse GP ELBO LH(·). We have observed that GECO greatly simplifies training of GP-VAE models as
it eliminates the need to manually tune the different magnitudes of the ELBO terms. Based on this, we would
make a general recommendation for GECO to be used for training such models.

5Recall that there are 1000 different characters in our training dataset, i.e., the pretraining task is a 1000-class
classification problem.
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B Supporting derivations

B.1 Vanishing of the inference network in GP-VAE with ELBO from Hensman et al. (2013)

In this section we show that working with the sparse GP approach presented in Hensman et al. (2013) leads
to vanishing of the inference network parameters φ in the GP-VAE model from Pearce (2020). Recall that the
sparse GP posterior from Hensman et al. (2013) for the l-th latent channel has the form

qlS(zl1:N |·) = N
(
zl1:N |KNmK−1

mmµ
l, KNN −KNmK−1

mmKmN + KNmK−1
mmAlK−1

mmKmN

)
with µl ∈ Rm,Al ∈ Rm×m as free variational parameters, while the sparse GP ELBO for the l-th latent channel
is given as

LlH(U,µl,Al, φ, θ) =

N∑
i=1

{
logN

(
ỹl,i | kTi K−1

mmµ
l, σ̃−2

l,i

)
− 1

2σ̃−2
l,i

(
k̃ii + Tr(Al Λi)

)}
−KL

(
qlS(fm|·) || pθ(fm|·)

)
with qlS(fm|·) = N (fm|µl,Al) and pθ(fm|·) = N (fm|0, Kmm). ki represents the i-th column of KmN , Λi :=

K−1
mmkik

T
i K−1

mm and k̃ii is the i-th diagonal element of KNN −KNmK−1
mmKmN . As mentioned in Section 3, LlH

depends on the inference network parameters φ through the (amortized) l-th latent dataset ỹl = µlφ(Y), σ̃l =

σlφ(Y).

Note that the full sparse GP posterior equals qS(Z) =
∏L
l=1 q

l
S(zl1:N |·). Similarly, the full sparse GP ELBO is

LH =
∑L
l=1 LlH(U,µl,Al, φ, θ).

Proposition B.1 For the l-th latent channel in the GP-VAE model with the bound from Hensman et al. (2013),
the following relation holds:

EqlS
[

log q̃φ(z l1:N |Y)
]

=

N∑
i=1

{
logN

(
ỹl,i | kTi K

−1
mmµ

l, σ̃−2
l,i

)
− 1

2σ̃−2
l,i

(
k̃ii + Tr(Al Λi)

)}
.

Proof For notational convenience, define D̃l := diag(σ̃2
l ) and B := KNmK−1

mm. Also recall that q̃φ(zl1:N |Y) =

N
(
zl1:N |ỹl, D̃l

)
. Using the formula for the cross-entropy between two multivariate Gaussian distributions, we

proceed as

EqlS
[

log q̃φ(zl1:N |Y)
]

= −N
2

log(2π)− 1

2
log |D̃l| −

1

2

(
ỹl −Bµl

)T
D̃−1
l

(
ỹl −Bµl

)
− 1

2
Tr
(
D̃−1
l (K̃ +BAlBT )

)
= logN

(
ỹl|Bµl, D̃l

)
− 1

2
Tr(D̃−1

l K̃)− 1

2
Tr(D̃−1

l BAlBT ) .

It remains to show that the last trace term equals
∑N
i=1 σ̃

−2
l,i Tr(A

l Λi), which follows from

Tr(D̃−1
l BAlBT ) = Tr(AlBT D̃−1

l B) = Tr
(
AlK−1

mm

( N∑
i=1

σ̃−2
l,i kik

T
i

)
K−1
mm

)
=

N∑
i=1

σ̃−2
l,i Tr(A

lΛi) . �

Proposition B.2 The GP-VAE ELBO with the bound from Hensman et al. (2013) reduces to

LPH(U, ψ, θ,µ1:L,A1:L) =

N∑
i=1

EqS
[

log pψ(yi|zi)
]
−

L∑
l=1

KL
(
qlS(fm|·) || plθ(fm|·)

)



Scalable Gaussian Process Variational Autoencoders

Proof Using the above proposition, we have

EqS
[ N∑
i=1

log pψ(yi|zi)− log q̃φ(zi|yi)
]

+

L∑
l=1

LlH

= EqS
[ N∑
i=1

log pψ(yi|zi)
]
− EqS

[ L∑
l=1

log q̃φ(zl1:N |Y)

]
+

L∑
l=1

LlH

= EqS
[ N∑
i=1

log pψ(yi|zi)
]
−

L∑
l=1

(
EqlS

[
log q̃φ(zl1:N |Y)

]
− LlH

)

= EqS
[ N∑
i=1

log pψ(yi|zi)
]
−

L∑
l=1

KL
(
qlS(fm|·) || pθ(fm|·)

)
. �

Observe that in LPH(·) all terms that include ỹl or σ̃l cancel out, hence such ELBO is independent of the
inference network parameters φ.

B.2 Monte Carlo estimators in the SVGP-VAE

The idea behind the estimators used in qS in our SVGP-VAE is based on the work presented in Evans and
Nair (2020). The main insight is to rewrite the matrix operations as expectations with respect to the empirical
distribution of the training data. Those expectations are then approximated with Monte Carlo estimators.

Recall that the (amortized) latent dataset for the l-th channel is denoted by {X, ỹl, σ̃l}, with ỹl := µlφ(Y) and

σ̃l := σlφ(Y). For notational convenience, additionally denote D̃l := diag(σ̃2
l ). First, observe that the matrix

product KmN D̃
−1
l KNm in Σl can be rewritten as a sum over data points

∑N
i=1Bi(xi,yi) with

Bi(xi,yi) :=
1

σ̃2
l,i


kθ(u1,xi)kθ(u1,xi) . . . kθ(u1,xi)kθ(um,xi)

...
. . .

...

kθ(um,xi)kθ(u1,xi) . . . kθ(um,xi)kθ(um,xi)

 .

Let b̄ represent a set of indices of data points in the current batch with size b. Moreover, define Kbm ∈
Rb×m, D̃l,b ∈ Rb×b, ỹlb ∈ Rb as the sub-sampled versions of KNm ∈ RN×m, D̃l ∈ RN×N and ỹl ∈ RN ,
respectively, consisting only of data points in b̄. An (unbiased) Monte Carlo estimator for Σl is then derived as
follows

Σl = Kmm + KmN D̃
−1
l KNm = Kmm +N

N∑
i=1

1

N
Bi(xi,yi) = Kmm +N · Ei∼{1,...,N}

[
Bi(xi,yi)

]
≈ Kmm +

N

b

∑
i∈b̄

Bi(xi,yi) = Kmm +
N

b
KmbD̃

−1
l,b Kbm =: Σl

b .

Additionally, define cl := KmN D̃
−1
l ỹl and proceed similarly as above

cl =

n∑
i=1

bi(xi,yi) = N · Ei∼{1,...,N}[bi(xi,yi)] ≈
N

b

∑
i∈b̄

bi(xi,yi) =
N

b
KmbD̃

−1
l,b ỹlb =: clb ,

where

bi(xi,yi) :=
ỹl,i
σ̃2
l,i


kθ(u1,xi)

...

k(um,xi)

 .
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The estimators for µlT and Al
T are then obtained using a plug-in approach,

µlT = Kmm(Σl)−1cl ≈ Kmm(Σl
b)
−1clb =: µlb ,

Al
T = Kmm(Σl)−1Kmm ≈ Kmm(Σl

b)
−1Kmm =: Al

b .

Note that neither of the above estimators is unbiased, since both depend on the inverse (Σl
b)
−1. For the empirical

investigation of the magnitude of the bias, see Appendix C.4. However, Al
b can be shown to be approximately

(up to the first order Taylor approximation) unbiased.

Proposition B.3 For the estimator Al
b in SVGP-VAE, it holds that

E[Al
b]−Al

T ≈ 0 .

Proof Note that expectation here is taken with respect to the empirical distribution of the training data, that
is, Ei∼{1,...,N}. Using the definitions of Al

b and Al
T , we get

E[Al
b]−Al

T = Kmm

(
E
[
(Σl

b)
−1
]
− (Σl)−1

)
Kmm ,

so it remains to show that E[(Σl
b)
−1]− (Σl)−1 ≈ 0. To this end, we exploit the positive definiteness of the kernel

matrix Kmm and we approximate both inverse terms with the first order Taylor expansion:

(Σl
b)
−1 =

(
Kmm +

N

b
KmbD̃

−1
l,b Kbm

)−1
= K

− 1
2

mm

(
I +

N

b
K
− 1

2
mmKmbD̃

−1
l,b KbmK

− 1
2

mm

)−1
K
− 1

2
mm

≈ K
− 1

2
mm

(
I− N

b
K
− 1

2
mmKmbD̃

−1
l,b KbmK

− 1
2

mm

)
K
− 1

2
mm = K−1

mm −
N

b
K−1
mmKmbD̃

−1
l,b KbmK−1

mm .

Similarly, we have (Σl)−1 ≈ K−1
mm −K−1

mmKmN D̃
−1
l KNmK−1

mm . Using this, we proceed as

E[(Σl
b)
−1]− (Σl)−1 ≈ −N

b
K−1
mmE

[
KmbD̃

−1
l,b Kbm

]
K−1
mm + K−1

mmKmN D̃
−1
l KNmK−1

mm

= −N
b

K−1
mmE

[∑
i∈b̄

Bi(xi,yi)

]
K−1
mm + K−1

mm

( N∑
i=1

Bi(xi,yi)

)
K−1
mm

= −NK−1
mmE

[
Bi(xi,yi)

]
K−1
mm +NK−1

mmE
[
Bi(xi,yi)

]
K−1
mm = 0

�

Note that a similar proof technique unfortunately cannot be used to show that µlb is approximately unbiased for
µlT , due to the product of two plug-in estimators that both depend on the data in the same batch.

B.3 Low-rank kernel matrix in Casale et al. (2018)

In the following, we present an approach from Casale et al. (2018) to reduce the cubic GP complexity in their
GP-VAE model. Note that the exact approach is not given in Casale et al. (2018) and the derivation shown here
is our best attempt at recreating the results.

In Casale et al. (2018), datasets composed of P unique objects observed in Q unique views are considered, for
instance, images of faces captured from different angles. In total, this amounts to N = P · Q images. The
auxiliary data consist of two sets of features X =

[
Xo Xv

]
, with Xo ∈ RN×p1 containing information about

objects (e.g., drawing style of the digit or characteristics of the face) and Xv ∈ RN×p2 containing information
about views (e.g., an angle or position in space). Let xi = [xo,i xv,i] denote auxiliary data for the i-th image
(corresponding to the i-th row of the X matrix). Additionally, denote by P ∈ RP×p1 and Q ∈ RQ×p2 matrices
consisting of all unique object and view representations, respectively. A product kernel between a linear kernel
for object information and a periodic kernel for view information is used:

kθ(xi,xj) = σ2 exp

(
−

2 sin2
(
‖xv,i − xv,j‖

)
l2

)
· xTo,ixo,j , θ = {σ2, l} .
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Exploiting the product and (partial) linear structure of the kernel and using properties of the Kronecker product,
KNN can be written in a low-rank form as

KNN (X,X) = PPT ⊗K(Q) = PPT ⊗ LLT =
(
P⊗ L

)(
PT ⊗ LT

)
=
(
P⊗ L

)(
P⊗ L

)T
=: VVT ,

where K(Q) ∈ RQ×Q is a kernel matrix of all unique view vectors based on the periodic kernel, L is its Cholesky
decomposition and V ∈ RN×H , H = Q · p1, is the obtained low-rank matrix (H � N due to the assumption
that the number of unique views Q is not large). For such matrices, the inverse and log-determinant can be
computed in O(NH2) using a matrix inversion lemma (Henderson and Searle, 1981) and a matrix determinant
lemma (Harville, 1998), respectively.

While the above approach elegantly reduces the GP complexity for a given dataset (for auxiliary data X with
a product structure), it is not readily extensible for other types of datasets (e.g. time series). In contrast, our
SVGP-VAE makes no assumptions on neither the data nor the GP kernel used. Therefore, it is a more general
solution to scale GP-VAE models.

B.4 Sparse GP-VAE based on Titsias (2009)

Using the sparse GP posterior qS (Equation 3) and ELBO LT (Equation 6) from Titsias (2009) gives rise to the
following sparse GP-VAE ELBO:

LPT
(
U, ψ, φ, θ) :=

L∑
l=1

LlT (U, φ, θ) +

N∑
i=1

EqS
[

log pψ(yi|zi)− log q̃φ(zi|yi)
]
.

In Section 3.3, we have outlined how to obtain the above sparse ELBO from the GP-VAE ELBO pro-
posed in Pearce (2020). Alternatively, LPT can be derived in the standard way by directly considering the
KL divergence between the sparse GP posterior and the (intractable) true posterior for the latent variables
KL
(
qS(Z|·)||pψ,θ(Z|Y,X)

)
.

Following Titsias (2009), we consider the joint distribution of observed and augmented latent variables
pψ,θ(Z,Fm,Y|X) where Fm :=

[
f1, . . . , fL

]
, fl := f l(U) ∈ Rm. The sparse GP posterior decomposes as

qS(Z,Fm|·) = pθ(Z|Fm)pS(Fm), where pS(Fm) :=
∏L
l=1N (flm|µl,A

l) is a free variational distribution and
pθ(Z|Fm) is a (standard) conditional GP prior. The problem of minimizing the KL divergence is then equiva-
lently posed as a maximization of a lower bound of the model evidence as follows, where in the first steps we
introduce q̃φ(Z|Y) and qS(Z,Fm|·) and apply Jensen’s inequality:

log p(Y|X) = log

∫
pψ,θ(Z,Fm,Y|X)

qS(Z,Fm|·)
qS(Z,Fm|·)

q̃φ(Z|Y)

q̃φ(Z|Y)
dZdFm

≥
∫
qS(Z,Fm|·) log

pψ,θ(Z,Fm,Y|X)

qS(Z,Fm|·)
q̃φ(Z|Y)

q̃φ(Z|Y)
dZdFm

=

∫
qS(Z,Fm|·) log

q̃φ(Z|Y)pψ(Y|Z)pθ(Z|Fm)pθ(Fm|X)

q̃φ(Z|Y)pθ(Z|Fm)pS(Fm)
dZdFm

=

L∑
l=1

∫
qS(zl, flm|·) log

q̃φ(zl|Y)pθ(f
l
m|X)

pS(flm)
dzldflm +

N∑
i=1

∫
qS(zi|·)

(
log pψ(yi|zi)− log q̃φ(zi|yi)

)
dzi

=

L∑
l=1

LT (U, φ, θ,µl,Al) +
N∑
i=1

EqS
[

log pψ(yi|zi)− log q̃φ(zi|yi)
]

Recall the symmetry of the Gaussian distribution q̃φ(zli|yi) = N (zli|µl(yi), σl(yi)) = N (µl(yi)|zli, σl(yi)). Hence,
the first term of the penultimate expression is a sum over sparse Gaussian processes, one for each latent channel,
and each term is precisely Equation 8 of Titsias (2009) for sparse Gaussian process regression. Therefore we
write LlT and let µl = µlT and Al = Al

T . For further derivation steps see Titsias (2009).
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C Additional experiments

C.1 PCA initialization of GP-LVM vectors and inducing points

In this section, we describe how Principal Component Analysis (PCA) is used to initialize the GP-LVM digit
representations as well as the inducing points in the rotated MNIST experiment. Note that both the GP-VAE
(Casale et al., 2018) and the SVGP-VAE depend on GP-LVM vectors, with the SVGP-VAE additionally relying
on inducing points.

To obtain a continuous digit representations for each digit instance, we start with the data matrix X ∈ RP×K
that consists of unrotated MNIST images. PCA is then performed on X, yielding a matrix D ∈ RP×M whose
rows di are used as initial values for the GP-LVM vectors. M represents the number of principal components
kept.

For initialization of the inducing points, we sample n GP-LVM vectors from the empirical distribution based
on the PCA matrix D for each of the Q angles. This results in a matrix Uinit ∈ Rm×(1+M) with m = n · Q
representing the number of inducing points. The exact procedure is given in Algorithm 1. Results from the
ablation study on the PCA initialization described here are presented in Table C.1.

Algorithm 1: Initialization of inducing points in the SVGP-VAE (rotated MNIST experiment)

input : PCA matrix D, number of inducing points per angle n, set of angles { 2πk
Q | k = 1, ..., Q}

Uinit = [ ]
# sample m = n ·Q points from empirical distribution of each principle component
for i = 1, ...,M do

Uinit =
[
Uinit, sample

(
D[: , i], nr samples = n

)]
end
# add column with angle information

a =
[

2π/Q, ..., 2π/Q︸ ︷︷ ︸
n×

, ... , 2π, ..., 2π︸ ︷︷ ︸
n×

]T ∈ Rm

Uinit =
[
a, U

init
]

return Uinit

PCA init random init

GP-VAE Casale et al. (2018) 0.0370± 0.0012 0.0374± 0.0009

SVGP-VAE 0.0251± 0.0005 0.0272± 0.0006

Table C.1: A comparison of different initialization regimes for GP-LVM vectors and inducing points in the rotated
MNIST experiment. For random initialization, a Gaussian distribution with mean 0 and standard deviation 1.5
was used.

C.2 SVGP-VAE latent space visualization

In Figure C.1, we depict two-dimensional t-SNE (Maaten and Hinton, 2008) embeddings of SVGP-VAE latent
vectors (L = 16). Visualized here are latent vectors for training data of the five-digit version of the rotated MNIST
dataset (N = 20250). As expected, the model clusters images based on the digit identity. More interestingly,
SVGP-VAE also seems to order images within each digit cluster with respect to angles. For example, looking at
the cluster of the digit 3 (the blue cluster in the middle of the lower plot), we observe that embeddings of rotated
images are ordered continuously from 0 to 2π as we move in clockwise direction around the circular shape of the
cluster.
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Figure C.1: t-SNE embeddings of SVGP-VAE latent vectors on the training data for rotated MNIST. On the
upper scatter plot, each image embedding is colored with respect to its associated angle. On the lower scatter
plot, each image embedding is colored with respect to its associated digit. The t-SNE perplexity parameter was
set to 50.
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C.3 Rotated MNIST: generated images

GROUND TRUTH SVGPVAE (ours) GPVAE (Casale 2018) CVAE (Sohn 2015)

Figure C.2: Generated test images in the rotated MNIST experiment for all considered models.

C.4 Bias analysis of MC estimators in SVGP-VAE

Here we look at some additional experiments that were conducted to get a better understanding of the SVGP-
VAE model. Depicted in Figure C.3 are the results when varying the batch size and the number of inducing
points. We first notice that the SVGP-VAE performance improves as the batch size is increased. As pointed out
in Section 3.4, this is a consequence of the Monte Carlo estimators from (9) used in qS whose quality depends
on the batch size. While the dependence on the batch size can surely be seen as one limitation of the model, it
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Figure C.3: SVGP-VAE results on the rotated MNIST dataset (digit 3) for varying batch size (left) and number
of inducing points (right). For the batch size experiment, m was set to 32. For the inducing points experiment,
b was set to 256. For each configuration, a mean MSE together with a standard deviation based on 5 runs is
shown.

is encouraging to see that the model achieves good performance already for a reasonably small batch size (e.g.,
b = 128). Moreover, the batch size parameter in the SVGP-VAE offers a simple and intuitive way to navigate a
trade-off between performance and computational demands. If one is more concerned regarding the performance,
a higher batch size should be used. On the other hand, if one only has limited computational resources at
disposal, a lower batch size can be utilized resulting in a faster and less memory-demanding model.

Looking at the plot with the varying number of inducing points next, we observe that the model achieves a
solid performance with as little as 16 inducing points on the rotated MNIST data. However, increasing the
number of inducing points m starts to have a negative impact on the performance after a certain point. This
can be partly attributed to numerical issues that arise during training — the higher the m, the more numerically
unstable the inducing point kernel matrix Kmm becomes. Moreover, since the number of inducing points equals
the dimension of the Monte Carlo estimators in (9), increasing m results in a larger dimension of the space,
potentially increasing the complexity of the estimation problem.

To better understand the effect of the number of inducing points m on the quality of estimation in our proposed
MC estimators, we investigate here the trajectory of the bias throughout training. To this end, for each epoch i
an estimator µlj,i is calculated for each latent channel l and for each batch j. Additionally, the true value µlT,i
is obtained (based on the entire dataset) for every epoch and every latent channel using model weights from the
end of the epoch. The bias for the l-th latent channel and i-th epoch is then computed as

bli :=
1

B

B∑
j=1

µlj,i − µlT,i

where B := dNb e represents the number of batches in a single epoch. Finally, for each epoch i the L1 norms of

the bias vectors for each latent channel are averaged bi = 1
L

∑L
l=1 b

l
i.

Moving averages of the resulting bias trajectories are depicted in Figure C.4. For comparison purposes, each
trajectory is normalized by the number of inducing points used. Notice how for smaller m, the bias trajectories
display the expected behavior and converge (or stay close) to 0. Conversely, for larger numbers of inducing points
(m = 64 and m = 96), the bias is larger and does not decline as the training progresses. This suggests that the
proposed estimation might get worse in larger dimensions.

However, despite seemingly deteriorating approximation in higher dimensions, it is also evident that the approxi-
mation does not completely break down — the model still achieves a solid performance even for a larger number
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of inducing points. Nevertheless, we note that getting a better theoretical grasp of the quality of estimation or
reparameterizing the SVGP-VAE ELBO in a way such that these estimators are no longer needed could be a
fruitful area of future work.
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Figure C.4: Bias trajectories in the SVGP-VAE model for a varying number of inducing points. For all runs, the
batch size was set to 256.

C.5 Deep sparse GP from Hensman et al. (2013) for conditional generation

In Section 3.3, we demonstrate that a sparse GP approach from Hensman et al. (2013) cannot be used in the GP-
VAE framework as it does not lend itself to amortization. In Section B.1, we then provide a detailed derivation
of this phenomenon. Here, we leave out the amortization completely and consider directly the sparse GP from
Hensman et al. (2013). To this end, we modify the ELBO in eq. (4) in Hensman et al. (2013). To model our
high-dimensional data yi ∈ RK , we utilize a deep likelihood parameterized by a neural network ψ : RL −→ RK
(instead of a simple Gaussian likelihood). Moreover, we replicate a GP regression L times (across all latent
channels), which yields the following objective function

L(U, ψ, θ,µ1:L,A1:L, σ) =

N∑
i=1

{
logN

(
yi | ψ(mi), σ

2I
)
− 1

2σ2

L∑
l=1

(k̃ii + Tr(Al Λi))

}
−

L∑
l=1

KL
(
qlS(fm|·) || pθ(fm|·)

)

where mi := [kiK
−1
mmµ

1, ... ,kiK
−1
mmµ

L]T ∈ RL. Also recall that qlS(fm|·) = N (fm|µl,Al), pθ(fm|·) =

N (fm|0, Kmm), Λi := K−1
mmkik

T
i K−1

mm and k̃ii is the i-th diagonal element of KNN −KNmK−1
mmKmN .
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For a test point x∗, we first obtain m∗ = [k∗K
−1
mmµ

1, ... ,k∗K
−1
mmµ

L]T , k∗ = [kθ(x∗,u1), ..., kθ(x∗,um)]T ∈ Rm,
and then pass it through the network ψ to generate y∗.

For comparison purposes, the same number of latent channels (L = 16) and the same architecture for the network
ψ as in our SVGP-VAE is used. We train this baseline model for 2000 epochs using the Adam optimizer and a
batch size of 256.

The strong performance (see Table 1) of this baseline provides interesting new insights into the role of amortization
in GP-VAE models. For the task of conditional generation, where a single GP prior is placed over the entire
dataset, the amortization is not necessary, and one can modify existing sparse GP approaches (Hensman et al.,
2013) to achieve good results in a computationally efficient way. Note that this is not the case for tasks like
learning interpretable low-dimensional embeddings (Pearce, 2020) or time-series imputation (Fortuin et al., 2020).
For such tasks, the inference network is needed in order to be able to quickly obtain predictions for new test
points without rerunning the optimization.

More thorough investigation of this baseline, its interpretation, and its comparison to the existing work on deep
Gaussian Processes (Damianou and Lawrence, 2013; Wilson et al., 2016) is left for future work.
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