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Abstract

Learning under one-sided feedback (i.e., where
we only observe the labels for examples we
predicted positively on) is a fundamental prob-
lem in machine learning – applications include
lending and recommendation systems. De-
spite this, there has been surprisingly little
progress made in ways to mitigate the effects
of the sampling bias that arises. We focus on
generalized linear models and show that with-
out adjusting for this sampling bias, the model
may converge suboptimally or even fail to con-
verge to the optimal solution. We propose an
adaptive approach that comes with theoreti-
cal guarantees and show that it outperforms
several existing methods empirically. Our
method leverages variance estimation tech-
niques to efficiently learn under uncertainty,
offering a more principled alternative com-
pared to existing approaches.

1 INTRODUCTION

Machine learning is deployed in a wide range of critical
scenarios where the feedback is one-sided, including
bank lending (Tsai and Chen, 2010; Kou et al., 2014;
Tiwari, 2018), criminal recidivism prediction (Tollenaar
and Van der Heijden, 2013; Wang et al., 2010; Berk,
2017), credit card fraud (Chan et al., 1999; Srivastava
et al., 2008), spam detection (Jindal and Liu, 2007;
Sculley, 2007), self-driving motion planning (Paden
et al., 2016; Lee et al., 2014), and recommendation sys-
tems (Pazzani and Billsus, 2007; Covington et al., 2016;
He et al., 2014). These applications can often times be
modeled as one-sided feedback in that the true labels
are only observed for the positively predicted examples
and the learner is simultaneously making predictions
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and actively learning a better model. For example,
in bank loans, the learner only observes whether the
loan was repaid if it was approved. In criminal recidi-
vism prediction, the decision maker only observes any
re-offences for inmates who were released.

Incidentally, this problem can be viewed as a variation
on the classical active learning problem in the streaming
setting (Bordes et al., 2005; Chu et al., 2011; Lu et al.,
2016), where unlabeled examples arrive in a sequential
manner and the learner must decide whether to query
for its label for a fixed cost in order to build a better
model. Here, the goal is similar, with the difference
that the labels being queried are the ones with positive
predictions. There is a tension between making the
correct predictions and choosing the right examples to
query for labels – a cost is associated with querying
negative examples on one hand, and on the other we
seek to learn a better model for improved future per-
formance. As we show later, the key difficulty of this
problem lies in understanding this trade-off and exactly
pinpointing when to make a positive prediction in the
face of uncertainty. In the case of bank lending, for
example, assessing the confidence for the prediction on
applicant’s chance of repayment is of great importance.
Decision needs to be made on balancing the risk of
default if granted the loan, which comes with a high
cost, and the benefit of the additionally gathered data
our model can learn from.

One often overlooked aspect is that the samples used
to train the model, which prescribes which data points
we should act upon next, are inherently biased by its
own past predictions. In practical applications, there
is a common belief that the main issue caused by such
one-sided sampling is label imbalance (He et al., 2014),
as the number of positive examples will be expected to
be much higher than overall for the population. Indeed,
this biasing of the labels leading to label imbalance
can be a challenge, motivating much of the vast lit-
erature on label imbalance. However, the challenges
go beyond label imbalance. We show that without
accounting for such potential myopia caused by biased
sampling, it is possible that we under-sample in regions
where the model makes false negative predictions, and
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even with continual feedback, the model never ends
up correcting itself. In the bank loan example, such
under-sampling may systematically put minority group
in a disadvantaged position, as reflected by the error
being disproportionally attributed across groups, if we
content ourselves with a point estimator that doesn’t
take into consideration the error bar that’s associated.

In this paper, we take a data-driven approach to guide
intervention efforts on correcting for the bias – un-
certainty quantification tools are used for striking the
balance between short-term desideratum (i.e., low er-
ror rate on current sample) and long-term welfare (i.e.,
information collection for designing optimal policy).
More concretely, we focus on generalized linear models,
borrowing assumptions from a popular framework of
Filippi et al. (2010). Our contributions can be summa-
rized as follows.

• In Section 3, we propose an objective, one-sided
loss, to capture the one-sided learner’s goals for
the model under consideration.

• In Section 4, we show that without leveraging ac-
tive learning where the model is continuously up-
dated upon seeing new labeled examples, a model
may need to be trained on a sub-optimal amount
of data to achieve a desirable performance on the
objective.

• In Section 5, we show that the greedy active ap-
proach (i.e., updating the model only on examples
with positive predictions at each timestep) in gen-
eral will not exhibit asymptotically vanishing loss.

• In Section 6, we give a strategy that adaptively
adjusts the model decision by incorporating the un-
certainty of the prediction and show an improved
rate of convergence on the objective.

• In Section 7, we explore the option of using it-
erative methods for learning the optimal model
parameters while maintaining small misclassifica-
tion rate under this partial feedback setting. The
proposed SGD variant of the adaptive method com-
plements our main results which focus on models
fully optimized on all of the labeled examples ob-
served so far.

• In Section 8, we provide an extensive experimental
analysis on linear and logistic regression on vari-
ous benchmark datasets showing that our method
outperforms a number of baselines widely used in
practice.

To the best of our knowledge, we give the most detailed
analysis in the ways in which passive or greedy learners
are sub-optimal in the one-sided feedback setting and

we present a practical algorithm that comes with rigor-
ous theoretical guarantees which outperforms existing
methods empirically.

2 RELATED WORK

Despite the importance and ubiquity of this active
learning problem with one-sided feedback, there has
been surprisingly little work done in studying the ef-
fects of such biased sampling and how to mitigate it.
Learning with partial feedback was first studied by
Helmbold et al. (2000) under the name “apple tasting"
who suggest to transform any learning procedure into
an apple tasting one by randomly flipping some of the
negative predictions into positive ones with probability
decaying over time. They give upper and lower bounds
on the number of mistakes made by the procedure
in this setting. Sculley (2007) studies the one-sided
feedback setting for the application of email spam fil-
tering and show that the approach of Helmbold et al.
(2000) was less effective than a simple greedy strategy.
Cesa-Bianchi et al. (2006a) propose an active learning
method for linear models to query an example’s label
randomly with probability based on the model’s pre-
diction score for that example. Bechavod et al. (2019)
consider the problem of one-sided learning in the group-
based fairness context with the goal of satisfying equal
opportunity (Hardt et al., 2016) at every round. They
consider convex combinations over a finite set of clas-
sifiers and arrive at a solution which is a randomized
mixture of at most two of these classifiers.

Cesa-Bianchi et al. (2006b) studies a setting which
generalizes the one-sided feedback, called partial moni-
toring, through considering repeated two-player games
in which the player receives a feedback generated by
the combined choice of the player and the environ-
ment. They propose a randomized solution. Antos
et al. (2013) provides a classification of such two-player
games in terms of the regret rates attained and Bartók
and Szepesvári (2012) study a variant of the problem
with side information. Our approach does not rely on
randomization that is typically required to solve such
two-player games. There has also been work study-
ing the effects of distributional shift caused by biased
sampling (Perdomo et al., 2020). Ensign et al. (2017)
studies the one-sided feedback setting through the prob-
lems of predictive policing and recidivism prediction.
They show a reduction to the partial monitoring setting
and provide corresponding regret guarantees.

Filippi et al. (2010) propose a generalized linear model
framework for the multi-armed bandit problem, where
for arm a, the reward is of the form µ(a>β∗) + ε where
β∗ is unknown to the learner, ε is additive noise, and
µ(·) is a link function. Our work borrows ideas from
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this framework as well as proof techniques. Their no-
tion of regret is based on the difference between the
expected reward of the chosen arm and that of an opti-
mal arm. One of our core contributions is showing that,
surprisingly, modifications to the GLM-UCB algorithm
leads to a procedure that minimizes a very different
objective under a disparate feedback model.

3 PROBLEM SETUP

We assume that data pairs (x, y) ∈ Rd×R are streaming
in and the learner interacts with the data in sequential
rounds: at time step t we are presented with a batch of
N samples (xt1, , · · · , xtN ), and for the data points we
decide to observe, we are further shown the correspond-
ing labels yti , while no feedback is provided for the
unobserved ones. We make the following assumptions.

Assumption 1 (GLM Model). There exists β∗ ∈ Rd
(unknown to the learner) and link function µ : R 7→ R
(known to the learner) such that y is drawn according
to an additive noise model y = µ(x>β∗) + ε. The link
function µ(·) is continuously differentiable and strictly
monotonically increasing, with Lipschitz constant L,
i.e., 0 < µ′(z) ≤ L ∀z ∈ R. Moreover, µ(0) ≤ γ.
Assumption 2 (Bounded Covariate). There exists
some B > 0 such that ‖xti‖2 ≤ B for all i ∈ [N ], t ≥ 0.

Assumption 3 (Parameter Diameter). The unknown
parameter β∗ satisfies ‖β∗‖2 ≤M .

Assumption 4 (Subgaussian Noise). The noise resid-
uals εti := yti−µ(xt>i β∗) are mutually independent, con-
ditionally zero-mean and conditionally φ-subgaussian.
That is, ∀i ∈ [N ], t ≥ 1, τ ∈ R,

E[εti|{xti}i, {εt−1
i }i, · · · , {x

0
i }i, {ε0i }i] = 0,

E[exp(τεti)|{xti}i, {εt−1
i }i, · · · , {x

0
i }i, {ε0i }i] ≤ exp(φ2τ2) .

Remark. Taking µ(z) = z gives a linear model and
µ(z) = (1 + e−z)−1 gives a logistic model. Also note
that the assumptions imply there exists η > 0 such
that µ′(x>β) ≥ η for all x, β ∈ Rd satisfying ‖x‖2 ≤ B
and ‖β‖2 ≤ M (see Lemma 4 in Appendix C for a
short proof).

We are interested in learning a strategy that can iden-
tify all the feature vectors x ∈ Rd that have response y
above some pre-specified cutoff c, while making as few
mistakes as possible along the sequential learning pro-
cess compared to the Bayes-optimal oracle that knows
β∗ (i.e., the classifier x 7→ 1{µ(x>β∗) ≥ c}). It is worth
noting that we don’t make any distributional assump-
tion on the feature vectors x ∈ Rd. Thus, our adaptive
algorithm works in both the adversarial setting and the
stochastic setting where the features are drawn i.i.d.
from some unknown underlying distribution.

Our goal is to minimize the objective formally defined
in Definition 1, which penalizes exactly when the model
performs an incorrect prediction compared to the Bayes-
optimal decision rule, and the penalty is the distance
of the expected response value for that example to the
desired cutoff c.
Definition 1 (One-Sided Loss). For feature-action
pairs (xti, a

t
i)
N
i=1 ∈ Rd × {0, 1}, the one-sided loss in-

curred at time t on a batch of size N with cutoff at c
is the following:

rt :=

N∑
i=1

|µ(xt>i β∗)− c| · 1
{
1{µ(xt>i β∗) > c} 6= ati

}
.

(1)

We give an illustrative example of how this objective
naturally arises in practice. Suppose that a company
is looking to hire job applicants, where each applicant
will contribute some variable amount of revenue to the
company and the cost of hiring an applicant is a fixed
cost of c. If the company makes the correct decision on
each applicant, it will incur no loss, where correct means
that it hired exactly the applicants whose expected
revenue contribution to the company is at least c. The
company incurs loss whenever it makes an incorrect
decision: if it hires an applicant whose expected revenue
is below c, it is penalized on the difference. Likewise, if
it doesn’t hire an applicant whose expected revenue is
above c, it is also penalized for the expected profit that
could have been made. Moreover, this definition of
loss promotes a notion of individual fairness because it
encourages the decision maker to not hire an unqualified
applicant over a qualified one. While our setup captures
scenarios beyond fairness applications, this aspect of
individual fairness in one-sided learning may be of
independent interest.

4 PASSIVE LEARNER HAS SLOW
RATE

In this section, we show that under the stronger i.i.d
data generation assumption, in order to achieve asymp-
totically vanishing loss, one could leverage an “offline"
algorithm that learns on an initial training set only,
but at the cost of having a slower rate for the one-sided
loss we are interested in. Our passive learner (Algo-
rithm 1) proceeds by predicting positively on the first
K+S samples to collect the labeled examples to fit on,
where the first K samples are used to obtain a finite set
of models which represent all possible binary decision
combinations on these K samples that could have been
made by the GLM model. The entire observed K + S
labeled examples are then used to pick the best model
from this finite set to be used for the remaining rounds
without further updating.
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Algorithm 1 Passive Learner
Inputs: Discretization sample size K, Exploration
sample size S, cutoff c, Time horizon T
Initialization: Choose to observe pairs of (xi, yi) ∈
Rd × R for K + S rounds, set the action ai = 1.
1. Construct discretized strategy class Π̂ using

the first K samples, containing one represen-
tative β̂k ∈ Rd for each element of the set
{(π(x1), · · · , π(xK)) : π ∈ Π}.

2. Find the best strategy on the observed K + S
data pairs as:

π̂β̂
∗

K = arg min
π∈Π̂

K+S∑
t=1

ut(xt, π(xt))

for t = K + S + 1, · · · , T do
Output at = π̂β̂

∗

K (xt) = 1{µ(x>t β̂
∗) ≥ c} as deci-

sion on xt, observe yt if at = 1

Output: β̂∗, {at}t

More formally, we work with the setting where the
feature-utility pairs (xt, ut) ∼ P are generated i.i.d
in each round. Let the class of strategies be Π =
{πβ : ‖β‖2 ≤ M}, where πβ(x) := 1{µ(x>β) ≥ c}
is the threshold rule corresponding to parameter β.
Moreover, let the utility for covariate xt with action
at ∈ {0, 1} be

ut(xt, at) := |yt − c| · 1
{
1{yt > c} 6= at

}
.

The initial discretization of the strategy class is used
for a covering argument, the size of which is bounded
with VC dimension. Using Hoeffding’s inequality and
a union bound over |Π̂|, one can easily obtain a high-
probability deviation on the quantity∣∣∣∣∣ 1

K + S

K+S∑
t=1

ut(xt, π̂(xt))− EP(u,x)[u(x, π̂(x))]

∣∣∣∣∣
uniformly over all π̂ ∈ Π̂, after which the optimality of
π̂K is invoked for reaching the final conclusion. We show
that with optimal choices of K and S, Algorithm 1 has
suboptimal guarantees – needing as many as Õ(1/ε3)
rounds in order to attain an average one-sided loss
of at most ε, whereas our adaptive algorithm to be
introduced later will only need Õ(1/ε2) rounds. This
suggests the importance of having the algorithm ac-
tively engaging throughout the data streaming process,
beyond working with large collection of observational
data only, for efficient learning. We give the guarantee
in the proposition below. The proof is in Appendix A.

Proposition 1 (Bound for Algorithm 1). Under As-
sumption 1-4 and the additional assumption that the

feature-utility pairs (xt, ut) ∼ P are drawn i.i.d in each
round, we have that picking K = O(T 1/3), S = O(T 2/3)
in Algorithm 1, for CT,δ = LBM+γ+c+φ

√
log(2T/δ),

with probability at least 1− 2δ,

T∑
t=1

EP [u(x, at)] ≤ min
π∈Π

T∑
t=1

EP [u(x, π(x))]

+O
(
CT,δT

2/3d log
( T
dδ

))
.

This in turn gives the following one-sided loss bound
with the same probability:

E
[ T∑
t=1

rt

]
≤ O

(
CT,δT

2/3d log
( T
dδ

))
.

5 GREEDY ACTIVE LEARNER
MAY NOT CONVERGE

In this section, we show that the greedy active learner,
which updates the model after each round on the re-
ceived labeled examples without regards for one-sided
feedback, can fail to find the optimal decision rule,
even under the i.i.d data assumption. More specifi-
cally, the greedy learner fits parameter β̂ that min-
imizes the empirical loss

∑
(xt,yt) : at=1 `(xt, yt;β) on

the datapoints whose labels it has observed so far at
each time step. For example in the case µ(z) = z
we use `(x, y;β) = (x>β − y)2, the squared loss;
when µ(z) = (1 + e−z)

−1 we instead use `(x, y;β) =
−y log(µ(x>β)) − (1 − y) log(1 − µ(x>β)), the cross-
entropy loss. An alternative definition of the greedy
learner can utilize the decision rule mandated by the β̂
that minimizes the one-sided loss (Definition 1) on the
datapoints predicted positive thus far. In our setup
this is possible because whenever a datapoint label
is revealed, the loss incurred by the decision can be
estimated. As it turns out, these two methods share
similar behavior, and we refer to reader to Appendix B
for the discussion of this alternative method.

We illustrate in Theorem 1 below that even when allow-
ing warm starting with full-rank randomly drawn i.i.d
samples, there are settings where the greedy learner
will fail to converge. More specifically, if the underlying
data distribution produces with constant probability
a vector v with the rest of the mass concentrated on
the orthogonal subspace, under Gaussian noise assump-
tion, the prediction µ(v>β̂) has Gaussian distribution
centered at the true prediction µ(v>β∗). Using the
Gaussian anti-concentration inequality from Lemma 3
provided in Appendix B, we can show that if µ(v>β∗) is
too close to the decision boundary c, there is a constant
probability that the model will predict µ(v>β̂) < c, and
therefore the model may never gather more information
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in direction v for updating its prediction since no more
observation will be made on v’s label from this point
on. This situation can arise for instance when dealing
with a population consisting of two subgroups having
small overlap between their features.
Theorem 1 (Non-Convergence for Greedy Learner).
Let y = µ(x>β∗) + ε with ε ∼ N (0, 1) and indepen-
dent of x. Moreover, for v ∈ Rd, let P be a distribu-
tion such that P (v) = 1/10 and for all other vectors
v′ ∼ P , it holds that v′>v = 0. Consider an MLE
fit using `(x, y;β) with n pairs of i.i.d. samples from
P for warm starting the greedy learner. Under the
additional assumption that x1, · · · , xn span all of Rd,
if µ(v>β∗) = c + τ , with τ ≤ 1/

√
n′ (where n′ is the

number of samples among {(xi, yi)}ni=1 with xi = v),
the loss after round T is lower bounded as:

E

[
T∑
t=1

rt

]
≥ Ω((T − n)τ) .

6 ADAPTIVE ALGORITHM

We propose Algorithm 2 with the goal of minimizing
the cumulative one-sided loss at time horizon T , RT :=∑T
t=1 rt, independent of the data distribution at each

round. The algorithm proceeds by first training a model
on an initial labeled sample with the assumption that
after initialization, the empirical covariance matrix A is
invertible with the smallest eigenvalue λ0 > 0. At each
time step, we solve for the MLE fit β̂t on the examples
observed so far, using e.g., Newton’s method. If ‖β̂t‖2
is too large, we perform a projection step – this step
is only required as an analysis artifact to ensure that
µ′(·) > 0 whenever it is evaluated in the algorithm.
The model then produces point estimate µ(x>βt) for
each example x in the current batch.

From here, we adopt an adaptive approach based on the
point-wise uncertainty in the prediction, which for data
point x is proportional to

√
x>A−1x (where A is the

covariance matrix of the labeled examples the model is
fit on thus far). This choice is justified by showing that
for any X ∈ RN×(d+1), whose rows consist of either
[0;xti] or [1; 0d] ,∀i ∈ [N ], we have with high probability

|1>µ(Xβ̃∗)− 1>µ(Xβ̃t)| ≤ ρt(δ) ·
N∑
i=1

√
x̄>i A

−1
t−1x̄i

for β̃∗ := [µ−1(c);β∗] the parameter of the optimal
predictor and β̃t := [µ−1(c);βt] our current best guess,
where x̄i is the last d coordinates of the i-th row of
the matrix X. With this on hand, a short calculation
reveals that the loss incurred at all time step t ≤ T ,
with probability at least 1− δ, is upper bounded as

rt ≤ 2ρt(δ/2T ) ·
∑
i

√
x>t,iA

−1
t−1xt,i

Algorithm 2 Adaptive One-sided Batch Alg.
Inputs: Batch size N , initialization sample size
K ≥ d+ 1 and eigenvalue λ0 > 0, cutoff c
Inputs: Lipschitz constant L, norm bounds
M,B, φ, η, γ, time horizon T , confidence level δ ∈
(0, 1 ∧ d/e)
Initialization: Choose to observe K pairs of
{(x0

i , y
0
i )}Ki=1 ∈ Rd × R, set A←

∑K
i=1 x

0
ix

0>
i

Set κ =
√

3 + 2 log(1 + 2NB2/λ0)
for t = 1, · · · , T do

Solve for β̂t ∈ Rd such that

t−1∑
i=0

X>i (yi − µ(Xiβ̂t)) = 0d (2)

if ‖β̂t‖2 ≤M then βt ← β̂t
else Perform projection step on β̂t as

βt = argmin
‖β‖2≤M

∥∥∥ t−1∑
i=1

X>i µ(Xiβ)−
t−1∑
i=1

X>i µ(Xiβ̂t)
∥∥∥
A−1

Set ρt(δ) = 2L
η κCT,δ

√
2d log t

√
log(2dT/δ)

Initialize Xt, yt = ∅
for j = 1, · · · , N do

if µ(xt>j βt)− c+ ρt(δ)
√
xt>j A−1xtj > 0 then

Choose to observe ytj and set atj = 1
Update Xt ← [Xt;x

t
j ] , yt = [yt; y

t
j ]

Let A← A+ xtjx
t>
j

Output: βT , {atj}

for xt,i the i-th row of Xt. It only remains to upper
bound

∑
i ‖xt,i‖A−1

t−1
, for which matrix determinant

lemma is invoked for volume computation of matrices
under low-rank updates.

Intuitively, the algorithm chooses to observe the sam-
ples for which either we can’t yet make a confident
decision, by which collecting the sample would greatly
reduce the uncertainty in that corresponding subspace
(as manifested by reduction in

∑
i ‖xt,i‖A−1

t−1
for future

rounds after updating the model at the end of the
batch); or we are confident that the response of the
sample is above c (for which current decision would
incur small loss). We give the following result whose
proof can be found in Appendix C.
Theorem 2 (Guarantee for Algorithm 2). Suppose
that Assumption 1-4 hold. Given a batch size N , we
have that for all T ≥ 1,

RT ≤ Õ
(
CT,δK +

L

η
CT,δ
√
TsdN

)
with probability at least 1− 2δ for 0 < δ < min{1, d/e},
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Figure 1: Average one-sided loss Rt/t for OLS. Each
round consists of presenting a batch of 1 example. All
methods are under optimal tuning averaged across 10
runs. The rest of the charts are in Appendix E.

where s = min(N, d), CT,δ = LBM + γ + c +

φ
√

log(2T/δ) and Õ hides poly-logarithmic factors in
T, δ−1, d,N,B, λ0.

7 SGD UNDER ONE-SIDED
FEEDBACK

In this section, we explore learning the parameter β∗
with iterative updates under one-sided feedback. We
consider running projected SGD with the following
gradient update on (xt, yt) at time step t for the GLM
model:

βt+1 = PΩ

(
βt − η · (−ytxt + µ(x>t βt)xt)

· 1{µ(x>t βt) + st ≥ c}
)

for some exploration bonus st to be specified later,
where the projection assures that µ′(·) ≥ γ for some
γ > 0 throughout the execution of the algorithm. For
example in logistic regression, we project onto the
convex set Ω := {β : |x>t β| ≤ r} at each step t to
maintain this. In words, we perform prediction on xt

Figure 2: Average one-sided loss Rt/t for Logistic. Each
round consists of presenting batch of 100 samples. All
methods are under optimal tuning averaged across 10
runs. The rest of the charts are in Appendix E.

with the current parameter βt, and take a stochastic
projected gradient step on the sample if µ(x>t βt) +
st ≥ c. Since the noise εt is assumed to be zero-mean
and independent of βt and xt, this implies that in
expectation (condition on βt), we have

βt+1 − β∗ = PΩ

(
βt − β∗ − η · (−µ(x>t β

∗)xt

+ µ(x>t βt)xt) · 1{µ(x>t βt) + st ≥ c}
)

= PΩ

(
βt − β∗ − η · µ′(z)x>t (βt − β∗)xt

· 1{µ(x>t βt) + st ≥ c}
)

where we used mean value theorem for some z ∈
[x>t β

∗, x>t βt]. Taking norms on both sides and us-
ing the fact that convex projection is a contractive
mapping, we have at step t, the expected progress as:

‖βt+1 − β∗‖22 ≤ ‖βt − β∗ − η · µ′(z)x>t (βt − β∗)xt‖22
= ‖βt − β∗‖22 +

[
η2 · µ′(z)2‖xt‖22

− 2η · µ′(z)
]
(x>t (βt − β∗))2

(3)
if µ(x>t βt) + st ≥ c; and contraction ratio of 1 (i.e., no
update on β) if µ(x>t βt) +st < c. This suggests that in
the case where we choose to accept, either |x>t (βt−β∗)|
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Dataset cutoff greedy ε-grdy os-ε-grdy noise os-noise margin ours

Adult 50% 239.45 236.34 211.74 230.77 165.77 162.31 144.92
70% 134.74 134.18 133.8 131.66 132.39 132.67 129.81

Bank 50% 164.23 162.67 117.86 136.0 88.49 86.26 74.64
70% 207.6 197.0 185.9 198.66 153.3 150.75 137.24

COMPAS 50% 41.56 36.67 36.93 36.93 28.09 28.12 26.01
70% 41.66 39.16 39.61 39.87 38.03 36.98 34.07

Crime 50% 15.77 15.77 15.5 15.66 14.93 14.73 13.95
70% 22.0 21.75 21.99 20.33 20.63 20.1 19.19

German 50% 14.7 14.51 14.12 13.62 11.12 10.52 9.63
70% 15.89 15.53 15.93 15.41 14.09 14.52 13.07

Blood 50% 2.06 2.06 2.06 2.06 1.92 1.72 1.52
70% 3.7 2.78 3.04 2.38 3.13 3.06 2.65

Diabetes 50% 4.17 4.16 4.23 3.94 3.81 3.95 3.61
70% 6.05 5.56 6.14 6.05 5.6 5.39 5.33

EEG Eye 50% 256.47 200.04 175.8 173.52 106.26 96.85 119.7
70% 175.71 167.94 168.73 157.68 167.52 160.76 155.79

Australian 50% 3.74 3.74 3.77 3.63 3.0 2.79 2.65
70% 6.77 6.77 6.77 6.66 5.09 5.26 4.65

Churn 50% 46.98 43.65 30.65 36.64 21.24 18.83 14.89
70% 49.99 47.84 47.91 49.89 41.18 36.17 35.27

Table 1: Experimental results for cumulative one-sided loss for Linear Regression.

is small, in which case the probability of making a
mistake on this sample is small already; or if large we
make sufficient progress in this direction by performing
the update. This is formalized in Algorithm 3 and
the corresponding Proposition 2 below, whose proof
we defer to Appendix D. In order to have any hope of
making progress towards β∗ (i.e., observing yt with non-
trivial probability), however, we make the following
assumption on the feature vectors.
Assumption 5 (Subgaussian i.i.d Features). The fea-
ture vectors xt at each time step t are drawn i.i.d
with independent σ-sub-gaussian coordinates. This
in turn implies that since µ(x>β∗) is a univariate
L-lipschitz function of ‖β∗‖2σ-subgaussian random
variable, µ(x>t β

∗) − Ex[µ(x>β∗)] is itself CL‖β∗‖σ-
subgaussian for some numerical constant C.

Proposition 2. Under Assumption 1 and 5, given ρ ∈
(0, 1), we have with probability at least 1− ρ, for cutoff
c = Ex[µ(x>θ∗)] − ζ with ζ ≥

√
2L‖β∗‖2σ2 log(ρ−1),

at iteration t of Algorithm 3, either

E[‖βt+1 − β∗‖2] ≤ E[‖βt − β∗‖22]− α2

‖xt‖22L2
,

or ∣∣µ(x>t β
∗)− µ(x>t βt)

∣∣ ≤ Lγ−1(α+ 2B)

if picking δ−1 = ρ− e−
ζ2

2L2‖β∗‖2σ2 . Moreover, the prob-
ability of making a misclassification error at time step
t satisfies

P
(
1{µ(x>t β

∗) ≥ c} 6= 1{µ(x>t βt) + st ≥ c}
)
≤ ρ .

Algorithm 3 SGD Under Partial Feedback
Inputs: Initial β0 and d0 such that ‖β0 − β∗‖ ≤ d0

Inputs: Accuracy α, Lipschitz const L, param δ
Inputs: Bound B such that |εt| ≤ B ∀t
for t = 0, · · · , T do

Set st = L · δ · dt‖xt‖2
if µ(x>t βt) + st < c then

Don’t accept xt, keep βt+1 = βt and dt+1 = dt
else Accept xt and receive label yt

if
∣∣yt − µ(x>t βt)

∣∣ ≤ α+B then
Set βt+1 = βt and dt+1 = dt

else Update as βt+1 = PΩ(βt − (L‖xt‖22)−1 ·
(−ytxt + µ(x>t βt)xt)); set d2

t+1 = d2
t − α2‖xt‖−2

2 L−2

Output: βT

Remark. If we are interested in cutoff c = E[µ(x>β∗)]+
ζ for some ζ > 0, a similar argument shows that picking
st = −L · δ · dt‖xt‖2 will give the same misclassifica-
tion error probability ρ, with the exception of course
being that we won’t be able to get the high probabil-
ity contraction ratio for ‖βt − β∗‖2 due to the lack of
observations on yt.

8 EXPERIMENTS

To further support our theoretical findings and demon-
strate the effectiveness of our algorithm in practice, we
test our method on the following datasets:
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cutoff greedy ε-grdy os-ε-grdy noise os-noise margin ours

Adult 50% 43.48 43.55 43.48 43.35 43.41 43.38 42.63
70% 102.86 102.86 102.9 102.6 102.81 102.47 100.06

Bank 50% 23.22 23.26 23.18 23.3 23.33 23.2 23.23
70% 85.72 85.94 85.67 85.51 85.26 85.27 85.75

COMPAS 50% 44.47 43.88 44.15 43.07 42.11 42.64 40.34
70% 43.7 43.59 43.41 43.66 43.83 43.7 43.7

Crime 50% 11.04 10.83 11.04 10.85 10.33 10.44 9.42
70% 26.05 25.93 26.13 25.94 25.84 25.55 24.46

German 50% 35.71 35.21 33.55 33.35 24.19 23.19 20.33
70% 42.55 41.14 42.18 40.98 40.64 40.3 37.12

Blood 50% 5.05 5.05 4.87 4.83 4.71 4.53 4.24
70% 13.04 13.04 13.03 13.04 10.84 12.14 9.69

Diabetes 50% 28.23 28.23 27.75 27.22 26.67 26.18 25.16
70% 29.36 28.0 27.79 28.0 27.4 27.9 28.11

EEG Eye 50% 239.33 238.92 239.09 236.65 200.61 201.51 187.28
70% 209.48 207.89 208.83 206.63 204.94 205.4 199.04

Australian 50% 21.88 21.88 21.87 21.21 21.76 20.81 20.38
70% 17.47 17.29 17.46 16.49 17.24 17.46 17.43

Churn 50% 61.04 57.74 54.13 53.85 39.46 38.88 34.89
70% 122.96 117.49 116.04 112.36 94.61 88.3 82.23

Table 2: Experimental results for cumulative one-sided loss for Logistic Regression.

1. Adult Lichman et al. (2013) (48842 examples). The
task is to predict whether the person’s income is more
than 50k.
2. Bank Marketing Lichman et al. (2013) (45211
examples). Predict if someone will subscribe to a bank
product.
3. ProPublica’s COMPAS ProPublica (2018) (7918
examples). Recidivism data.
4. Communities and Crime Lichman et al. (2013)
(1994 examples). Predict if community is high
(>70%tile) crime.
5. German Credit Lichman et al. (2013) (1000 ex-
amples). Classify into good or bad credit risks.
6. Blood Transfusion Service Center Vanschoren
et al. (2013) (784 examples). Predict if person donated
blood.
7. Diabetes Vanschoren et al. (2013) (768 examples).
Detect if patient shows signs of diabetes.
8. EEG Eye State Vanschoren et al. (2013) (14980
examples). Detect if eyes are open or closed based on
EEG data.
9. Australian Credit Approval Vanschoren et al.
(2013) (690 examples). Predict for credit card ap-
provals.
10. Churn Vanschoren et al. (2013) (5000 examples).
Determine whether or not the customer churned.

We compare against the following baselines:
1. Greedy, where we perform least-squares/logistic fit
βt on the collected data and predict positive/observe

label if µ(x>βt) > c.
2. ε-Greedy Sutton and Barto (2018), which with
probability α/

√
t, we make a random decision on the

prediction (with equal probability), otherwise we use
the greedy approach.
3. One-sided ε-Greedy, which with probability α/

√
t

we predict positively, otherwise we use the greedy ap-
proach. This baseline is inspired from ideas in the
original apple tasting paper Helmbold et al. (2000).
4. Noise, which we add αu/

√
t to the prediction where

u is drawn uniformly on [− 1
2 ,

1
2 ].

5. One-sided Noise, which we add αu/
√
t to the

prediction where u is drawn uniformly on [0, 1].
6. Margin, which we add α/

√
t to the prediction. This

can be seen as a non-adaptive version of our approach,
since the quantity we add to the prediction for this
baseline is uniform across all points.

For each dataset, we take all the examples and make a
random stratified split so that 5% of the data is used
to train the initial model and the rest is used for online
learning. For the linear regression experiments, we
used a batch size of 1 while for logistic regression we
used a batch size of 1000 for Adult, Bank, EEG Eye
State and 100 for the rest due to computational costs
of retraining after each batch using scikit-learn’s
implementation of logistic regression. We compute the
loss based on using an estimated β∗ obtained by fitting
the respective model (either linear or logistic) on the
entire dataset. Due to space limitation, we only show
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the results for cutoff c chosen so that 50% and 70%
of the data points are below the cutoff w.r.t. β∗ in
Table 1 for linear regression and Table 2 for logistic
regression. Full results are in Appendix E. For each
dataset and setting of c, we averaged the performance
of each method across 10 different random splits of the
dataset and tuned α over a grid of powers of 2 (except
greedy).

9 DISCUSSION

Many machine learning systems learn under active
one-sided feedback, where experimental design is in-
tertwined with the decision making process. In such
scenarios, the data collection is informed by past deci-
sions and can be inherently biased. In this work, we
show that without accounting for such biased sampling,
the model could enter a feedback loop that only rein-
force its past misjudgements, resulting in a strategy
that may not align with the long term learning goal.
Indeed, we demonstrate that the de facto default ap-
proach (i.e., greedy or passive learning) often yields
suboptimal performance when viewed through this lens.
In turn, we propose a natural objective for the one-
sided learner and give a practical algorithm that can
be used to avoid such undesirable downstream effects.
Both the theoretical grounding and the empirical effec-
tiveness of the proposed algorithm offer evidence that
it serves as a much better alternative in such settings.
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