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Supplementary Materials

A Applying REBAR Gradient Estimation to REAL-X

Computing the gradient of an expectation of a function with respect to the parameters of a discrete distribution requires
calculating score function gradients. Score function gradients often have high variance. To reduce this variance, control
variates are used within the objective. REBAR gradient calculation involves using a highly correlated control variate that
approximates the discrete distribution with its continuous relaxation.

The REAL-X procedure involves
mgx]Em,y]Est(fﬁ(:c)i) [108 Gprea(y | m(, 5);0) — Al|s]lo].
This is accomplished through stochastic gradient ascent by taking
VsEs,~B(fs(@)) [ 108 Gprea(y | m(z, 5);0) — Al|s|lo], (7

which requires score function gradient estimation.

Let s be a discrete random variable, £ = Esy, [h(s)], and E[gg] = V3L, the REBAR gradient estimator ( ,
) computes gg. Then, letting z be a continous relaxation of s, REBAR estimates the gradient as

gs = [h(s) = h(2)]Vglogqs(s) — Vh(2) + Vsh(z),
where s = B(z), z ~qp(z), Z ~ qp(z|s).

To estimate eq. (7) using REBAR, REAL-X sets

h(s) = 1Og qpred(y | m(:c, S )70)

Here, s is Bernoulli distributed and REAL-X sets z to be distributed as the binary equivalent of the Concrete distribution

( , ; , ), which we refer to as the RelaxedBernoulli distribution. s, z, and z are sampled as
described by ( ) such that
= fp(x)i,
S; = B(Zl) = ]l(zi > 0), ®)
z; ~ qa(z | ) = RelaxedBernoulli(p;; T = 0.1), )
. 1 Di v’
z; ~ qp(z|x,8) = 01(1°g1 pﬁloglv,), (10)

where v ~ Unif(0, 1) and v’ = v(l—pi) 1 s .

Then to estimate eq. (7) notice that
V5Es,~B(fs(@)) [MIsllo] = AV fa(x).
REAL-X, therefore, estimates eq. (7) by calculating gz as

9 = [10g Gprea(y | m(, 8)) — 10g Gorea(y | M, 2))] Vg log e (s | x; 8) — AV 3 fa(x)
_V,BQpred(y | m(a:, 2)) + vﬂqPred(y | m(xv z)) (11)
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B Algorithms
B.1 Evaluation Algorithm

Algorithm 2 Algorithm to Train Evaluator Model geya1x

Input: D := (x, y), where x € RV*P | feature matrix; y € RY, labels
Output: Geyax(y | m(x, - );n), function that returns the probability of the target given a subset of features.
Select: «, learning rate; M, mini-batch size
while Converge do
Randomly sample mini-batch of size M, (2, y)M ~ D
fori=1,...,M do

Sample Selections:

() ~ Bernoulli(0.5)

end
Optimize:

n=n+aVy, | S 108 Gevar (y @ m(z®, #@); p)

end

C Lemmas

Lemma 3. Let x € R, targety € {1,..., K}, and A be a set of K dimensional probability vectors, then for J =
arg min; Zg:o (IZ)) > |A| and x ~ F, there exists a qser and Gprea, where {qprea(y = k| m(x,s)) <, = §(x) € A and
Elllsllo] < 7.

D Proofs

D.1 Proof of Lemma 1

Lemma 1. Letx € RY and targety € {1,..., K}. Ify is a deterministic function of x and K < D, then JAMs with
monotone increase regularizers R will select at most one feature at optimality.

As mentioning in section 3, the lemma considers the masking function from eq. (2) and on independent Bernoulli selector
variables s; ~ Bernoulli( fz(x);).

s € RP is binary and, therefore, has the capacity to transmit D bits of information. Given thaty € {1,...,K} is a
deterministic function of x € RP, the true distribution is F(y | =) € {0, 1} for each of the K realizations of y. Therefore,
m(x, s) must pass at least log, K bits of information to the predictor model gyrea(y | m(, 8)).
D
With m of the form eq. (2), this information content can come from s. s has a capacity of log, (Z?_l < . >> bits when
i

restricted to realizations of s ~ g With at most n non-zero elements. The maximal number of non-zero elements J in any
given realization of s required to minimally transmit log, K bits of information with s can be expressed as

I /D
J:argminz ( ) > K.
i iZo \?

D
Given K < D, the maximal number of selections required is given by J = 1, where 1 = D > K. Therefore there

exists a gpreq and gser such that E[gyrea(y | m (2, 8))] = E[F(y | x)] and E[||s]|o] < 1. For monotone increasing regularizer
R, any solution that selects more than a single feature will have a lower JAM objective. Therefore, at optimally, JAMs will
select at most a single feature.

D.2 Proof of Lemma 3

Lemma 3. Letx € RP, targety € {1,..., K}, and A be a set of K dimensional probability vectors, then for J =
; D

arg min; > o ; ) > |A| and x ~ F, there exists a G and Qprea, where {Gprea(y = k| m(x, s, =6(x) € A and

E[l[s|lo] < J.
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This proof follows from the proof in appendix D.1. Given x € R” and target y € {1, ..., K}, there exists a distribution
prea(y | m(x,'8)) such that each realization of s € {0, 1} has a bijective mapping to a unique probability vector obtained

as {Qpred(y =k ‘ m(x, S))}kl,(zl € RK

D
As stated in the proof of lemma 1 s has a capacity of log, (Z?_l ( . )) bits when restricted to realizations of s ~ g
1

with at most 7 non-zero elements. Given a set of K dimensional probability vectors A, the maximal number of non-zero
selections in s required to produce at least |A| unique realizations of s, denoted by .J, can be expressed as

. (D
J = argmin g () > |A
i iz N

Then there exists a gpreq and gse1 such that there are at least |A| unique probability vectors {gprea(y = k| m(x, s))}f:1 =
§(x) € R where §(x) € A and the average number of features selected E|||s||o] < J.

D.3 Proof of Lemma 2

Lemma 2.  Assume that the true F(y | x) is computed as a tree, where the leaves {; are the conditional distributions
Fi(y | xs,) of y given distinct subsets of features S; in x. Given a monotone increasing regularizer R(|S;|), the preferred
maximizer of the JAM objective excludes control flow features.

The main intuition behind the proof of lemma 2 is as follows. The JAM objective results in a prediction model that does
not require the control flow features to achieve optimal performance. As a result of the monotone increasing regularizer R,
which assigns a cost for selecting each additional feature, the JAM objective omits control flow features. We now prove this
idea formally.

The tree is structured such that each leaf ¢; in the tree has a corresponding conditional distribution F;(y | xs,) parameterized
by a set of features S; such that Vj # 4, S; # S;. Let the features found along the the path from the root of the tree to the
leaf, including those found at the leaf, be defined as 7; for each leaf ¢;. Those features that are not in the leaf and only
appear in the non-leaf nodes of the tree are the control flow features defined as C; := 7;\S;. For any input «, let 7 (x) be
the features found along the path used in generating the response for that « and define the control flow features along the
path as C(x) and set of leaf features S(x).

Consider the following cases where ¢ (s | &) selects the jth feature with probability

{qseu(sj |z) =1[j € T(z)] = 1[j € {C(x) US(x)}] (Casel)
gGen (sj |z) = 1[j € S(x)] (Case2)’

where g1 and gge1 denotes the gy for case 1 and case 2 respectively. gpreai (y | m(, s)) and gprea2 (y | m(x, s)) are
defined in the corresponding manner.

In case 1, the predictor model @peqr receives all the relevant features from gy, such that
Eg y~FEs g (s| ) [108 Gprear (¥ | m(z, s))] can predict as well as possible.

In case 2, however, the predictor model gprea2 (y | m (2, 8)) does not receive the full set of relevant features from ggep; it only
receives the leaf features. Since the leaf features are unique across leaves, the selections indicated by s provides enough
information for the predictor model to consistently learn the correct data generating leaf conditional F'(y | s (5)), meaning
that it can predict as well as possible.

Assuming the models maximize the JAM objective, in both cases gpred together with gse correctly model F'(y | x). Plugging
this information into the JAM objective in eq. (3) yields the following:

Lease 1 = Eg yn FET (@) ~guen (s | 2) [log gprea1 (Y | m(z, T(x))) — AR(|T (x)|)]
= Eqy~rllog F(y | 2)] — AEa yn FET(2)~gun (s | )[R T (2)])];

Leaser = Bz yn FES(@)~qun(s | 2) 108 Gpreaz (¥ | m(x, S(x))) — AR(|S(z)])]
=Bz y~rllog F(y | @)] — AEz yn FEs(@)~gen(s | z) [R(S(2)])]-

Given that R(.) is monotone increasing, the following inequality holds:

['Case 2 Z £Case 1-
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For any A > 0 where control flow features are involved in the data generating process, that is C; # ) for some 4, this
inequality is strict. Therefore, the solution that omits control flow features (Case 2) will have a higher objective value, which
we describe as the preferred maximizer of the JAM objective. Thus, at optimality, control flow features will not be selected
under the JAM objective with a monotone increasing regularizer.

E Optimality of the Evaluator Model

The evaluator model geya.x 1s learned such that eq. (5) is maximized as follows:
m’f]ix Em,waEmNBernoulli(O.S) [log qeval—x(y ‘ m(w, ’I”); 77)} :

We aim to show that this expectation is maximal when gevax(y | (2, 7)) = F(y | ) for any sample of r identifying the
corresponding subset of features R in the input .

The expectations can be rewritten as

mf]lx IEmNBemoulli(O.5)IEac,'y |r~F [log (eval-x (y ‘ m(.’l), T‘); 77)] :

Let the power set over feature selections P, = {r C {0,1}”} and equivalently for the corresponding feature subsets
Pr = {R C 2P}. Given r; ~ Bernoulli(0.5), the probability

11
[Pe|  [Prl

p(r)

Recognizing that x,y L r, the expectation over r can be expanded as

1
max Z o Tz y~F [log Gevarx (Y | m(x, 7); 1)) .
K rEPy |,Pr‘

Here, the expectation is with respect to a given 7 in the power set P,.. In this case, neither 7 nor the subset of features
masked by m(x, r) provide any information about the target. Therefore, the likelihood is calculated with respect to the
corresponding fixed subset R as
1
max Z 7Em,y~F [IOg Qeval—x(y | TR; 77)] .
K REP ‘PR|
R

A finite sum is maximized when each individual element in the sum is maximized, therefore it suffices to find

Hl;]lX Em,yNF [log (Qeval-x (y | TR, 7])} VR € PR

Let gevarx := {fr( - ;7R)}RePsr, such that when given r as an input for the corresponding R, fr( - ;nr) is used to
generate the target. The key point here is that the subset R provided to the model as r can uniquely identify which fz
generates the target. Then, for any given R, each expectation is maximized when the corresponding fz is equal to the true
data generating distribution given by

max B,y p [10g Gevaix (¥ | TR )] = max Euy log fr(y[x®r;nR)] = Exyllog F(y |xr)] VR € Pg.



Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, Rajesh Ranganath

F Additional Experiments

F.1 EVAL-X vs. Models Explicitly Trained For Each Feature Subset.

In this experiment, we evaluate EVAL-X. EVAL-X approximates F(y | xg ) for any subset of features R, by training
on randomly sampled subsets of the input x. While, at optimally the training procedure for EVAL-X returns a model of
F(y | xr), it may be difficult to approximate the distribution F'(y | xr ) for every possible subset of features. We therefore
trained separate models for each unique subset of features on our synthetic dataset described in section 6.3. Each of the
datasets contain 11 input features with 2048 distinct feature subsets. For each dataset we trained 2048 distinct models on
each feature subset. We then evaluated the selections made by each AEM on this collection of models and on EVAL-X. We
compared the AUROC returned by EVAL-X (eAUROC) to those returned by the collection of models (cAUROC) in table 5.
While EVAL-X returns underestimates relative to the collection of models, the difference is small and the trend amongst
methods is conserved.

Table 5: REAL-X yields superior post-hoc evaluation on a collection of each models for each feature subset.

| st s2 S3
Method | eAUROC CAUROC | €AUROC CAUROC |€AUROC CAUROC

REAL-x| 0.774  0.798 | 0.804  0.807 | 0.873 0.876

L2x| 0742  0.759 | 0.771 0.776 | 0.848  0.849
Invase| 0.740  0.767 0.783 0.788 | 0.868  0.870
BASE-x| 0.762  0.773 0.773 0.777 | 0.867  0.870

F.2 Training the Predictor Model First.

We compared a REAL-X approach where gpeq is first fully optimized, then gy is optimized in a stepwise manor (REAL-X-
STEP) to the approach outlined in algorithm 1, where both g and gpreq are optimized simultaneous with each mini-batch.
The AUROCS returned by EVAL-X for the synthetic datasets described in section 6.3 are presented in table 6. Both
approaches perform similarly.

Table 6: REAL-X and REAL-X-STEP perform similarly.

| st 52 S3
Metric | REAL-x REAL-x-STEP | REAL-X REAL-x-STEP |REAL-x REAL-x-STEP
eAUROC| 0.774 0778 | 0.804 0.801 | 0.873 0.872




