Abstract Value Iteration for Hierarchical Reinforcement Learning

A Proofs of Theorems

We first establish some notation. Let V = {V : & — R>¢ | V is Lebesgue-measurable and bounded} denote
the set of all concrete value functions and ¥V = {V : S — R>o} denote the set of all abstract value functions.
Given V € V, we denote by ||V ||s, the £o-norm of V given by ||V oo = sup,cs |V (s)| and similarly for V € V,
1V ]|loo = max; . g |V (5)|. We use F to denote the transformation on ) corresponding to (concrete) option value
iteration using the set of options . More precisely, for any s € S,

F(V)(s) = maxQ(V; s, 0),

Q(V, s,0) = Ropt(s,0) +/ Topt(s,0,8" )V (s")ds'.
s

We know that F is a contraction on V (with respect to the {o-norm on V) and hence lim,, o, F™(V)(s) = V5(s)
for all s € S and any initial value function V' € V. Also, for any option policy p : S — O we define the
corresponding value function V? given by V*(s) = lim,, . F,(V)(s) where V' € V is any initial value function
and F), is given by

Fo(V)(s) = Q(V,s,p(s)).

Similarly, for z € {inf,sup}, let F. :V — V denote the transformation corresponding to abstract value iteration—
ie., forany s € S,

Fo(V)(5) = max Q+(V5,0),

0cO

Qz(f/a‘ga 0) = Rz(gao) + Z Tz(=§7oa §/) : ‘7(5/)
ies

A.1 Proof of Theorem [3.2]

We first prove some useful lemmas.

Lemma A.1. For any finite set B and two functions f1, fa : B — R, if for all b € B, |f1(b) — f2(b)| < 0 then
|maxpep f1(b) — maxpen f2(b)| < 4.

Proof. Let by = argmax,cpf1(b) and by = arg max; i f2(b). We need to show that | fi(b1) — fa(b2)| < 6. For the
sake of contradiction, suppose | f1(b1)— f2(b2)| > 8. Then either f1(b1) > fao(b2)+3d or fo(b2) > f1(b1)+3d. Without
loss of generality, let us assume f1(b1) > fa(b2) + 9. Then f1(b1) > fa(b1) + ¢ which implies | f1(b1) — f2(b1)| > 6,
which is a contradiction. O

Lemma A.2. Given any5€ S and o € O,

> Tingl(3,0,8) < 7.
5eS

Proof. Fix any s € 5. Then,

[ini(3,0,8) < Z T(s,0,5)
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where the last inequality followed from the fact that the subgoal regions are disjoint. 0
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Lemma A.3. For z € {inf, sup},

T.(3,0,8) <~ +|Sler.
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Proof. The lemma follows from Lemma [A-2] and the definition of er. O

A.1.1 Proof of Convergence

We prove that R-AVI converges by showing that abstract value iteration is defined by a contraction mapping.
Consider, for any § € S, 0€ O, V;,V5 € V and z € {inf, sup},

Q:(V1,5,0) = Q.(Va, 3,0)| = | Y T.(5,0,8) - VA() = D> _ T.(5,0,5) - Va(3)

5/63 s'eS
=Y T.(5.0.5) (\71(5’) - \72(5’))‘
eS8
<Y T(5.0.8) [Th(5) - Vale)
eS8
< Vi = Valloe Y Tu(3,0,%)
5'es

< (7 +ISler) V1 = Voo

where the last inequality followed from Lemma Using Lemma we have

FoV)(3) = (V) (5)] = | max Q=(V1.5.0) — max Q. (V2. 5,0)

< (v + IS]er) Vi = Valloo-
If v+ |3 ler < 1, F. is a contraction mapping and hence abstract value iteration is guaranteed to converge. [

A.1.2 Proof of Performance Bound

We show the performance bound using the following lemmas. First, we show that the upper and lower values
obtained from abstract value iteration bound the value function of the best option policy p* for the set of options

0.
Lemma A.4. Under Assumption for all 5 € S and s € §, we have
Ving(3) S V& (5) < Vi (3)-

Proof. We will prove the upper bound. The lower bound follows by a similar argument. Let V € V and
V € V be such that for all § € S and s € 5, V(s) < V(§). Suppose § € S and s € 5. Since for any o € O,



Abstract Value Iteration for Hierarchical Reinforcement Learning

Js Topt(s,0,8")1(s" € S\ S)ds’ = 0, we have
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By induction on n, it follows that F™(V)(s) < fs’}lp(f/) (8) for all n > 1. Therefore if V; and Vj assign zero to all

states and subgoal regions, respectively, we have

Vols) = lim F(Vo)(s) < lim Z2, (Vo)(3) = Vi (5).

su
n—oo p

The claim follows. O

Next, we bound the gap in the upper and lower value functions as a function of the gaps er and eg.
Lemma A.5. Under Assumption for all s € S, we have

_—— (1 —7)er +|Sler
Vsup( ) mf( 5) < 1-y1-(v+ |‘§‘5T))

IN

Proof. Let f/}, Vo € V be abstract value functions such that Va(3) < min{(1 —~)~',V;(3)} for all 5 € S. Then,
for any s € S and 0 € O,

Qsup(V1,5,0) = Qing(V2, 5, 0)
= (Raup(5,0) = Riae(5,0)) + (D Taap(5,0,5) - Va(3) = . Thue(5,0,5) - a(3))

§ ER + ( Z Tsup(ga o, '§ ) Vl( ) (Tsup(ga o, §I) - 5T) : 2(5/))

eS8 3eS
< = ~ ~/ 7 (=t 7 [~ |S|ET
<egp+ ZTsup(s,o,s ) - (Vi(3) = Va(3)) + T
5eS

- - = |Sle
S €R+ ||V1 - ‘/2”00 Z Tsup(8707 8/) + ||,7;
eS8

<er+(v+[Sler) Vi = Valloo +
Now, using Lemma we have

|]:sup(V1)<S) _]:mf( )( )I <ep+ (’Y+ ‘S|5T)||V1 ‘/2||oo + |1|75T.
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If we define ffo to be the zero vector, we can show by induction on n that, for all § € S and n > 0, F:(V;)(5) <
min{(1 — )=, F(Vo)(5)} since the rewards in the underlying MDP are bounded above by 1. Hence, another

sup

induction on n gives us, for all § € S and n >0,

FplT0)(5) = F06)(8) < (en+ ) 33 41 3len)

k=0

Taking limit n — oo on both sides gives us the required bound. O

Now, we prove the following lemma.

Lemma A.6. For any s € S and s € § we have
VP(s) 2 Vipg(3),
where p is the conservative optimal option policy.

Proof. Let V € V be such that for all § € S and s € 3, V(s) > V;%(3). Given 5 € S and s € 3, we have

FoV)(6) = Ropy(s.(6)) + [ Topa(s.7(5). W ()
> B3, (5) + 32 Vi) [ e e). )
> Rin(3, (s)) + ST(s p(8),3") - Ving(3)
> Fan(3, 7(5) + ZS Tont(5. 5(5), ) - Vi3
yes

where the first inequality followed from the fact that [ Tope(s,0,s")1(s" € S\ S)ds’ = 0. Now let Vj € V be a
value function such that Vy(s) = V;,(8) for all 5 € S and s € 5. Then we can show by induction on n that, for
all§€8, s€§and n >0, FI(Vo)(s) > Vii(3) and therefore

VP(s) = lim FF(Vo)(s) = Vine(3).

n—oo

The claim follows. O

We are now ready to prove the performance bound in Theorem For any s € S and s € §, we have

V()Z 1nf(
_V*(

sup

> V5(s

) ( sup(~)_ 1:<1f(§))
~ (Vop(® = Vine(®)

where the first inequality followed from Lemma and the second inequality followed from Lemma Taking
expectation w.r.t. the initial state distribution 79 and applying Lemma [A5| gives us the required claim. O

VCmv

A.2 Proof of Theorem [3.4]

Note that this theorem relies on additional assumptions, namely, Assumptions [2.2] and [3.3] We first show the
following lemmaEI

5Note that \7;”) is an upper bound on the value function; it may exceed the optimal value.
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Lemma A.7. For all sg € 59, V*(s0) < ffs’;p(éo).

Proof. Let m* be the optimal policy. Given an sy € §p, let sg,s1,... be the sequence of states visited when
following 7* starting at sq. If the goal region is not visited, then V*(sp) = 0 and the lemma holds. Otherwise,
let ¢ be the first time when s; € §,. Then V*(s9) = 4'~! and there is a subsequence of indices, 0 = g, ... i =t
and a sequence of subgoal region 5y, ..., 5 such that for all 0 < j < k, s;; € §; and for j < k, there is an
option o; = (7(8;,5;+1),5;,8) € O*. Let o} denote the modified option (7, 5;, 3) where the policy 7(5;,3;+1)
is replaced with 7*. For every 0 < j < k,

Al = T(Sz‘j , o;, §j+1)
< Tsup(gj, 05, 385+1)
< mgxf”sup(%, (7,85, 8),8j+1)
= Tsup(éj, 0j,8j41)-
Since all states in 3, are sink states, Kﬁp(ég) = 0. Furthermore, for any s € S\ 3, and any subgoal transition o,

Ropt(8,0) =y~ 1T (s,0,3,) and hence

Rsup(gk—lvok—l): S}lp Ropt(saok—l)
SESK—1

= sup ’7_1T(S, Ok—1,38g)

SESK—1
= ’Yiljz‘sup(gkfh Ok —1, 59)
> ,yt—ikfl—l.
Since Ruup(55,0;) > 0 for all 0 < j < k, using the definition of f/sflp and induction on k — j we can show that for
all 0 < j <k,

k—2

sup(gkfla Okfl) H Tsup(gqa Oq, §q+1) > 'Ytiijil
q=J

3
>
AV
=

Therefore, V% (50) > ~7'1 = V*(s0). O

sup

We are now ready to prove Theorem We have
J(1%) = J(m5) = Esgrno[V*(50) — VP (s0)]

< Eogrno [Vip (50) = Vine(50)]
(1—1)er + [Sler
T (== (v +[Sler))’
where the first inequality followed from Lemmas & and the second inequality followed from
Lemma [A5F] O

B Experimental Details

Additional Figures. Subgoal regions given by “room centers” in the 9-Rooms environment are visualized in
Figure |§| (a). The learning curves for different choices of subgoal regions for the room environments are shown
in Figure |§| (b,c) where we plot the probability of reaching the goal as a function of the number of steps taken
in the environment; in contrast, the cumulative reward plotted in Figure [3| measures not only the probability of
reaching the goal but also the time to reach the goal. In particular, “room centers” can also be used to learn
a policy that reaches the goal with an estimated probability of 1, although they do not satisfy the bottleneck
assumption. Thus, this choice of subgoal regions only reduces the time to reach the goal, not the probability of
reaching the goal.

5 Although we assumed that T(s,a,s’) = p(s' | s,a) defines a probability density function, it is easy to see that lemmas
hold true for the deterministic case as well.
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Figure 6: Visualization of room centers as subgoal regions (in gray) and comparison of subgoal regions for room
environments; x-axis is number of samples (steps) from the environment, and y-axis is probability of reaching
the goal. Results are averaged over 10 executions.
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Figure 7: The 16-Rooms environment and learning curves of A-AVI with randomly generated subgoal regions in
16-Rooms; the plots show the probability of reaching the goal (y-axis) as a function of (b) number of samples
(steps) from the environment and (c) time since the beginning of training (in minutes). Results are averaged
over 10 executions.

The 16-Rooms environment is visualized in Figurem (a). We also trained policies for the 16-Rooms environment
using randomly generated subgoal regions. For this environment we used N = 25 subgoal regions and K = 7
outgoing edges from each subgoal region. As shown in Figure El (b,c) we outperform HIRO on this task as well
without additional input from the user.

The subgoal regions for AntMaze, AntPush, and AntFall are visualized in Figures [8] [0] and respectively.
The red squares are the subgoal regions; in particular, each subgoal region can be described as a constraint
T € [Zmin, Tmax) A Y € [Ymin, Ymax), Where (z,y) € R? is the position of the center of the ant.

Hyperparameters. For the rooms environment, the subgoal regions are learned using ARS (Mania et al., [2018)
(version V2-t) with neural network policies and the following hyperparameters.

e Step-size a = 0.3.
e Standard deviation of exploration noise v = 0.05.
e Number of directions sampled per iteration is 30.
e Number of top performing directions to use b = 15.
We retain the parameters of the policies across iterations of A-AVI. In each iteration of A-AVI, we run 300

iterations of ARS for each subgoal transition in parallel. Initially, Dj is taken to be the uniform distribution in
a small square in the center of the subgoal region s.
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Figure 8: Subgoal Regions for AntMaze

Figure 9: Subgoal Regions for AntPush
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Figure 10: Subgoal Regions for AntFall

For the ant environments, the subgoal transitions are learned using TD3 (Fujimoto et al.| 2018]); each policy is a
fully connected neural network with 300 neurons each and critic architecture is the same as the one in [Fujimoto|
et al except that we use 300 neurons for both hidden layers. We use the TFAgents (Guadarrama et al.,
@ implementation of TD3 with the following hyperparameters.

e Discount v = 0.95.

Adam optimizer; actor learning rate 0.0001; critic learning rate 0.001.

Soft update targets 7 = 0.005.

Replay buffer of size 200000.

Target update and training step performed every 2 environment steps.

e Exploration using gaussian noise with o = 0.1.

We retain the actor and critic networks, target networks, optimizer states and the replay buffers across iterations
of A-AVI. In each iteration of A-AVI, we run TD3 for 100000 environment steps for each subgoal transition.
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