
Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, Rajesh Ranganath

Supplementary Materials

A Applying REBAR Gradient Estimation to REAL-X
Computing the gradient of an expectation of a function with respect to the parameters of a discrete distribution requires
calculating score function gradients. Score function gradients often have high variance. To reduce this variance, control
variates are used within the objective. REBAR gradient calculation involves using a highly correlated control variate that
approximates the discrete distribution with its continuous relaxation.

The REAL-X procedure involves

max
�

Ex,yEsi⇠B(f�(x)i)

⇥
log qpred(y | m(x, s); ✓)� �ksk0

⇤
.

This is accomplished through stochastic gradient ascent by taking

r�Esi⇠B(f�(x)i)

⇥
log qpred(y | m(x, s); ✓)� �ksk0

⇤
, (7)

which requires score function gradient estimation.

Let s be a discrete random variable, L = Es⇠q� [h(s)], and E[ĝ�] = r�L, the REBAR gradient estimator (Tucker et al.,
2017) computes ĝ� . Then, letting z be a continous relaxation of s, REBAR estimates the gradient as

ĝ� = [h(s)� h(z̃)]r� log q�(s)�r�h(z̃) +r�h(z),

where s = B(z), z ⇠ q�(z), z̃ ⇠ q�(z|s).

To estimate eq. (7) using REBAR, REAL-X sets

h(s) = log qpred(y | m(x, s); ✓).

Here, s is Bernoulli distributed and REAL-X sets z to be distributed as the binary equivalent of the Concrete distribution
(Maddison et al., 2016; Jang et al., 2017), which we refer to as the RelaxedBernoulli distribution. s, z, and z̃ are sampled as
described by Tucker et al. (2017) such that

pi = f�(x)i,

si = B(zi) = (zi > 0), (8)
zi ⇠ q�(z |x) = RelaxedBernoulli(pi; ⌧ = 0.1), (9)

z̃i ⇠ q�(z |x, s) =
1

0.1

✓
log

pi
1� pi

+ log
v0

1� v0

◆
, (10)

where v ⇠ Unif(0, 1) and v0 =

(
v(1� pi) if si = 0

vpi + (1� pi) if si = 1
.

Then to estimate eq. (7) notice that
r�Esi⇠B(f�(x)i)

⇥
�ksk0

⇤
= �r�f�(x).

REAL-X, therefore, estimates eq. (7) by calculating ĝ� as

ĝ� = [log qpred(y | m(x, s))� log qpred(y | m(x, z̃))]r� log qsel(s |x;�)� �r�f�(x)

�r�qpred(y | m(x, z̃)) +r�qpred(y | m(x, z)) (11)

Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations.

B Algorithms
B.1 Evaluation Algorithm

Algorithm 2 Algorithm to Train Evaluator Model qeval-x

Input: D := (x,y), where x 2 RN⇥D, feature matrix; y 2 RN , labels
Output: qeval-x(y |m(x, ·); ⌘), function that returns the probability of the target given a subset of features.
Select: ↵, learning rate; M , mini-batch size
while Converge do

Randomly sample mini-batch of size M , (x(i),y(i))Mi=1 ⇠ D
for i = 1, ...,M do

Sample Selections:
r(i) ⇠ Bernoulli(0.5)

end
Optimize:

⌘ = ⌘ + ↵r⌘

h
1
M

PM
i=1 log qeval-x(y(i)|m(x(i), r(i)); ⌘)

i

end

C Lemmas
Lemma 3. Let x 2 RD, target y 2 {1, ...,K}, and � be a set of K dimensional probability vectors, then for J =

argminj
Pj

i=0

✓
D

i

◆
� |�| and x ⇠ F , there exists a qsel and qpred, where {qpred(y = k |m(x, s))}Kk=1 = �(x) 2 � and

E[||s||0]  J .

D Proofs
D.1 Proof of Lemma 1
Lemma 1. Let x 2 RD and target y 2 {1, ...,K}. If y is a deterministic function of x and K  D, then JAMs with
monotone increase regularizers R will select at most one feature at optimality.

As mentioning in section 3, the lemma considers the masking function from eq. (2) and on independent Bernoulli selector
variables sj ⇠ Bernoulli(f�(x)j).

s 2 RD is binary and, therefore, has the capacity to transmit D bits of information. Given that y 2 {1, ...,K} is a
deterministic function of x 2 RD, the true distribution is F (y | x) 2 {0, 1} for each of the K realizations of y. Therefore,
m(x, s) must pass at least log2 K bits of information to the predictor model qpred(y |m(x, s)).

With m of the form eq. (2), this information content can come from s. s has a capacity of log2

✓Pn
i=1

✓
D

i

◆◆
bits when

restricted to realizations of s ⇠ qsel with at most n non-zero elements. The maximal number of non-zero elements J in any
given realization of s required to minimally transmit log2 K bits of information with s can be expressed as

J = argmin
j

jX

i=0

✓
D

i

◆
� K.

Given K  D, the maximal number of selections required is given by J = 1, where
✓
D

1

◆
= D � K. Therefore there

exists a qpred and qsel such that E[qpred(y |m(x, s))] = E[F (y |x)] and E[ksk0]  1. For monotone increasing regularizer
R, any solution that selects more than a single feature will have a lower JAM objective. Therefore, at optimally, JAMs will
select at most a single feature.

D.2 Proof of Lemma 3
Lemma 3. Let x 2 RD, target y 2 {1, ...,K}, and � be a set of K dimensional probability vectors, then for J =

argminj
Pj

i=0

✓
D

i

◆
� |�| and x ⇠ F , there exists a qsel and qpred, where {qpred(y = k |m(x, s))}Kk=1 = �(x) 2 � and

E[||s||0]  J .

Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, Rajesh Ranganath

This proof follows from the proof in appendix D.1. Given x 2 RD and target y 2 {1, ...,K}, there exists a distribution
qpred(y |m(x, s)) such that each realization of s 2 {0, 1}D has a bijective mapping to a unique probability vector obtained
as {qpred(y = k |m(x, s))}Kk=1 2 RK .

As stated in the proof of lemma 1 s has a capacity of log2

✓Pn
i=1

✓
D

i

◆◆
bits when restricted to realizations of s ⇠ qsel

with at most n non-zero elements. Given a set of K dimensional probability vectors �, the maximal number of non-zero
selections in s required to produce at least |�| unique realizations of s, denoted by J , can be expressed as

J = argmin
j

jX

i=0

✓
D

i

◆
� |�|.

Then there exists a qpred and qsel such that there are at least |�| unique probability vectors {qpred(y = k |m(x, s))}Kk=1 =
�(x) 2 RK where �(x) 2 � and the average number of features selected E[||s||0]  J .

D.3 Proof of Lemma 2
Lemma 2. Assume that the true F (y | x) is computed as a tree, where the leaves `i are the conditional distributions
Fi(y | xSi) of y given distinct subsets of features Si in x. Given a monotone increasing regularizer R(|Si|), the preferred
maximizer of the JAM objective excludes control flow features.

The main intuition behind the proof of lemma 2 is as follows. The JAM objective results in a prediction model that does
not require the control flow features to achieve optimal performance. As a result of the monotone increasing regularizer R,
which assigns a cost for selecting each additional feature, the JAM objective omits control flow features. We now prove this
idea formally.

The tree is structured such that each leaf `i in the tree has a corresponding conditional distribution Fi(y | xSi) parameterized
by a set of features Si such that 8j 6= i, Si 6= Sj . Let the features found along the the path from the root of the tree to the
leaf, including those found at the leaf, be defined as Ti for each leaf `i. Those features that are not in the leaf and only
appear in the non-leaf nodes of the tree are the control flow features defined as Ci := Ti\Si. For any input x, let T (x) be
the features found along the path used in generating the response for that x and define the control flow features along the
path as C(x) and set of leaf features S(x).

Consider the following cases where qsel(s |x) selects the jth feature with probability
(
qsel1(sj |x) = [j 2 T (x)] = [j 2 {C(x) [S(x)}] (Case 1)
qsel1(sj |x) = [j 2 S(x)] (Case 2)

,

where qsel1 and qsel1 denotes the qsel for case 1 and case 2 respectively. qpred1(y | m(x, s)) and qpred2(y | m(x, s)) are
defined in the corresponding manner.

In case 1, the predictor model qpred1 receives all the relevant features from qsel1, such that
Ex,y⇠FEs⇠qsel1(s |x) [log qpred1(y | m(x, s))] can predict as well as possible.

In case 2, however, the predictor model qpred2(y | m(x, s)) does not receive the full set of relevant features from qsel2; it only
receives the leaf features. Since the leaf features are unique across leaves, the selections indicated by s provides enough
information for the predictor model to consistently learn the correct data generating leaf conditional F (y |xS(x)), meaning
that it can predict as well as possible.

Assuming the models maximize the JAM objective, in both cases qpred together with qsel correctly model F (y | x). Plugging
this information into the JAM objective in eq. (3) yields the following:

LCase 1 = Ex,y⇠FET (x)⇠qsel1(s |x) [log qpred1(y | m(x, T (x)))� �R(|T (x)|)]
= Ex,y⇠F [logF (y |x)]� �Ex,y⇠FET (x)⇠qsel1(s |x)[R(|T (x)|)],

LCase 2 = Ex,y⇠FES(x)⇠qsel2(s |x) [log qpred2(y | m(x,S(x)))� �R(|S(x)|)]
= Ex,y⇠F [logF (y |x)]� �Ex,y⇠FES(x)⇠qsel2(s |x)[R(|S(x)|)].

Given that R(.) is monotone increasing, the following inequality holds:

LCase 2 � LCase 1.

Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations.

For any � > 0 where control flow features are involved in the data generating process, that is Ci 6= ; for some i, this
inequality is strict. Therefore, the solution that omits control flow features (Case 2) will have a higher objective value, which
we describe as the preferred maximizer of the JAM objective. Thus, at optimality, control flow features will not be selected
under the JAM objective with a monotone increasing regularizer.

E Optimality of the Evaluator Model
The evaluator model qeval-x is learned such that eq. (5) is maximized as follows:

max
⌘

Ex,y⇠FEri⇠Bernoulli(0.5) [log qeval-x(y |m(x, r); ⌘)] .

We aim to show that this expectation is maximal when qeval-x(y |m(x, r)) = F (y |xR) for any sample of r identifying the
corresponding subset of features R in the input xR.

The expectations can be rewritten as

max
⌘

Eri⇠Bernoulli(0.5)Ex,y | r⇠F [log qeval-x(y |m(x, r); ⌘)] .

Let the power set over feature selections Pr = {r ⇢ {0, 1}D} and equivalently for the corresponding feature subsets
PR = {R ⇢ 2D}. Given ri ⇠ Bernoulli(0.5), the probability

p(r) =
1

|Pr|
=

1

|PR|
.

Recognizing that x,y ? r, the expectation over r can be expanded as

max
⌘

X

r2Pr

1

|Pr|
Ex,y⇠F [log qeval-x(y |m(x, r); ⌘)] .

Here, the expectation is with respect to a given r in the power set Pr. In this case, neither r nor the subset of features
masked by m(x, r) provide any information about the target. Therefore, the likelihood is calculated with respect to the
corresponding fixed subset R as

max
⌘

X

R2PR

1

|PR|
Ex,y⇠F [log qeval-x(y |xR; ⌘)] .

A finite sum is maximized when each individual element in the sum is maximized, therefore it suffices to find

max
⌘

Ex,y⇠F [log qeval-x(y |xR; ⌘)] 8R 2 PR

Let qeval-x := {fR(· ; ⌘R)}R2PR , such that when given r as an input for the corresponding R, fR(· ; ⌘R) is used to
generate the target. The key point here is that the subset R provided to the model as r can uniquely identify which fR
generates the target. Then, for any given R, each expectation is maximized when the corresponding fR is equal to the true
data generating distribution given by

max
⌘

Ex,y⇠F [log qeval-x(y |xR; ⌘)] = max
⌘R

Ex,y [log fR(y |xR; ⌘R)] = Ex,y[logF (y |xR)] 8R 2 PR.

Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, Rajesh Ranganath

F Additional Experiments
F.1 EVAL-X vs. Models Explicitly Trained For Each Feature Subset.
In this experiment, we evaluate EVAL-X. EVAL-X approximates F (y | xR) for any subset of features R, by training
on randomly sampled subsets of the input x. While, at optimally the training procedure for EVAL-X returns a model of
F (y | xR), it may be difficult to approximate the distribution F (y | xR) for every possible subset of features. We therefore
trained separate models for each unique subset of features on our synthetic dataset described in section 6.3. Each of the
datasets contain 11 input features with 2048 distinct feature subsets. For each dataset we trained 2048 distinct models on
each feature subset. We then evaluated the selections made by each AEM on this collection of models and on EVAL-X. We
compared the AUROC returned by EVAL-X (eAUROC) to those returned by the collection of models (cAUROC) in table 5.
While EVAL-X returns underestimates relative to the collection of models, the difference is small and the trend amongst
methods is conserved.

Table 5: REAL-X yields superior post-hoc evaluation on a collection of each models for each feature subset.

S1 S2 S3

Method eAUROC cAUROC eAUROC cAUROC eAUROC cAUROC

REAL-X 0.774 0.798 0.804 0.807 0.873 0.876
L2X 0.742 0.759 0.771 0.776 0.848 0.849

INVASE 0.740 0.767 0.783 0.788 0.868 0.870
BASE-X 0.762 0.773 0.773 0.777 0.867 0.870

F.2 Training the Predictor Model First.
We compared a REAL-X approach where qpred is first fully optimized, then qsel is optimized in a stepwise manor (REAL-X-
STEP) to the approach outlined in algorithm 1, where both qsel and qpred are optimized simultaneous with each mini-batch.
The AUROCs returned by EVAL-X for the synthetic datasets described in section 6.3 are presented in table 6. Both
approaches perform similarly.

Table 6: REAL-X and REAL-X-STEP perform similarly.

S1 S2 S3

Metric REAL-X REAL-X-STEP REAL-X REAL-X-STEP REAL-X REAL-X-STEP

eAUROC 0.774 0.778 0.804 0.801 0.873 0.872

