
Haoming Jiang∗, Zhehui Chen∗, Yuyang Shi, Bo Dai, Tuo Zhao

Supplementary Materials

A Limiting Cycle

True Gradient Stochastic Gradient Solution Path

Figure 6: Illustrative hardness for solving problem (1). Wrong directions can lead to a limiting cycle. Then
algorithms fail to converge. Details in Appendix A.

Limiting cycle is a well-known issue for bilevel machine learning problems [4,5]. The reason behind limiting cycle
is that different from minimization problems, a bilevel optimization problem is more complicated and could be
highly nonconvex-nonconcave, where the inner problem can not be solved exactly. Here we provide a simple
bilevel problem example, which is convex-concave, but the iterations still cannot converge due to the inexact
solutions. Specifically, we consider the following optimization problem:

min
x

max
y

f(x, y) = xy.

Then at the t-th iteration, the update direction will be (−yt, xt). If we start from (1, 0) with a stepsize of 0.0001,
this update will result in a limiting circle: x2 + y2 = 1 and never reach the stable equilibrium (0, 0) as shown in
Figure 7.

Figure 7: An example of the limiting circle: Arrows denote the update directions

B Attacker Architecture

In the following, we study how the attacker architecture affects the stability of L2L training. Table 5 presents
another attacker architecture: slim attacker. In this network, the second convolutional layer uses downsampling,
while the second last deconvolutional layer uses upsampling. Such a bottleneck design is widely used in deep

Learning to Defend by Learning to Attack

neural networks due to computational considerations. For example the running time of per epoch for L2L with
slim attacker is 480; whereas L2L with the original architecture is 620. However, it loses some information
of input and is significant worse than the original architecture (Table 1). Inspired by residual learning in He
et al. (2016), we address the stability issue by using a skip layer connection to ease the training of this network.
Specifically, the last layer takes the concatenation of Afθ (x, y) and the output of the second last layer as input.
Figure 8 presents the architecture of ResBlocks. PReLU is a special type of Leaky ReLU with a learnable slope
parameter.

Table 6 shows the results of L2L with the slim attacker shown in Table 5. The performance of GradL2L under
PGM attacker on CIFAR10 for slim attacker is comparable to the original attacker. However, under other
scenarios, the robust performance is worse than the original attacker. We tried to make the slim attacker deeper
or take more L2L steps and observe little improvement. These results suggest a very important design choice
of attacker architecture for L2L that the widely used bottleneck design causes the loss of information and can
make the training difficult.

Table 5: Slim Attacker Network Architecture.
Conv: [k = 3× 3, c = 128, s = 1, p = 1], BN+ReLU
ResBlocks: [channel = 256]
ResBlocks: [channel = 128], BN
DeConv: [k = 4× 4, c = 16, s = 2, p = 1], BN+ReLU
Conv: [k = 3× 3, c = 3, s = 1, p = 1], tanh

Input
BN

Add
PReLU Conv BN PReLU Conv

Figure 8: An illustration example for the architecture of ResBlocks.

Table 6: Results of L2L with Slim Attacker under White-box Setting over CIFAR.

Defense Method Attack Method
Accuracy

Clean Robust

Dataset: CIFAR10
Grad L2L PGM-20 85.31% 53.02%
2-Step L2L PGM-20 75.36% 46.12%
Grad L2L CW 85.31% 42.72%
2-Step L2L CW 75.36% 40.82%

Dataset: CIFAR100
Grad L2L PGM-20 60.60% 27.37%
2-Step L2L PGM-20 60.23% 20.23%
Grad L2L CW 60.60% 22.14%
2-Step L2L CW 60.23% 22.70%

C Black-box Attack

Under the black-box setting, we first train a surrogate model with the same architecture of the target model
but a different random seed, and then attackers generate adversarial examples to attack the target model by
querying gradients from the surrogate model.

The black-box attack highly relies on the transferability, which is the property that the adversarial examples
of one model are likely to fool others. However, the transferred attack is very unstable, and often has a large

Haoming Jiang∗, Zhehui Chen∗, Yuyang Shi, Bo Dai, Tuo Zhao

variation in its effectiveness. Therefore, results of the black-box setting might not be reliable and effective. Thus
we only present one result here to demonstrate the robustness of different models.

Table 7: Results of the Black-box Setting over CIFAR-10. We Evaluate L2L Methods with Slim Attacker Net-
works.

Surrogate Plain Net FGSM Net PGM Net
FGSM PGM10 FGSM PGM10 FGSM PGM10

Plain Net 40.03 5.60 74.42 75.25 67.37 65.92
FGSM Net 79.20 85.02 89.90 80.40 64.28 63.89
PGM Net 83.80 84.73 84.33 85.29 67.05 65.54
Naive L2L 45.52 25.95 83.99 77.94 68.14 67.13
Grad L2L 86.10 86.87 87.93 88.01 71.15 69.95
2-Step L2L 85.83 87.10 86.51 87.60 70.58 69.38

Table 8: Experiments under the Black-box Setting over CIFAR-100. Note that here We only Evaluate L2L
Methods Using the Slim Attacker Network.

Surrogate Plain Net FGSM Net PGM Net
FGSM PGM10 FGSM PGM10 FGSM PGM10

Plain Net 21.04 9.04 50.57 54.06 40.06 41.30
FGSM Net 42.87 50.73 61.68 44.70 39.34 40.08
PGM Net 56.63 58.34 56.99 57.97 40.19 39.87
Naive L2L 20.97 10.47 50.36 54.07 38.63 39.91
Grad L2L 57.63 59.62 59.18 61.26 41.71 41.15
2-Step L2L 58.66 59.31 58.92 59.46 45.80 45.31

D Extension

As we mentioned earlier that our proposed L2L framework is quite general, and applicable to a broad class of
minimax optimization problems, here we present an extension of our proposed L2L framework to generative
adversarial imitation learning (GAIL, Ho and Ermon (2016)) and conduct some numerical experiments for
comparing the original GAIL and GAIL with L2L on two environments: CartPole and Mountain Car Brockman
et al. (2016).

D.1 L2L for Generative Adversarial Imitation Learning

Imitation learning aims to learn to perform a task from expert demonstrations, in which the learner is given only
samples of trajectories from the expert. To solve this problem, GAIL tries to recover the expert’s cost function
and extract such a a policy from the recovered cost function, which can be formulated as the following bilevel
optimization problem:

min
θπ

L(θπ, θ
∗
D)− λH(π),

s. t. θ∗D ∈ argmax
θD

L(θπ, θD) + LE(θD)− λH(π), (9)

where L(θπ, θD) = Es,a∼π(s;θπ)[log (D(s, a; θD))], LE(θD)= Es̃,ã∼πE
[log(1 − D(s̃, ã; θD))] , π(·; θπ) is the trained

policy parameterized by θπ, πE denotes the expert policy, D(·, ·; θD) is the discriminator parameterized by θD,
λH(π) denotes a entropy regularizer with tuning parameter λ, (s, a) and (s̃, ã) denote the state-action for the
trained policy and expert policy, respectively. By optimizing 9, the discriminator D distinguishes the state-action
(s, a) generated from the learned policy π with the sampled trajectories (s̃, ã) generated from some expert policy
πE. In the original GAIL training, for each iteration, we update the parameter of D, θD, by stochastic gradient
ascend and then update θπ by the trust region policy optimization (TRPO, Schulman et al. (2015)).

Learning to Defend by Learning to Attack

Similar to the adversarial training with L2L, we apply our L2L framework to GAIL by parameterizing the inner
optimizer as a neural network U(; θU) with parameter θU. Its input contains two parts: parameter θD and the
gradient of loss function with respect to θD:

gD(θD, θπ) = E
s,a∼π(s;θπ)

[∇θD log (D(s, a; θD))] + E
s̃,ã∼πE

[∇θD log(1−D(s̃, ã; θD))].

In practice, we use a minibatch (several sample trajectories) to estimate gD(θD, θπ), denoted as ĝD(θD, θπ).
Specifically, at the t-th iteration, we first calculate ĝtD = ĝD(θtD, θ

t
π) and then update θt+1

D = U(θtD, ĝ
t
D; θtU). Next,

we update θU by gradient ascend based on the sample estimate of

E
s,a∼π(s;θtπ)

[∇θU log (D(s, a; θt+1
D))] + E

s̃,ã∼πE

[∇θU log(1−D(s̃, ã; θt+1
D))].

The detailed algorithm is presented in Algorithm 5.

Algorithm 5 L2L-based GAIL.

Input: πE(s̃): Expert; θπ: Policy parameter; θD: Discriminator parameter; θU: Updater parameter.
for t ← 1 to N do

(s, a ∼ π(a; θπ)) (s̃, ã ∼ πE(s̃))
// Sample trajectories and expert trajectories.
gtD ← 1

|(s,a)|
∑

(s,a)

[∇θD log (D(s, a; θtD))] + 1
|(s̃,ã)|

∑
(s̃,ã)

[∇θD log(1−D(s̃, ã; θtD))]

//Compute gradient.
θt+1

D = U(θtD, g
t
D; θtU)

//Update the discriminator parameters.
θt+1

U ← argmin
θU

1
|(s,a)|

∑
(s,a)

[log (D(s, a; θt+1
D))] + 1

|(s̃,ã)|
∑

(s̃,ã)

[log(1−D(s̃, ã; θt+1
D))]

//Update θU of updater.
Update θπ by a policy step using the TRPO rule Ho and Ermon (2016)
//Update policy parameter θπ.

D.2 Numerical Experiments

Updater Architecture. We use a simple 3-layer perceptron with a skip layer as our updater. The number
hidden units are (2m→ 8m→ 4m→ m), where m is the dimension of θD that depends on the original task. For
the first and second layers, we use Parametric ReLU (PReLU, He et al. (2015)) as the activation function, while
the last layer has no activation function. Finally we add the output to θD in the original input as the updated
parameter for the discriminator network.

Hyperparameter Settings. For all baselines we exactly follows the setting in Ho and Ermon (2016), except
that we use a 2-layer discriminator with number of hidden units ((s, a) → 64 → 32 → 1) using tanh as the
activation function. We use the same neural network architecture for π and the same optimizer configuration.
The expert trajectories are obtained by an expert trained using TRPO. For L2L based GAIL, we also use Adam
optimizer to update the θU with the same configuration as updating θD in the original GAIL.

Numerical Results. As can be seen in Figure 9, GAIL has a sudden performance drop after training for a
long time. We conjecture that this is because the discriminator overfits the expert trajectories and converges to
a bad optimum, which is not generalizable. On the other hand, GAIL with L2L is much more stable. It is very
important to real applications of GAIL: since the reward in real-world environment is usually unaccessible, we
cannot know whether there is a sudden performance drop or not. With L2L, we can stabilize the training and
obtain a much more reliable algorithm for real-world applications.

E Robustness Evaluation Checklist

Recently, there are many works on robustness defense that have been proven ineffective Athalye et al. (2018);
Carlini et al. (2019). Our work follows the most reliable and widely used robust model approach adversarial
training, which finds a set parameters to make the model robust. We do not make any modification to final

Haoming Jiang∗, Zhehui Chen∗, Yuyang Shi, Bo Dai, Tuo Zhao

Mountain Car CartPole

GAIL

L2L GAIL

Figure 9: Reward vs. iteration of the trained policy using original GAIL and L2L GAIL under two environments:
Mountain Car and CartPole.

classifier model. Unlike previous works (e.g., Defense-GAN, Samangouei et al. (2018)), our model does not
take the attacker as a part of the final model and does not use shattered/obfuscated/masked gradient as a
defense mechanism. We also demonstrate that the evaluation of the robustness of our proposed L2L method is
trustworthy by verifying all items listed in Carlini et al. (2019).

E.1 Shattered/Obfuscated/Masked Gradient

In this section we verify that our proposed L2L method does not fall into the pitfall of shat-
tered/obfuscated/masked gradient, which have proven ineffective. To see this, we checked every item recom-
mended in Section 3.1 of Athalye et al. (2018):

• One-step attacks perform better than iterative attacks: Figure 3 shows that the PGM attack is stronger
with larger number of iterations.

• Black-box attacks are better than white-box attacks: Appendix C shows that the black-box transfer attack
is much weaker than white white-box attacks.

• Unbounded attacks do not reach 100% success: We evaluate the model robustness against attack with
extremely large perturbation to show that unbounded attacks do reach 100% success. Specifically, we use
the PGM-10 attack with various perturbation magnitudes ε ∈ [0, 1] and stepsize ε

10 . Figure 10 shows that
the PGM attack eventually reach 100% success as the perturbation magnitude increases.

0.0 0.2 0.4 0.6
Perturbation Magnitude for PGM (T = 10)

0

20

40

60 2-Step L2L
Grad L2L
PGM Net

Figure 10: Robust accuracy against perturbation magnitudes of PGM over CIFAR-100.

• Random sampling finds adversarial examples: In Table 2, we show that random search is not better than
gradient-based method and is rather weak against our model.

Learning to Defend by Learning to Attack

• Increasing distortion bound does not increase success: Figure 3 shows that the PGM attack becomes stronger
as the perturbation magnitude increases.

E.2 Robustness Evaluation Checklist

Carlini et al. (2019) also provide an evaluation checklist, and we now check each of common severe flaws and
common pitfalls as follows:

• State a precise threat model: We do not have any adversary detector; We do not use shat-
tered/Obfuscated/Masked gradient. We do not have a denoiser. Our model has no aware of the attack
mechanism, including PGM and CW attacks.

• Adaptive attacks: We used CW, PGM, and L2L attacker attack.

• Report clean model accuracy: We reported.

• Do not use Fast Gradient Sign Method. We use PGM-20 and PGM-100 and CW.

• Do not only use attacks during testing that were used during training. We use different evaluation criteria
to evaluate all models.

• Perform basic sanity tests: It is provided in Figure 3.

• Generate an attack success rate vs. perturbation budget: Figure 3.

• Verify adaptive attacks perform better than any other (e.g., blackbox, and brute-force search): The above
table and Appendix C in the paper.

• Describe the attacks applied: In Section 4.

• Apply a diverse set of attacks: We tried PGM attack (with different perturbation magnitude and iterations),
blackbox attack (transfer attack), CW attack (adaptive attack), L2L attack (adaptive and designed for this
particular model), Bruteforce random search (gradient-free attack)

• Suggestions for randomized defenses: We are not.

• Suggestions for non-differentiable components (e.g., by performing quantization or adding extra random-
ness): We have no additional non-differentiable component.

• Verify that the attacks have converged: Figure 3 shows that the PGM attack eventually converges.

• Carefully investigate attack hyperparameters: Figure 3.

• Compare against prior work: We compared our algorithm to PDM net. L2L is more computationally efficient
and the L2L model is more robust due to the fact that L2L attack is strong enough. Unlike Defense-GAN,
we do not use the generator (attacker in L2L) as the denoising module and do not change the final prediction
model.

