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Abstract

The dominant term in PAC-Bayes bounds
is often the Kullback–Leibler divergence be-
tween the posterior and prior. For so-called
linear PAC-Bayes risk bounds based on the
empirical risk of a fixed posterior kernel, it
is possible to minimize the expected value of
the bound by choosing the prior to be the
expected posterior, which we call the oracle
prior on the account that it is distribution
dependent. In this work, we show that the
bound based on the oracle prior can be subop-
timal: In some cases, a stronger bound is ob-
tained by using a data-dependent oracle prior,
i.e., a conditional expectation of the poste-
rior, given a subset of the training data that
is then excluded from the empirical risk term.
While using data to learn a prior is a known
heuristic, its essential role in optimal bounds
is new. In fact, we show that using data can
mean the difference between vacuous and non-
vacuous bounds. We apply this new principle
in the setting of nonconvex learning, simulat-
ing data-dependent oracle priors on MNIST
and Fashion MNIST with and without held-
out data, and demonstrating new nonvacuous
bounds in both cases.

1 INTRODUCTION

In this work, we are interested in the application of
PAC-Bayes bounds (McAllester, 1999b; Shawe-Taylor
and Williamson, 1997) to the problem of understand-
ing the generalization properties of learning algorithms.
Our focus will be on supervised learning from i.i.d. data,
although PAC-Bayes theory has been generalized far
beyond this setting, as summarized in a recent survey
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by Guedj (2019). In our setting, PAC-Bayes bounds
control the risk of Gibbs classifiers, i.e., randomized
classifiers whose predictions, on each input, are deter-
mined by a classifier h sampled according to some dis-
tribution Q on the hypothesis spaceH. The hallmark of
a PAC-Bayes bound is a normalized Kullback–Leibler
(KL) divergence, m−1KL(Q||P ), defined in terms of a
Gibbs classifier P that is called a “prior” because it must
be independent of the m data points used to estimate
the empirical risk of Q.

In applications of PAC-Bayes bounds to generalization
error, the contribution of the KL divergence often dom-
inates the bound: In order to have a small KL with a
strongly data-dependent posterior, the prior must, in
essence, predict the posterior. This is difficult without
knowledge of (or access to) the data distribution, and
represents a significant statistical barrier to achieving
tight bounds. Instead, many PAC-Bayesian analyses
rely on generic priors chosen for analytical convenience.

Generic priors, however, are not inherent to the PAC-
Bayes framework: every valid prior yields a valid
bound. Therefore, if one does not optimize the prior
to the data distribution, one may obtain a bound that
is loose on the account of ignoring important, favorable
properties of the data distribution.

Langford and Blum (2003) were the first to consider
the problem of optimizing the prior to minimize the ex-
pected value of the high-probability PAC-Bayes bound.
In the realizable case, they show that the problem
reduces to optimizing the expected value of the KL
term. More precisely, they consider a fixed learning
rule S 7→ Q(S), i.e., a fixed posterior kernel, which
chooses a posterior, Q(S), based on a training sam-
ple, S. In the realizable case, the bound depends lin-
early on the KL term. Then E[KL(Q(S)||P )] is min-
imized by the expected posterior, P ∗ = E[Q(S)], i.e.,
P ∗(B) = E[Q(S)(B)] for measurable B ⊆ H. Both ex-
pectations are taken over the unknown distribution of
the training sample, S. We call P ∗ the oracle prior.
If we introduce an H-valued random variable H sat-
isfying P[H|S] = Q(S) a.s., we see that its distribu-
tion, P[H], is P ∗ and thus, the “optimality” of the or-
acle P ∗ is an immediate consequence of the identity
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I(S;H) = E[KL(Q(S)||P ∗)] = infP ′ E[KL(Q(S)||P ′)],
a well-known variational characterization of mutual in-
formation in terms of KL divergence.

For so-called linear PAC-Bayes bounds (introduced be-
low), the oracle prior is seen to minimize the bound
in expectation when all the data are used to estimate
the risk. This holds even in the unrealizable setting.
Thus, having settled on a learning rule S 7→ Q(S), we
might seek to achieve the tightest linear PAC-Bayes
bound in expectation by attempting to approximate
the oracle prior, P ∗. Indeed, there is a large litera-
ture aimed at obtaining localized PAC-Bayes bounds
via distribution-dependent priors, whether analytically
(Catoni, 2003; Catoni, 2007; Lever, Laviolette, and
Shawe-Taylor, 2010; Lever, Laviolette, and Shawe-
Taylor, 2013), through data (Ambroladze, Parrado-
Hernández, and Shawe-Taylor, 2007; Negrea et al.,
2019), or by way of concentration of measure, privacy,
or stability (Dziugaite and Roy, 2018; Oneto, Anguita,
and Ridella, 2016; Oneto, Ridella, and Anguita, 2017;
Rivasplata, Parrado-Hernandez, et al., 2018).

One of the contributions of this paper is the demon-
stration that an oracle prior may not yield the tightest
linear PAC-Bayes risk bound in expectation, if we allow
ourselves to consider also using only subsets of the data
to estimate the risk. Proposition 3.1 gives conditions
on a learning rule for there to exist data-dependent
priors that improves the bound based upon the oracle
prior. This phenomenon is a hitherto unstated prin-
ciple of PAC-Bayesian analysis: data-dependent priors
are sometimes necessary for tight bounds. Note that, as
the prior must be independent of data used to compute
the bound a posteriori, if m training data are used to
define the prior, only the remaining n−m data should
be used to compute the bound (i.e., compute the em-
pirical risk term and divide the KL term). Note that
all n training data are used by the learning algorithm.
We formalize these subtleties in the body of the paper
and discuss some other misconceptions in Appendix J.

We give an example of a learning problem where Propo-
sition 3.1 implies data-dependent priors dominate. The
example is adapted from a simple model of SGD in a
linear model by Nagarajan and Kolter (2019b). In the
example, most input dimensions are noise with no sig-
nal and this noise accumulates in the learned weights.
In our version, we introduce a learning rate schedule,
and so earlier data points have a larger influence on the
resulting weights. Even so, there is enough variability
in the posterior that the oracle prior yields a vacuous
bound. By conditioning on early data points, we reduce
the variability and obtain nonvacuous bounds.

The idea of using data-dependent priors to obtain
tighter bounds is not new (Ambroladze, Parrado-

Hernández, and Shawe-Taylor, 2007; Dziugaite and
Roy, 2018; Parrado-Hernández et al., 2012; Rivas-
plata, Parrado-Hernandez, et al., 2018). The idea is
also implicit in the luckiness framework (Shawe-Taylor,
Bartlett, et al., 1996). However, the observation that
using data can be essential to obtaining a tight bound,
even in full knowledge of the true distribution, is new,
and brings a new dimension to the problem of con-
structing data-dependent priors.

In addition to demonstrating the theoretical role of
data-dependent priors, we investigate them empirically,
by studying generalization in nonconvex learning by
stochastic (sub)gradient methods. As data-dependent
oracle priors depend on the unknown distribution, we
propose to use held-out data (“ghost sample”) to es-
timate unknown quantities. Unlike standard held-out
test set bounds, this approach relies implicitly on a type
of stability demonstrated by SGD. We also propose ap-
proximations to data-dependent oracle priors that use
no ghost sample, and find, given enough data, the ad-
vantage of the ghost sample diminishes significantly.
We show that both approaches yield state-of-the-art
nonvacuous bounds on MNIST and Fashion-MNIST
for posterior Gaussian distributions whose means are
clamped to the weights learned by SGD. Our MNIST
bound (11%) improves significantly on the best pub-
lished bound (46%) (Zhou et al., 2019). Finally, we
evaluate minimizing a PAC-Bayes bound with our data-
dependent priors as a learning algorithm. We demon-
strate significant improvements to both classifier accu-
racy and bound tightness, compared to optimizing with
generic priors.

2 PRELIMINARIES

Let Z be a space of labeled examples, and writeM1(Z)
for the space of (probability) distributions on Z. Given
a space H of classifiers (e.g., neural network predic-
tors defined by their weights w) and a bounded loss
function ` : H × Z → [0, 1], the risk of a hypothe-
sis w ∈ H is LD(w) = Ez∼D[`(w, z)]. We also con-
sider Gibbs classifiers, i.e., elements P in the space
M1(H) of distributions on H, where risk is defined
by LD(P ) = Ew∼PLD(w). As D is unknown, learn-
ing algorithms often work by optimizing an objective
that depends on i.i.d. training data S ∼ Dn, such as
the empirical risk LS(w) = LD̂n(w) = 1

n

∑n
i=1 `(w, zi),

where D̂n is the empirical distribution of S. Writing
Q(S) for a data-dependent Gibbs classifier (i.e., a pos-
terior), our primary focus is its risk, LD(Q(S)), and its
relationship to empirical estimates, such as LS(Q(S)).

The PAC-Bayes framework (McAllester, 1999b; Shawe-
Taylor and Williamson, 1997) provides generalization
bounds on data-dependent Gibbs classifiers. LetQ,P ∈
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M1(H) be probability measures defined on a common
measurable space H. When Q is absolutely continuous
with respect to P , written Q� P , we write dQ

dP : H →
R+ ∪ {∞} for some Radon–Nikodym derivative (aka,
density) of Q with respect to P . The Kullback–Liebler
(KL) divergence from Q to P is KL(Q||P ) =

∫
ln dQ

dP dQ
if Q� P and ∞ otherwise. Assuming Q and P admit
densities q and p, respectively, w.r.t. some sigma-finite
measure ν ∈M(H), the definition of the KL divergence
satisfies

KL(Q||P ) =

∫
log

q(w)

p(w)
q(w)ν(dw).

The following PAC-Bayes bound follows from
(McAllester, 2013, Thm. 2), taking β = 1 − 1/(2λ).
(See also Catoni (2007, Thm. 1.2.6).)
Theorem 2.1 (Linear PAC-Bayes bound). Let β, δ ∈
(0, 1), n ∈ N, D ∈ M1(Z), and P ∈ M1(H). With
probability at least 1 − δ over S ∼ Dn, for all Q ∈
M1(H),

LD(Q) ≤ Ψβ,δ(Q,P ;S)
def
=

1

β
LS(Q)+

KL(Q||P ) + log 1
δ

2β(1− β)|S|
.

As is standard, we call P the prior.

Note that the KL term in the bound depends on the
data S through the kernel Q(S). If we are interested
in obtaining the tightest possible bound for the kernel
Q(S), then we can seek to minimize the KL term in
some distribution sense. Our control of the KL term
comes from the prior P . Since the bound is valid for
all priors independent from S, we can choose P by op-
timizing, e.g., the risk bound in expectation, as first
proposed by Langford and Blum (2003):
Theorem 2.2. Let n ∈ N and fix a probability ker-
nel Q : Zn → M1(H). For all β, δ ∈ (0, 1) and
D ∈ M1(Z), ES∼DnΨβ,δ(Q(S), P ;S) is minimized, in
P , by the “oracle” prior P ∗ = ES∼Dn [Q(S)].

Note that, in other PAC-Bayes bounds, the KL term
sometimes appears within a concave function. In this
case, oracle priors can be viewed as minimizing an up-
per bound on bound. We focus on linear PAC-Bayes
bounds here for analytical tractability.

3 DATA-DEPENDENT ORACLE
PRIORS

Here we demonstrate that, for linear PAC-Bayes
bounds, one may obtain a stronger bound using a
“data-dependent oracle” prior, rather than the usual
(data-independent) oracle prior. Further, using a data-
dependent oracle prior may mean the difference be-
tween a vacuous and nonvacuous bound.

A typical PAC-Bayes generalization bound for a poste-
rior kernel S 7→ Q(S) is based on the empirical risk
LS(Q(S)) computed from the same data fed to the
kernel. Instead, let J be a (possibly random) subset
of [n] of size m < n, independent from S, let SJ de-
note the subsequence of data with indices in J , and let
S \ SJ denote the complementary subsequence. Con-
sider now the PAC-Bayes bound based on the estimate
LS\SJ (Q(S)). In this case, the prior need only be in-
dependent from S \ SJ . The σ(SJ)-measurable data-
dependent oracle prior P ∗(SJ) = E[Q(S)|SJ ] arises as
the solution of the optimization

inf
P∈Z|J|→M1(H)

E[KL(Q(S)||P (SJ))]. (1)

Letting ŵ be a random element in H satisfying
P[ŵ|S, J ] = Q(S) a.s., the value of Eq. (1) is the condi-
tional mutual information I(ŵ;S|SJ). This conditional
mutual information represents the expected value of
the KL term in the linear PAC-Bayes bound and so
this data-dependent prior achieves, in expectation, the
tightest linear PAC-Bayes bound based on the estimate
LS\SJ (Q(S)).

We can also consider restricting the prior distribution
to a family F ⊆M1(H) of distributions, in which case
the optimization in Eq. (1) is over the set of kernels
Z |J| → F . We refer to a solution of this optimization
as a data-dependent oracle prior in F , denoted P ∗F (SJ),
and refer to the value of Eq. (1) as the conditional F-
mutual information, denoted IF (ŵ;S|SJ). The uncon-
ditional F-mutual information is defined equivalently.1
In Section 4, we study data-dependent oracle priors in
a restricted family F in a setting where dealing with
the set of all priors is intractable.

Fix F and define the information rate gain (from using
SJ to choose the prior in F) and the excess bias (from
using S \ SJ to estimate the risk) to be, respectively,

RF (ŵ;S|SJ) =
IF (ĥ;S)

|S|
− IF (ĥ;S|SJ , J)

|S \ SJ |
(2)

and

B(ŵ;S|SJ) = E[LS\SJ (ŵ)− LS(ŵ)]. (3)

Note that, if J is chosen uniformly at random, then
B(ŵ;S|SJ) = 0. Using these two quantities, we can

1When F is the set of all distributions, we drop F
from the notation. The notation P ∗(SJ) is understood
to also specify the data SJ held out from the estimate
of risk. Thus, P ∗F denotes the distribution-dependent but
data-independent oracle prior when the choice of prior is
restricted to F , just as P ∗ represents the distribution-
dependent but data-independent oracle prior when the
choice of prior is unrestricted.
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characterize whether a data-dependent prior can out-
perform the oracle prior. The following result is an
immediate consequence of the above definitions. (We
present the straightforward proof in Appendix A for
completeness.)

Proposition 3.1. Let β, δ ∈ (0, 1), n ∈ N, and
D ∈ M1(Z). Fix Q : Zn → M1(H) and let
J ⊆ [n] be a (possibly random) subset of nonran-
dom cardinality m < n, independent from S ∼
Dn. Conditional on S and J , let ŵ have distribution
Q(S). Then EJES∼DnΨβ,δ(Q(S), P ∗F (SJ);S \ SJ) ≤
ES∼DnΨβ,δ(Q(S), P ∗F ;S) if and only if

RF (ŵ;S|SJ) ≥ 2(1− β) B(ŵ;S|SJ) +
log 1

δ

n
m

n−m , (4)

i.e., Eq. (4) holds if and only if the linear PAC-
Bayes bound with a oracle (data-independent) prior
is no tighter, in expectation, than that with the data-
dependent oracle prior.

To interpret the proposition, consider β = 1/2: then
a data-dependent prior yields a tighter bound, if the
information rate gain is larger than the excess bias and
a term that accounts for excess variance.

Do such situations arise naturally? In fact, they do.
The following demonstration uses a linear classification
problem presented by Nagarajan and Kolter (2019b).
Their example was originally constructed to demon-
strate potential roadblocks to studying generalization
in SGD using uniform convergence arguments. We
make one, but important modification: we modify the
learning algorithm to have another feature of SGD in
practice: a decreasing step size. As is the case in or-
dinary training, the decreasing step size causes earlier
data points to have more influence. As the data are
noisy, the noise coming from these early samples has an
outsized effect that renders a linear PAC-Bayes bound
vacuous. By leaving the initial data out of the estimate
of risk, and using a data-dependent oracle prior, we
achieve a tighter bound. Indeed, we obtain a nonvacu-
ous bound, while the optimal data-independent oracle
prior yields a vacuous bound.

Example 3.2. Consider the hypothesis class H = Rd,
interpreted as linear classifiers

x 7→ sign(〈x,w〉) : Rd → {−1, 0, 1}, for w ∈ Rd.
(5)

Assume that d = K+D, with D � K, and decompose
each input x ∈ Rd as x = (x1,x2), where x1 ∈ RK and
x2 ∈ RD. (We will decompose the weights similarly.)
Labels y take values in {±1} and so a prediction of 0
(i.e., on the decision boundary) is a mistake.

Consider the following n i.i.d. training data: Let u ∈ Rk
be a nonrandom vector and, for each i = 1, . . . , n,
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Figure 1: Lower (orange x’s) and upper (blue dots)
bounds on the expected value of a linear PAC-Bayes
bound as a function of the fraction, α, of the 100
training data used by the data-dependent (PAC-Bayes)
prior. Each bound uses the optimal (in expectation)
tradeoff β and data-dependent prior P (SJ), for J = [k].
Without using data (i.e., J = ∅), the bound is provably
vacuous as the lower bound exceeds one. The upper
bound is approximately 0.15 when the oracle prior is
computed conditionally given the first 24 data points
(i.e., J = [24] and α = 0.24.).

choose yi uniformly at random in {±1}, let xi,1 = yiu,
and let xi,2 be multivariate normal with mean 0 and
covariance (σ2/D) ID, where ID is the D ×D identity
matrix. Let D denote the common marginal distribu-
tion of each training example (yi,xi).

Consider the following one-pass learning algorithm: Let
w0 = 0, then, for t = 1, . . . , n and ηt = 1/t, put
wt = wt−1 + ηtytxt. Then define the final weights to
be W = wn + (0, ξ), where ξ is an independent, zero-
mean multivariate Gaussian with covariance κ ID. Note
that wn = (wn,1,wn,2) where wn,1 = (

∑n
i=1 ηi)u and

wn,2 =
∑n
i=1 ηiyixi,2.

We will compare bounds based on oracle priors with
those based on data-dependent oracle priors. To that
end, let S = {(yi,xi)}ni=1 and define Q by P[W |S] =
Q(S) a.s. Let [n] = {1, . . . , n}. For a subset J ⊆ [n],
let SJ be the corresponding subset of the data S and
let S \ SJ be the complement.
Lemma 3.3. There are constants n,D, σ, κ, δ, u such
that the infimum

inf
J,β,P

E
[
Ψβ,δ(Q(S), P (SJ);S \ SJ)

]
, (6)

where J ranges over subsets of [n], β ranges over
(0, 1), and P ranges over measurable functions Z |J| →
M1(H), is achieved by a nonempty set J . In particular,
the optimal prior is data dependent.

Lower and upper bounds on the objective (Eq. (6)) for
J of the form {1, . . . , b100αc}, for α ∈ [0, 1], are visu-
alized in Fig. 1. Using a data-dependent prior in this
scenario is critical for obtaining a nonvacuous bound.
The derivation of these bounds as well as a sketch of
the proof and a complete rigorous proof, can be found
in Appendix B. /
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In summary, data-dependent oracle priors, by defini-
tion, minimize linear PAC-Bayes bounds in expecta-
tion. The example above demonstrates that data-
dependence can be essential in using linear PAC-Bayes
bounds to obtain nonvacuous bounds. The example re-
lies in a crucial way on the step size decreasing, so that
some data points have an outsized impact on the noise
that is injected into the classifier. In the remainder,
we consider the problem of exploiting data dependent
priors in the setting of learning with SGD.

4 DATA-DEPENDENT PRIORS FOR
SGD

As the theoretical results in the previous section demon-
strate, data-dependent oracle priors can lead to dramat-
ically tighter bounds. In this section, we take the first
steps towards understanding whether data-dependent
priors can aid us in the study of deep learning with
stochastic gradient descent (SGD).

Most attempts to build nonvacuous PAC-Bayes bounds
for neural networks learned by SGD fail when the
bounds are derandomized (Nagarajan and Kolter,
2019a; Neyshabur et al., 2018). In order to gain tight
control on the derandomization, one requires that the
posterior is concentrated tightly around the weights
learned by SGD. This leads to a significant challenge as
the prior must accurately predict the posterior, other-
wise the KL term explodes. Can data-dependent priors
allow us to use more concentrated priors? While we
may not be able to achieve derandomized bounds yet,
we should be able to build tighter bounds for stochastic
neural networks with lower empirical risk.

In Example 3.2, we studied a posterior that depended
more heavily on some data points than others. This
property was introduced intentionally in order to serve
as a toy model for SGD. Unlike the toy model, however,
we know of no representations of the marginal distribu-
tion of the parameters learned by SGD that would allow
us to optimize or compute a PAC-Bayes bound with re-
spect to a data-dependent oracle prior. As a result, we
are forced to make approximations.

Issues of tractability aside, another obstacle to using
a data-dependent oracle prior is its dependence on the
unknown data distribution. Ostensibly, this statistical
barrier can be surmounted with extra data, although
this would not make sense in a standard model-selection
or self-bounded learning setup. In these more tradi-
tional learning scenarios, one has a training data set
S and wants to exploit this data set to the maximum
extent possible. Using some of this data to estimate or
approximate (functionals of) the unknown distribution
means that this data is not available to the learning al-

gorithm or the PAC-Bayes bound. Indeed, if our goal is
simply to obtain the tightest possible bound on the risk
of our classifier, we ought to use most of this extra data
to learn a better classifier, leaving out a small fraction
to get a tight Hoeffding-style estimate of our risk.

However, if our goal is to understand the generaliza-
tion properties of some posterior kernel Q (and indi-
rectly an algorithm like SGD), we do not simply want
a tight estimate of risk. Indeed, a held-out test set bound
is useless for understanding as it merely certifies that
a learned classifier generalizes. If a classifier general-
izes due to favorable properties of the data distribution,
then we must necessarily capture these properties in our
bound. These properties may be natural side products
of the learning algorithm (such as weight norms) or
functionals of the unknown distribution that we must
estimate (such as data-dependent oracle priors or func-
tionals thereof). In this case, it makes sense to exploit
held out data to gain insight.

4.1 Optimal isotropic Gaussian priors

In order to make progress, we begin by optimizing a
prior over a restricted family F . In particular, we con-
sider the family of Gaussian priors when the posterior
kernel chooses Gaussian posteriors. Based on empirical
findings on the behavior of SGD in the literature, we
propose an approximation to the data-dependent oracle
prior.

Let (Ω,F , ν) be a probability space representing the
distribution of a source of randomness. Our focus
here is on kernels Q : Ω × Zn → M1(H) where
Q(U, S) = N (wS ,Σ) is a multivariate normal, centered
at the weights wS ∈ Rp learned by SGD (using ran-
domness U , which we may assume without loss of gen-
erality encodes both the random initialization and the
sequence of minibatches) on the full data set, S. Such
posteriors underlie several recent approaches to obtain-
ing PAC-Bayes bounds for SGD. In these bounds, the
covariance matrix Σ is chosen to be diagonal and the
scales are chosen to allow one to derive the bound on a
deterministic classifier from the bound on a randomized
classifier Q. For example, Neyshabur et al. (2018) de-
rive deterministic classifier bounds from a PAC-Bayes
bound based on (an estimate of) the Lipschitz constant
of the network.

Fix some nonnegative integer m ≤ n and let α = m/n.
Let Sα denote the size m subset of S correspond-
ing to the first m indices processed by SGD. (Note
that these indices are encoded in U .) Writing ESα,U [·]
for the conditional expectation operator given Sα, U ,
Theorem 2.2 implies that the tightest (linear PAC-
Bayes) bound in expectation is obtained by minimizing
ESα,U [KL(Q(U, S)||P )] in terms of P , which yields the
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Figure 2: MNIST, FC; x-axis: parameter values of
base run; y-axis: parameter values of α-prefix run; left
to right: α values equal to {0, 0.1, 0.5, 0.9}. As α in-
creases, the correlation between the parameters learnt
by SGD on all of the data and an α fraction of the data
increases.

data-dependent oracle prior P = ESα,U [Q(U, S)]. (We
are permitted to condition on U because U is indepen-
dent from S.)

As this prior is assumed to be intractable and the
data distribution is unknown, we make a few ap-
proximations. First, as proposed in Example 3.2,
we consider optimizing the prior over a family F
of priors. Specifically, consider the identifying the
isotropic Gaussian prior P = N (wα, σP I) that mini-
mizes ESα,U [KL(Q(U, S)||P )]. (We will revisit this sim-
plification in Appendix I, where we consider priors and
posteriors with non-isotropic diagonal covariance matri-
ces. In short, we show that not much can be gained with
diagonal priors.) If we fix σP , then based on the KL
divergence between multivariate Gaussians (Eq. (33)),
the optimization problem reduces to

arg min
wα

ESα,U [‖wS − wα‖2]. (7)

It follows that the mean of the Gaussian oracle prior
(with fixed isotropic covariance) is the conditional ex-
pectation ESα,U [wS ] of the weights learned by SGD.
Under this choice, the contribution of the mean com-
ponent to the bound is the value of the expectation in
Eq. (7), which can be seen to be the trace of the condi-
tional covariance of wS given Sα, U . For the remainder
of the section we will focus on the problem of approx-
imating the oracle prior mean. The optimal choice of
σP depends on the distribution of Σ. One approach,
which assumes that we build separate bounds for dif-
ferent values of σP that we combine via a union bound
argument, is outlined in Appendix C.

4.2 Ghost samples

In the setting above, the optimal Gaussian prior mean
is given by the conditional expectation ESα,U [wS ]. Al-
though the distribution D is presumed to be unknown,
there is a natural statistical estimate for ESα,U [wS ].
Namely, consider a ghost sample, SG, independent from
and equal in distribution to S. Let SGα be the data set
obtained by combining Sα with a 1− α fraction of SG.
(We can do so by matching the position of Sα within
S and within SGα .) Note that SGα is also equal in dis-

tribution to S. We may then take wGα to be the mean
of Q(U, SGα ), i.e., the weights produced by SGD on the
data set SGα using the randomness U .

By design, SGD acting on SGα and randomness U will
process Sα first and then start processing the data from
the ghost sample. Crucially, the initial α fraction of the
first epoch in both runs will be identical. By design,
wGα and wS are equal in distribution when conditioned
on Sα and U , and so wGα is an unbiased estimator for
ESα,U [wS ].2

4.3 Terminology

We call the run of SGD on data Sα the α-prefix run.
The run of SGD on the full data is called the base run.
A prior is constructed from the α-prefix run by cen-
tering a Gaussian at the parameters obtained after T
steps of optimization. Prefix stopping time T is chosen
from a discrete set of values to minimize L2 distance to
posterior mean.3 Note, that for α = 0, wα = w0, i.e.,
the prior is centered at random initialization as it has
no access to data. This is equivalent to the approach
taken by Dziugaite and Roy (2017). When the prior
has access to data SGα , we call an SGD run training on
SGα an α-prefix+ghost run, obtaining parameters wGα .

The procedure of running the α-prefix and base runs
together for the first α-fraction of a base run epoch us-
ing shared information U (storing the data order) is
an example of a coupling. This coupling is simple and
does not attempt to match base and α-prefix runs be-
yond the first m/b iterations (where b is the batch size,
which we presume divides m evenly for simplicity). It
exploits the fact that the final weights have an outsized
dependence on the first few iterations of SGD. More
advanced coupling methods can be constructed. Such
methods might attempt to couple beyond the first α–
fraction of the first epoch.

As argued above, it is reasonable to use held-out data to
probe the implications of a data-dependent prior as it
may give us insight into the generalization properties of
Q. At the same time, we may be interested in approx-
imations to the data-dependent oracle that do not use
a ghost sample. Ordinarily, we would expect two inde-
pendent runs of SGD, even on the same dataset, to pro-
duce potentially quite different weights (measured, e.g.,
by their L2 distance) (Nagarajan and Kolter, 2019b).
Fig. 2 shows that, when we condition on an initial prefix
of data, we dramatically decrease the variability of the

2We can minimize the variance of the KL term by pro-
ducing conditionally i.i.d. copies of wGα and averaging, al-
though each such copy requires an independent n−m-sized
ghost sample.

3We account for these data-dependent choices via a union
bound, which produces a negligible contribution.
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Algorithm 1 PAC-Bayes bound computation (right) and optimization (left). Given:Data S, ghost data SG (if
α-prefix+ghost), batch size b. Hyperparameters:stopping criteria E , prefix fraction α, prefix stopping time T ,
prior variance σP .
function Bound-Opt (α, σP , T, η)

Sα ← {z1, .., zα|S|} ⊂ S . Select α-prefix
w0
α ← SGD(w0, Sα, b,

|Sα|
b ) . Coupling

wSα ← SGD(w0
α, S, b,∞, 0) . α-prefix

P ← N (wSα , σP Ip)
θQ ← (w0

α, σP ) . Q trainable params
. Let Q(θQ) = N (w0

α, σP Ip)
for i← 1 to T do

Sample minibatch S′ ∈ S \ Sα, |S′| = b.
θQ ← θQ − η∇θQΨ†δ(Q(θQ), P ;S \ Sα)

Bound ← Ψ∗δ(Q(θQ), P ;S \ Sα)
return Bound

function Get-Bound(E , α, T, σP )
Sα ← {z1, .., zα|S|} ⊂ S
w0
α ← SGD(w0, Sα, b,

|Sα|
b )

. Perform base run
wS ← SGD(w0

α, S, b,∞, E)
. Perform α-prefix+ghost run
wGα ← SGD( w0

α, S
G
α , b, T, ·)

P ← N (wGα , σP Ip)
Q ← N (wS , σP Ip)
Bound ← Ψ∗δ(Q,P ;S \ Sα)
return Bound

Figure 3: left: MNIST, LeNet-5; center: Fashion-MNIST, LeNet-5; right: MNIST, FC; x-axis: α used for
α-prefix α-prefix+ghost runs; y-axis: squared L2 distance divided by (1 − α)|S|. For a Gaussian priors and
posteriors with fixed covariance, smaller distances yields tighter bounds.

learned weights. This experiment shows that we can
predict fairly well the final weights of SGD on the full
data set using only a fraction of the data set, implying
that most of the variability in SGD comes in the be-
ginning of training. Crucially, the two runs are coupled
in the same manner as the ghost-sample runs: the first
α-fraction of first epoch is identical. When only a frac-
tion of the data is available, SGD treats this data as the
entire data set, starting its second epoch immediately.

5 EMPIRICAL METHODOLOGY

Example 3.2 shows that a data-oracle priors can yield
tighter generalization bounds than an oracle prior. In
this section, we describe the experimental methodology
we use to evaluate this phenomenon in neural networks
trained by stochastic gradient descent (SGD).

Pseudocode. Algorithm 1 (right) describes the pro-
cedure for obtaining a PAC-Bayes risk bound on a net-
work trained by SGD.4 Note that the steps outlined

4Algorithm 1 (right) uses a fixed learning rate and a
vanilla SGD for simplicity, but the algorithm can be adapted
to any variants of SGD with different learning rate sched-
ules.

in Lines 1–3 do not change with σP and therefore the
best σP can be chosen efficiently without rerunning the
optimization. If ghost data is not used, SGα should be
replaced with Sα.

Algorithm 2 Stochastic Grad.
Descent
Hyperparameters: Learning
rate η
function SGD(w0, S, b, t, E =
−∞)

w ← w0

for i← 1 to t do
Sample S′ ∈ S, |S′| = b
w ← w − η∇LS′(w)
if L0−1

S (w) ≤ E then
break

return w

To avoid choos-
ing β, we use a
variational KL
bound, described
in Appendix D,
which allows us
to optimize β a
posteriori for a
small penalty. This
PAC-Bayes bound
on risk, denoted
Ψ∗δ(Q,P ;S \ Sα),
is evaluated with
δ = 0.05 confidence
level in all of our

experiments during evaluation/optimization.

Datasets and Architectures. We use three
datasets: MNIST, Fashion-MNIST and CIFAR-10. See
Appendix E for more details. The architectures used
are described in detail in Appendix F. For the details
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Figure 4: top: MNIST, LeNet-5; center: Fashion-MNIST, LeNet-5; bottom: MNIST, FC; y-axis: error-rate;
x-axis: fraction α of the data used by the α-prefix run of SGD to predict the weights produced by the base run
of SGD, wS ; dashed lines: test error; solid lines: error bound for a Gaussian Gibbs classifier Q, with mean
wS and isotropic covariance minimizing a PAC-Bayes risk bound; legend: training error used as the stopping
criterion for the base run of SGD. The best error bound on MNIST (≈ 11%) is significantly better than the 46%
bound by Zhou et al. (2019).

of the training procedure, see Appendix G.

Stopping criteria. We terminate SGD optimization
in the base run once the empirical error (L0−1 in Algo-
rithms 1 and 2) measured on all of S fell below some
desired value E , which we refer to as the stopping cri-
teria. We evaluate the results for different stopping
criteria.

6 EMPIRICAL STUDY OF
TRAINED NETWORKS

Evaluating data-dependent priors. A PAC-Bayes
risk bound trades off empirical risk and the contribu-
tion coming from the KL term. For isotropic Gaus-
sian priors and posteriors, the mean component in the
KL is proportional to the squared difference in means
normalized by the effective number of training samples
not seen by the prior, i.e., d(α, Sα) :=

‖wS−wα‖22
(1−α)|S| . This

scaled squared L2 distance term determines the tight-
ness of the bound when the prior variance and the pos-
terior Q and data S are fixed, as the bound grows with
d(α, Sα). In this section we empirically evaluate how

d(α, Sα) and d(α, SGα ) vary with different values of α.

Our goal is to evaluate whether, on standard vision
datasets and architectures, a data-dependent oracle
prior can be superior to an oracle prior. Since we do
not have access to an oracle prior, we approximate it
by using a ghost sample SGα with α = 0, as described in
Section 4.2. Data-dependent oracle priors are approxi-
mated by using a combination of training samples and
ghost samples.

Our experimental results on MNIST and Fashion-
MNIST appear in Fig. 3, where we plot d(α, Sα) and
d(α, SGα ). The results suggest that the value of α min-
imizing d(α, SGα ) is data- and architecture-dependent.
The optimal prefix size for MNIST, FC minimizing
d(α, Sα) is α > 0.2. For MNIST, LeNet-5 and Fashion-
MNIST, LeNet-5, the optimal α is between 0 and 0.1.
We found that batch size affects the optimal α, whether
on α-prefix or ghost data. As one might expect, the
best α is larger for smaller batch sizes. We hypothesize
that this is due to increased stochasticity of SGD.

Interestingly, at larger values of α we observe that the
gap between d(α, Sα) and d(α, SGα ) closes. This hap-
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Figure 5: Y-axis: error-rate; x-axis: fraction α of the
data used to learn the prior mean; dashed lines: test
error; solid lines: bound on the error of a Gaussian
Gibbs classifier whose mean and diagonal covariance
are learned by optimizing the bound surrogate; legend:
dataset and network architecture. For each scenario,
under the optimal α, the bound is tight and test error is
within a few percent of standard SGD-trained networks.

pens in all three experimental setups by α = 0.4: we
observe that the prior mean obtained with Sα training
data alone is as close to final SGD weights as the prior
mean obtained with SGα .

Generalization bounds for SGD-trained net-
works. We apply data-dependent priors to obtain
tighter PAC-Bayes risk bounds for SGD-trained net-
works. We do not use ghost data in these experiments,
as oracle priors are inaccessible in practice. Thus the
prior mean is obtained by the α-prefix run on prefix
data alone. See Algorithm 1 (right) and Section 5 for
the details of the experiment.

From the data in Fig. 4, it is apparent that α has a
significant impact on the size of the bound. In all of
the three networks tested, the best results are achieved
for α > 0.

One of the clearest relationships to emerge from the
data is the dependence of the bound on the stopping
criterion: The smaller the error at which the base run
was terminated, the looser the bound. This suggests
that the extra optimization introduces variability into
the weights that we are not able to predict well. In
Appendix I, we use oracle bounds to quantify limits
on how much tighter these generalization bounds could
be, were we able to optimize a diagonal prior variance.
The results suggest that a diagonal prior offers little
advantage over an isotropic prior.

Direct risk bound minimization. One of the dom-
inant approaches to training Gaussian neural networks
is to minimize the evidence lower bound (ELBO), which
essentially takes the same form as the bound in The-
orem 2.1, but with a different relative weight on the
KL term. Here, we optimize a PAC-Bayes bound using

our data-dependent prior methodology which can be
related to empirical Bayes approaches. The details of
the algorithm are outlined in Algorithm 1, left, where
Ψ†δ(Q,P ;S\Sα) denotes a PAC-Bayes bound computed
with differentiable surrogate loss. We perform exper-
iments on 3 different datasets and architectures (see
Appendix H for further details).

Fig. 5 presents the error of the posterior Q (dashed
line) optimized using Algorithm 1 with different val-
ues of α. It is apparent from the figure that for all
the networks and datasets tested, the error of Q drops
dramatically as α increases, all the way up to around
α = 0.9. Note that Q with the optimal α achieves
very high performance even compared to state-of-the-
art networks and at the same time comes with a valid
guarantee on error. For example, ResNet20 (without
data augmentation and weight decay) trained on CI-
FAR10 achieved error of around 0.16, and the best-
performing Q in Fig. 5 gets an average error of ≈ 0.2
with a bound ≈ 0.23 that holds with 0.95 probability.

Open-source implementation. Code for replicat-
ing the main empirical results is available at https:
//github.com/kylehkhsu/role-of-data.
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A Proof of Proposition 3.1

The proof is straightforward, following essentially from definitions. We give it here for completeness.

We pause to make two remarks about J :

1. We do not require J to have any particular distribution and so, e.g., J could be uniformly distributed among
subsets of cardinality αn or could be a.s. nonrandom and equal to [m].

2. The statement that P[ĥ|S, J ] = Q(S) a.s. implies that P[ĥ|S] = Q(S) a.s. and that ĥ is independent of J ,
both marginally and conditionally on S. Informally, any randomness in J plays no role in the determination
of ĥ.

Let J̄ = [n] \ J , fix F , and consider the linear PAC-Bayes bound based on LSJ̄ (Q(S)), i.e., where we use the
data in SJ̄ to estimate the risk of Q(S). By the linear PAC-Bayes theorem, we are permitted to choose our
prior based on SJ , since SJ is independent of SJ̄ . In fact, we can also choose our prior knowing J , due to the
independence outlined above in the second remark.

Conditionally on J , the expected value of the linear PAC-Bayes bound under the data-dependent oracle prior is
the infimum

inf
P∈Zm→F

ES [Ψβ,δ(Q(S), P (SJ);SJ̄)] (8)

= ES [β−1LSJ̄ (Q(S))] + inf
P∈Zm→M1(H)

ES [KL(Q(S)||P (SJ))] + log 1
δ

2β(1− β)(1− α)n
(9)

= ES [β−1LSJ̄ (Q(S))] +
ES [KL(Q(S)||E[Q(S)|SJ ])] + log 1

δ

2β(1− β)(1− α)n
(10)

= ES [β−1LSJ̄ (Q(S))] +
IJF (ĥ;S|SJ) + log 1

δ

2β(1− β)(1− α)n
. (11)
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Here ES denotes expectation over S ∼ Dn, conditional on J . Note that the optimal prior here depends on
J . We arrive at the unconditional expected value of the bound by taking expectations also over J , which
changes the disintegrated (conditional) mutual information IJF (ĥ;S|SJ) into a (conditional) mutual information
IF (ĥ;S|SJ , J), that is no longer a random quantity.

It follows immediately that the data-dependent risk bound is tighter, in expectation, that the bound based on
J = ∅, when

(1− β)E[LS(Q(S))] +
IF (ĥ;S) + log 1

δ

2n

> (1− β)E[LSJ̄ (Q(S))] +
IF (ĥ;S|SJ , J) + log 1

δ

2(1− α)n
.

(12)

The statement of the proposition is obtained by simple manipulations. The above inequality is equivalent to

IF (ĥ;S) + log 1
δ

2n
−
IF (ĥ;S|SJ , J) + log 1

δ

2(1− α)n

> (1− β)E[LSJ̄ (Q(S))− LS(Q(S))].

(13)

Rewriting the left-hand side,

IF (ĥ;S) + log 1
δ

2n
−
IF (ĥ;S|SJ , J) + log 1

δ

2(1− α)n

=
1

2

(
IF (ĥ;S)

n
− IF (ĥ;S|SJ , J)

(1− α)n

)
−

log 1
δ

2n

(
α

1− α

)
.

(14)

Therefore, we prefer a data-dependent prior based on J when(
IF (ĥ;S)

n
− IF (ĥ;S|SJ , J)

(1− α)n

)

> 2(1− β)E[LSJ̄ (Q(S))− LS(Q(S))] +
log 1

δ

n

(
α

1− α

)
.

(15)

The result follows by the definition of the information rate gain and excess bias. Note that, if J is (a.s.)
nonrandom, then IF (ĥ;S|SJ , J) is simply IF (ĥ;S|SJ).

B Proof of Lemma 3.3

We begin with a proof sketch.

Sketch. With J and β fixed, the minimization over P (SJ) meets the hypotheses of Theorem 2.2 and so we may
simplify the objective by taking P (SJ) = E[Q(S)|SJ ] = P[W |SJ ]. The KL term then becomes a conditional
mutual information I(W ;S \SJ |SJ). Due to linearity of expectation, we may then optimize β explicitly, leaving
only a minimization over subsets J ,

inf
J⊆[n]

(
Φ(J) := R(J) + C(J) +

√
2R(J)C(J) + C2(J)

)
where R(J) = E[LS\SJ (Q)] and C(J) = (I(W ;S \ SJ |SJ) + log 1

δ )/|S \ SJ |.

One can show that I(W ;S \ SJ |SJ) = D
2 lnφJ̄/κ, where φJ̄ is the variance contribution from S \ SJ and

ξ. Using sub-Gaussian and sub-exponential tail bounds, one can establish that R(J) ≤ R = exp{−D/16} +
exp{−τ2/(4φ[n] σ

2)}, where φ[n] is due to variance in S, ξ, and τ = (
∑n
i=1 ηi)‖u‖2.

Choosing n = 100, D = 1000, σ = 8, κ = 4, τ = 64, and δ = 0.05, we obtain Φ(∅) ≥ 2C(∅) ≈ 1.1, while
minJ Φ(J) / 0.15. Our upper bound is achieved by J = [24], i.e., by using the initial 24 data points to obtain a
data-dependent (oracle) prior.
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B.1 Complete proof and bounds on the objective

We now provide a complete rigorous proof. For subsets J (of [n]), let J̄ = [n]\J ; let ηpJ =
∑
i∈J η

p
i for p ∈ {1, 2};

let φJ = η2
Jσ

2/D + κ; and let φ−i = φ[n]\{i}.

By Theorem 2.2 and linearity of expectation, for every subset J and β ∈ (0, 1), Theorem 2.2 implies that the
optimal prior is PJ(SJ) = P[W |SJ ], and so we can simplify Eq. (6) by choosing this prior. In particular, now
E[KL(Q||PJ(SJ))] = I(W ;SJ̄ |SJ).

Define R(J) = E[LSJ̄ (Q)] and C(J) = (I(W ;SJ̄ |SJ) + log 1
δ )/|SJ̄ |. By linearity of expectation, we can remove

the infimum over β ∈ (0, 1) by explicit minimization. As a result, we see that Eq. (6) is equivalent to

inf
J⊆[n]

R(J) + C(J) +
√

2R(J)C(J) + C2(J)︸ ︷︷ ︸
Φ(J)

. (16)

Pick some J ⊆ [n]. Then the optimal prior conditioned on SJ is

PJ(SJ) = E[Q(S)|SJ ] = δη1
[n]

u ⊗NJ , (17)

where NJ = N (
∑
i∈J ηiyixi,2, φJ̄ ID). Let ψ(r) = r − 1− ln r for r > 0. Then

KL(Q(S)||PJ(SJ)) = Dψ(κ/φJ̄)/2 +
1

2φJ̄

D∑
j=1

(∑
i 6∈J

ηiyixi,2,j
)2
. (18)

Taking expectations,

I(W ;SJ̄ |SJ) = E[KL(Q(S)||PJ(SJ))] =
D

2

(
ψ(κ/φJ̄) +

σ2 η2
J̄
/D

φJ̄

)
(19)

=
D

2

(
ψ(κ/φJ̄) + (1− κ/φJ̄)

)
(20)

=
D

2
lnφJ̄/κ. (21)

It remains to control the empirical risk term. To that end, pick i ∈ [n] and let τ = η1
[n]‖u‖

2. Then

E`(W, zi) = P[yi〈W,xi〉 ≤ 0] = P[τ + yi〈wn,2,xi,2〉+ yi〈ξ,xi,2〉 ≤ 0], (22)

where

yi〈wn,2,xi,2〉 = ηi‖xi,2‖2 +
∑
j 6=i

ηjyiyj〈xj,2,xi,2〉. (23)

Rearranging and exploiting the chain rule of conditional expectation and symmetry of the normal distribution,

E`(W, zi) = EPxi,2 [
∑
j 6=i

〈ηj xj,2,xi,2〉+ 〈ξ,xi,2〉 ≥ τ + ηi‖xi,2‖2],

where the conditional probability is a tail bound on a univariate Gaussian with mean zero and variance ‖xi,2‖2φ−i.

Applying the standard (sub-)Gaussian tail bound,

E`(W, zi) ≤ E exp

{
−1

2

(τ + ηi‖xi,2‖2)2

‖xi,2‖2φ−i

}
≤ E exp

{
− τ2

2‖xi,2‖2φ−i

}
, (24)

where the last inequality is crude, but suffices for our application. Note that D‖xi,2‖2/σ2 is a chi-squared random
variable with D degrees of freedom, hence sub-exponential. Indeed, with probability at least 1− c,

D‖xi,2‖2/σ2 ≤ D + 2
√
D log(1/c) + 2 log(1/c). (25)
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Rearranging,

‖xi,2‖2 ≤
σ2

D
(D + 2

√
D log(1/c) + 2 log(1/c)) (26)

≤ σ2(1 + 4
√

log(1/c)/D) =: B(c), (27)

where the second inequality holds assuming c ≥ exp{−D}, which we will ensure from this point on. So

E`(W, zi) ≤ inf
c≥e−D

{
1

c
+
(

1− 1

c

)
exp{−τ2/(2φ−iB(c))}.

}
. (28)

Taking c = exp{−D/16}, we have B(c) = 2σ2. Then, using φ−i ≤ φ[n],

E`(W, zi) ≤ exp{−D/16}+ exp{−τ2/(4φ[n] σ
2)}︸ ︷︷ ︸

R

. (29)

We may now obtain a bound

R(J) = ELSJ̄ (Q(S)) =
1

n− |J |
∑
i 6∈J

E`(W, zi) ≤ max
i 6∈J

E`(W, zi) = R. (30)

Thus

Φ(J) ≤ R+ C(J) +

√
2RC(J) + C(J)2 (31)

At the same time, we have Φ(J) ≥ 2C(J) for all J ⊆ [n]. (Note that these two bounds are used to
produce Fig. 1.)

In particular, noting log 1/δ > 0,

Φ(∅) ≥ D

m
ln
σ2η2

[n]/D + κ

κ
. (32)

The result can be seen to follow from these bounds by evaluation using the particular values. In particular, one
can see that taking J to be a nonempty initial segment of [n], we have Φ(J) < 2C(∅) ≤ Φ(∅).

C Analytic form of the KL for an approximate data-dependent oracle bound

In this section, we explore one possible analytic bound for a KL term for a PAC-Bayes bound, based on the
setup in Section 4. We assume tr(Σ) and det(Σ) are nonrandom. In an application, one would have to cover a
set of possible values to handle the random case.

The KL divergence between Gaussians Q(U, S) = N (wS ,Σ) and P = N (wα,Σα) takes the form

2KL(Q(U, S)||P ) = ‖wS − wα‖2Σ−1
α︸ ︷︷ ︸

mean component

+ tr(Σ−1
α (Σ))− p+ ln

det Σα
det Σ

.︸ ︷︷ ︸
variance component

(33)

Specializing to an isotropic prior, i.e., Σα = σP I, we obtain

2KL(Q(U, S)||P ) =
1

σP
‖wS − wα‖2︸ ︷︷ ︸

mean component

+
1

σP
tr(Σ)− p+ p lnσP − ln det Σ.︸ ︷︷ ︸

variance component

(34)

Note that

tr(covSα,U (wS)) = inf
wα

ESα,U [‖wS − wα‖2]. (35)



On the role of data in PAC-Bayes bounds

Consider

σP =
1

p

(
tr(covSα,U (wS)) + tr(Σ)

)
. (36)

Substituting above, for some random variable Z such that ESα,U [Z] = 1,

2KL(Q(U, S)||P ) = Zp− p+ p ln
{ 1
p tr(covSα,U (wS)) + 1

p tr(Σ)

(det Σ)1/p

}
(37)

≤ Zp− p+ p

1
p tr(covSα,U (wS)) + 1

p tr(Σ)− (det Σ)1/p

(det Σ)1/p
. (38)

Taking expectations, conditional on Sα, U ,

2ESα,U [KL(Q(U, S)||P )] ≤ tr(covSα,U (wS))

(det Σ)1/p
+ p

1
p tr(Σ)− (det Σ)1/p

(det Σ)1/p
. (39)

Further, if we assume Σ = σI, then

ESα,U [KL(Q(U, S)||P )] ≤ 1

2σ
tr(covSα,U (wS)). (40)

D Variational KL bound

The linear PAC-Bayes bound requires one to specify a value of β. For a particular posterior kernel Q, the
optimal value of β depends on the likely value of the empirical risk term. However, the value of β must be chosen
independently of the data used to evaluate the bound.

In the proof of Lemma 3.3 in Appendix B, the linear PAC-Bayes bound is optimized, in expectation. Since
the expected value of the bound is independent of the data, and since the constant β can be pulled outside the
expectations, we can choose the value of beta that minimizes the bound in expectation. The result is Eq. (16),
with C(J) defined in terms of an expected KL, as the mutual information appears only when the prior is chosen
to be the oracle prior.

In this section, we describe how the bound due to Maurer (2004) can be approximated to reveal a high-probability
tail bound with the same form as if we optimized β. The cost is a O(log

√
m/m) term.

Let Bp denote the Bernoulli distribution on {0, 1} with mean p. For p, q ∈ [0, 1], we abuse notation and define

kl(q||p) def
= KL(Bq||Bp) = q ln

q

p
+ (1− q) ln

1− q
1− p

.

The following PAC-Bayes bound for bounded loss is due to Maurer (2004). The same result for 0–1 loss was
first established by Langford and Seeger (2001), building off the seminal work of McAllester (1999a). See also
(Langford, 2002) and (Catoni, 2007).
Theorem D.1 (PAC-Bayes; Maurer 2004, Thm. 5). Under bounded loss ` ∈ [0, 1], for every δ > 0, m ∈ N,
distribution D on Z, and distribution P on H,

P
S∼Dm

(
(∀Q) kl(LS(Q)||LD(Q)) ≤

KL(Q||P ) + ln 2
√
m
δ

m

)
≥ 1− δ. (41)

One can recover the bound by McAllester (1999a) via Pinsker’s inequality, resulting in a (looser) bound on
|LS(Q) − LD(Q)|. Maurer’s bound behaves like the bound in Theorem 2.1, except that it holds for all β
simultaneously, at the cost of a 1

m log
√
m term.

D.1 Inverting the KL bound

Here we derive a novel PAC-Bayes bound that is an upper bound on the inverted KL bound (Theorem D.1) and
that is used during optimization in our empirical work. The bound is the piecewise combination of two bounds.
In independent work, Rivasplata, Tankasali, and Szepesvari (2019) derive the first of the two parts, which they
call a “quad bound”. The second part is a consequence of Pinsker’s inequality.
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Theorem D.2 (Variational KL bound). With probability at least 1− δ over S,

LD(Q) ≤ min

{
LS(Q) +B +

√
B(B + 2LS(Q)),

LS(Q) +
√

B
2 ,

(42)

where

B =
KL(Q||P ) + log 2

√
m
δ

|S|
. (43)

The variational KL bound takes the minimum value of the moment bound (top) and the Pinsker bound (bottom).

Proof. Let kl(LS(Q)||LD(Q)) be KL between two Bernoulli random variables with success probabilities LS(Q)
and LD(Q), respectively. Then by Theorem D.1, with probability greater than 1− δ,

kl(LS(Q)||LD(Q)) ≤
KL(Q||P ) + log

2
√
|S|
δ

|S|
. (44)

Let B denote the right hand side of the inequality. By Donsker–Varadhan we get

kl(LS(Q)||LD(Q)) ≥ λLS(Q)− log E
x∼Ber(LD(Q))

[eλx] (45)

for any λ. The final term is the moment generating function of a Bernoulli random variable and so

kl(LS(Q)||LD(Q)) ≥ λLS(Q)− log(1− LS(Q) + LS(Q)eλ). (46)

We can use this lower bound on kl(LS(Q)||LD(Q)) in Eq. (44). After rearranging, we obtain

−LD(Q)(1− eλ) ≥ eλLS(Q)−B − 1. (47)

Take λ ≤ 0. Then

LD(Q) ≤ 1− eλLS(Q)−B

1− eλ
. (48)

Using the inequality 1− e−x ≤ −x in the numerator of Eq. (48), we finally arrive at

LD(Q) ≤ LS(Q) +B +
√
B(B + 2LS(Q)). (49)

Also, note that by Pinsker’s inequality,

kl(LS(Q)||LD(Q)) ≥ 2(LS(Q)− LD(Q))2, (50)

and so

LD(Q) ≤ LS(Q) +

√
B

2
. (51)

Both Eq. (51) and Eq. (49) are upper bounds on risk obtained from the inverted kl bound. Taking the minimum
of the two bounds gives us the final result.

The inverted KL bound is visualized in Fig. 6. We see that depending on the empirical risk and KL, either the
moment or the Pinsker bound is tighter. The inverted KL bound is the minimum of the two and so is tight in
both regimes. By taking the minimum of two bounds, we obtain a bound this is tighter over a wider range of
values for the empirical risk and KL terms.
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Figure 6: The two components of Variational KL bound visualized for LS(Q) = 0.1 (left) and LS(Q) = 0.01
(right). Blue solid line: moment bound; Green dashed line: Pinsker bound. The inverted KL bound on the
risk is the minimum of the two lines.

E Experimental details: datasets

We use three datasets in our experiments: 1) The MNIST dataset (LeCun, Cortes, and Burges, 1998), which
consists of 28 × 28 grayscale images of handwritten decimal digits. 2) The Fashion-MNIST dataset (Xiao,
Rasul, and Vollgraf, 2017), which consists of 28× 28 grayscale images each associated with one of 10 categories
(clothing and accessories). 3) The CIFAR-10 dataset (Krizhevsky, 2009), which consists of 32× 32 RGB images
each associated with one of ten categories (airplane, automobile, bird, etc.). For all datasets we use the standard
training and test splits. This results in 60,000 training data for MNIST and Fashion-MNIST, 50,000 training data
for CIFAR-10, and 10,000 test data for all three datasets. For CIFAR-10 we standardize all images according to
the training split’s statistics.

F Experimental details: architectures

We use fully connected feed-forward multilayer perceptrons with ReLU activations for MNIST. We study networks
with architecture 784–600–600–10 (featuring two hidden layers) in order to compare to Rivasplata, Tankasali,
and Szepesvari (2019). Such a network has 837,610 parameters.

We also borrow the modified LeNet-5 architecture used by Zhou et al. (2019) in order to compare our bounds
on SGD-trained classifiers. The network has 431,080 parameters. We use this architecture for MNIST and
Fashion-MNIST.

We use the ResNet-20 architecture (He et al., 2016) for CIFAR-10. It has 269,722 parameters. For consistency
with the other experiments, we use neither data augmentation nor weight decay.

G Experimental details: training details

The bounds are evaluated on the 0–1 loss, which is not differentiable. To enable gradient-based optimization, we
replace this with the cross entropy loss divided by the log number of classes, which gives a tight upper bound
on the 0–1 loss.

We use SGD with momentum as the optimizer. We use one learning rate for the α-prefix and base runs and
another, lower learning rate for the bound optimization. For experiments on MNIST and Fashion-MNIST, the
momentum is 0.95 and the batch size is 256. For MNIST, the learning rate for the α-prefix and base runs is
0.003 and the learning rate for bound optimization is 0.0003; for Fashion-MNIST, they are respectively 0.01 and
0.003. We sweep over the prior variance σP ∈ {3× 10−8 ,1× 10−7 ,3× 10−7 , . . . , 1× 10−2 }. Via a union bound
argument, our hyperparameter sweeps contribute a negligible amount to the bounds.

For the best hyperparameter setting, Algorithm 1 (right) was repeated 50 times with different data-orders and
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w0. In all figures any shaded area corresponds to 2 standard deviations around the mean as computed from the
50 runs.

H More details on direct risk bound minimization

We evaluated the performance of a learning algorithm baed on optimizing a PAC-Bayes bound based on a data-
dependent prior. Our proposed algorithm gets nearly state-of-the-art performance and produces a valid and
tight PAC-Bayes bound on risk.

Let Q = N (w,Σα) and P = N (wα,Σα). The algorithm starts with the coupling and α-prefix runs as before.
Then the base run is replaced with SGD minimizing the PAC-Bayes bounds Ψ†δ(Q(θQ), P ;S \ Sα) with respect
to the posterior mean w. Here Ψ†δ(Q(θQ), P ;S \ Sα) is the same bound as Ψ∗δ(Q(θQ), P ;S \ Sα) but with risk
evaluate on a differentiable surrogate loss. The procedure is outlined in Algorithm 1 (left).

Similarly as before, for each α we choose the learning rate and prior variance that yield the tightest bounds. For
a fixed set of hyperparameters, we repeat the optimization 50 times.

The results on 4 different networks and 3 different datasets appear in Fig. 5. The risk bounds and test errors
drop dramatically with α up to α ≈ 0.9 for all the networks tested. For MNIST and Fashion-MNIST, the
momentum and batch size is the same as above. For CIFAR-10, the momentum is 0.9 and the batch size is 128.
For MNIST and Fashion-MNIST, the α-prefix run learning rate is 0.01; for CIFAR-10 it is 0.03. For all datasets,
we sweep the direct bound optimization learning rate over {1× 10−6 ,3× 10−6 ,1× 10−5 , . . . , 3× 10−3 } and the
prior variance over {1× 10−9 ,3× 10−9 ,1× 10−8 , . . . , 3× 10−3 }.

H.1 Comparison to PAC-Bayes by Backprop

When α = 0, the setting of our direct bound optimization experiments aligns closely to that considered by
Rivasplata, Tankasali, and Szepesvari (2019): evaluating a PAC-Bayes bound-based learning algorithm using a
prior centered at random initialization. This work reports a test error of 0.014 and a risk bound of 0.023 on
MNIST with a 784–600–600–10 fully-connected network architecture, a Gaussian prior, and a PAC-Bayes bound
expression similar to ours. Despite correspondence with the authors, we were unable to reproduce these results.
For direct comparison, our α = 0 baseline results with the same network architecture are a mean test error of
0.116 and a mean risk bound of 0.303 over 10 random seeds. Using a data-dependent prior learnt with proportion
α = 0.7 of the training data, this improves to a mean test error of 0.022 and a mean risk bound of 0.031 over 10
random seeds.

I Optimal prior variance

Our data-dependent priors do not attempt to minimize the variance component of the KL bound. For a fixed
ΣP , the variance component in Eq. (33) (see Appendix C) increases if posterior variance Σ deviates from ΣP .
When the prior is isotropic, our empirical study shows that the optimized posterior variance is also close to
isotropic. However, an isotropic structure may not describe the local minima found by SGD well. We are thus
also interested in a hypothetical experiment, where we allow the prior variance to be optimal for any given
diagonal Gaussian Q. While this produces an invalid bound, it reveals the contribution to the risk bound due
to the prior variance. Optimizing Eq. (33) w.r.t. diagonal ΣP yields a prior PΣ

α with optimal variance, and
KL(Q||PΣ

α ) expression reduces to
1
2

∑p
i=1 log(1 + (wi − wiα)/σ2

i ), (52)

where σ2
i is the i th component of the diagonal of Σ.

Computing these hypothetical bounds with PΣ
α as a prior requires some minor modifications to Algorithm 1

(right). As in Algorithm 1 (right), the posterior is set to Q = N (wS ,Σ), with a diagonal covariance matrix Σ
that is initialized to σ2

P Ip. The prior P is centered at w0
α, and the variance is automatically determined by the

posterior variance. The KL then takes the form stated in Eq. (52). The α-prefix run in Algorithm 1 (right) is
followed by another SGD run minimizing Ψ∗δ(Q(θQ), P ;S \ Sα) with respect to diagonal covariance Σ.

The results with the optimal prior covariance can be found in Fig. 7. At α = 0, the optimal prior variance
decreases the bound substantially. However, at larger values of α, the effect diminishes. In particular, at the
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values of α that produce the lowest risk bound with a fixed isotropic prior variance, optimal prior variance makes
little to no improvement. Interestingly, the optimized posterior variance remains close to isotropic.

J Frequently Asked Questions

Data-dependent priors are already a known heuristic for obtaining tight bounds, right? Ambro-
ladze, Parrado-Hernández, and Shawe-Taylor (2007) proposed to use data-dependent priors and observed that
they led to much tighter bounds than those produced by generic priors. However, these bounds were motivated
by trying to approximate distribution-dependent oracle priors (producing so-called localized PAC-Bayes bounds
(Catoni, 2007; Langford and Blum, 2003)). Indeed, in their work, the data-dependent prior is based on an
estimate of the data-independent oracle prior. The bound contains a penalty for the error in this estimate, and
so it will not be tighter in expectation.

In contrast, in this work, we observe that data-dependent priors can be superior to distribution-dependent oracle
priors. This is not folklore. The effect we are observing is due to the fact that not all data are created equal.
As demonstrated by Proposition 3.1 or Example 3.2/Lemma 3.3, using data that have a particularly strong a
priori dependence on the posterior can dramatically tighten the risk bound. In our example, the initial data
have greater dependence because of the decreasing step size. In the end, data-dependence is the difference
between a vacuous bound (based on the distribution-dependent oracle prior) and a nonvacuous bound (based on
a data-dependent oracle prior).

How does using a data-dependent prior compare to using held-out data in a, e.g., Chernoff bound?
There is a critical difference: in the former, the posterior Q(S) depends on the entire sample, S. In the latter,
the held-out data would not be used by the posterior. The held-out bound cannot be used to explain why
generalization is occurring. It simply reports that generalization has occurred. In contrast, bounds based on
data-dependent priors lend themselves to arguments in terms of distribution-dependent stability. We don’t
pursue the interpretation of these bounds here, though we discuss related issues in Section 4.

What’s the relationship between direct risk bound optimization (last subsection of Section 6) and
the goal of explaining SGD? This final subsection is not directed towards understanding SGD. It presents
a novel learning algorithm, though the idea of minimizing a PAC-Bayes bound is a standard one. The use of a
data-dependent prior and in particular this one based on a run of SGD on an initial segment of data is new.

The paper studies minimizing high-probability PAC-Bayes bounds in expectation. Shouldn’t we
be using bounds on the expected generalization error? Both approaches are sensible. Note that a
PAC-Bayes bound controls the generalization error in terms of the KL divergence between the posterior and the
prior. (Other types of PAC-Bayes bounds exist, but we will focus on this standard setting here.) The posterior
is data dependent and so the KL divergence is a random variable, in general. If we want to develop a tight
bound, we want to minimize the KL divergence term, but since it is a random variable, there’s no unique way
to minimize it. In this work, we minimize the contribution of the (random) KL divergence by minimizing its
expectation. Since the PAC-Bayes bound holds with high probability, it would also be interesting to minimize a
tail bound on the KL divergence. We do not pursue that here, but it is interesting future work.

What is the meaning of (i) Ψβ,δ(Q(S), P ∗F (SJ);S \ SJ) and (ii) Ψβ,δ(Q(S), P ∗F ;S) in Proposition 3.1?
From Theorem 2.1, we see Ψβ,δ(Q,P ;S) is the linear PAC-Bayes bound on the risk of a posterior Q(S), based
on the estimate LS(Q(S)), using the prior P . The terms above are, therefore,

(i) the linear PAC-Bayes bound on the risk of Q(S), based on the estimate LS\SJ (Q(S)), using the (data-
dependent) prior P ∗F (SJ); and

(ii) the linear PAC-Bayes bound on the risk of Q(S), based on the estimate LS(Q(S)), using the (data-
independent) prior P ∗F .

Therefore, the theorem is telling us when a linear PAC-Bayes bound can be improved using a data dependent
prior. The Ψ term in Lemma 3.3 can be interpreted in the same way.
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There are a wide variety of PAC-Bayes bounds. Why do you use linear PAC-Bayes bounds and do
your findings generalize to other types of PAC-Bayes bounds? Our focus on linear PAC-Bayes bounds
allows us to simplify the analysis considerably. Indeed, by the linearity of expectation, the expected value of the
linear PAC-Bayes bound depends on the expected value of the KL term, which then gives us the connection to
mutual information.

Regarding other styles of PAC-Bayes bounds, by Jensen’s inequality, priors that minimize the expected value of
the KL terms will lead to upper bounds on the classic sqrt-style PAC-Bayes bound. Minimizing an upper bound
provides a weaker but still valid approach to controlling such bounds. There is also a connection between linear
PAC-Bayes bounds and nonlinear PAC-Bayes bounds, such as that derived in Appendix D.1. In particular, from
the logic that leads to Eq. (16), we see that optimizing the value of β leads to a bound of the same form as
Eq. (42). What we can glean from this correspondence is that the argument in Lemma 3.3 is choosing the value
of β that is optimal in expectation.

Note that β must be chosen independently of the data used in the estimate of the risk. However, one can consider
a discrete range of beta values, derive a data-dependent prior (and then linear PAC-Bayes bound) for each such
value, and then combine these bounds (i.e., taking the tightest one) using a union bound argument. The result is
a nonlinear bound, though the final bound is no longer being minimized in expectation. To optimize a nonlinear
bound directly, the easiest approach may be to control the tails of the KL term. We think this is an interesting
avenue for future work.

Do these ideas extend to PAC-Bayesian bounds based on divergences other than KL? Alquier and
Guedj (2018) and Bégin et al. (2016) describe PAC-Bayes bounds based on f-divergences and Rényi α-divergences,
respectively. Focusing on the latter for brevity, we think the extension to Rényi divergence based on Begin et
al. may be straightforward, once you identify a choice for Begin et al.’s ∆ function so that the resulting bound
is linear: notions of information rate gain would be defined in terms of a Rényi version of mutual information
and then Proposition 3.1 would likely carry through. The implications of this change though seem far less clear
to us and worthy of study! Clearly Example 3.2 works for α = 1, as that’s just KL. It would be interesting
to understand for which values of α the example still works. We think the critical aspect would be conveying
intuition (perhaps through empirical work) for key values of α . We think this is an interesting direction for
future work. We don’t want to suggest in this paper that it is straightforward or incremental because, until one
works out all the details, it might turn out to be a really important variation.

Which is more important/fundamental: Proposition 3.1 or Example 3.2/Lemma 3.3? We think
these results enhances each other, and that they are both important.

When we showed colleagues Lemma 3.3 alone, they were then eager to see a general characterization of when
data-dependence led to tighter bounds. Proposition 3.1 provides necessary and sufficient conditions. As is the
case with necessary and sufficient conditions, the result simply presents a different, but equivalent, perspective.
In this case, it shows how the superiority of a data-dependent prior comes from the relative values of the
“information rate gain” and the “excess bias”. While Proposition 3.1 is immediate from definitions, we believe it
provides guidance as to how to choose J . In particular, Example 3.2 and Lemma 3.3 demonstrate that one may
arrive at much tighter bounds by identifying samples J that have a priori high dependence on the posterior.

How should one choose the subset, J , of data used to build the data-dependent prior? We believe
that Proposition 3.1 provides guidance: we need the information rate gain to exceed (some multiple of) the
excess bias plus a variance term.

The variance term will be quite small unless the number of data used in the prior, m, is quite large. Focusing
then on the information rate gain, we will maximize this term if we build our prior using samples that exhibit
strong a priori dependence with the final posterior. This will produce a tighter bound, provided that the samples
that we leave to use in the risk estimate are not too biased.

In Example 3.2, there is strong dependence with the initial data because the step size is largest at the start. At
the same time, the learned weights still produce good predictions for all the data. The excess bias term captures
the effect of removing this data from the risk estimate, which is sufficiently small in this case.
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Is your goal to improve the generalization of SGD? Our goal is not to improve the generalization of the
SGD algorithm, but to improve our ability to simultaneously (i) choose posteriors Q that closely approximate
the performance of SGD and (ii) derive tight generalization bounds for these posteriors. This hope is to shed
light on SGD itself, eventually. As the paper argues, the roadblock here is (ii)—in particular, the priors in the
KL terms in PAC-Bayes bounds are too far from the posteriors to yield numerically tight bounds. The final two
paragraphs of the paper describe a learning algorithm, but this is simply a short aside, and not the main focus
of the paper.

When using ghost samples for the prior, shouldn’t one compare to the same algorithm that also
has access to the ghost samples? No. We would agree with this sentiment if we were designing a learning
algorithm or model selection method. However, we are instead probing the generalization properties of posteriors
concentrated around the weights learned by SGD. Our experiment reveals that the advantage of distribution-
dependence (provided via ghost samples) may be dwarfed by the advantage of data-dependence. Note that the
posterior Q(S) does not depend on either the ghost samples or prior.

Section 3 rigorously identifies a setting where data-dependence is required for nonvacuous (linear PAC-Bayes)
bounds. In Section 4, Fig. 3, we turn to the question of teasing apart how much data- and distribution-
dependence helps. Ghost samples provide distribution-dependence. Section 4.1 shows how to use ghost samples
to estimate the optimal Gaussian prior mean (for a fixed variance). The curve with ghost data is therefore an
estimate of the actual tradeoff in α. The curve without ghost data is indeed heuristic. The fact that this heuristic
no-ghost-data curve nearly matches highlights a convenient empirical fact: we can maybe ignore ghost data for
this class of Gaussian priors.

You use an isotropic Gaussian prior. Isn’t this quite limited in the type of dependence it can
capture? We agree that isotropic Gaussians are limited. For this reason, we actually went ahead and evaluated
using diagonal Gaussian priors. Unlike isotropic Gaussian priors, which only have one parameter than needs
tuning, diagonal Gaussians have too many to optimize naively using a union bound argument, without obtaining
a vacuous bound. What are clever ways of choosing a prior’s diagonal covariance in a data- and distribution-
dependent way? We actually worked on this for a while before we realized that we had better check that it was
going to be worth all the effort! And so, in Appendix I of the supplement, we evaluate an oracle diagonal Gaussian
prior bound where we allow ourselves to optimize the diagonal variance a posteriori. When the posterior is also
a Gaussian with a diagonal covariance, one can write down a closed-form expression for the optimal diagonal
prior variance. This is totally invalid as a bound, but it does provide a hard limit on the best we could hope to
achieve through some clever valid approach with diagonal Gaussian priors and posteriors. Our results suggest
that the gains are not negligible, but they are also not massive. We conclude that one may need to account for
dependence between parameters to see big gains.

How do the approaches you describe for neural networks scale to ImageNet? Different archi-
tectures? These are good questions and they deserve further study. Regarding the prospects of evaluating
these techniques on ImageNet. We are not quite at the point in terms of the software engineering to scale our
experiments to ImageNet. We suspect that it may be even more important to use nondiagonal Gaussians for
ImageNet: the only nonvacuous bounds on ImageNet in the literature are ones for a compressed network (Zhou
et al., 2019) and this compression scheme does not treat weights independently as a diagonal Gaussian prior does
implicitly. Even so, their bounds are only slightly better than the random guessing rate! As for understanding
the role of architecture, we believe there

Are your empirical results in keeping with earlier work on data-dependent priors? In short, earlier
work also finds meaningful gains from using data-dependent priors. Parrado-Hernández et al. (2012) demonstrates
a clear advantage of data-dependence for linear predictors when compared to uninformative (nonoracle) priors
(Fig. 1). Note, however, that some approaches based on using all the data to choose the prior often yield bounds
that are strictly weaker than data-independent oracle bounds because they are essentially oracle bounds with
penalties for data-dependence. Our theory suggests that the effect of using only some of the data can be to
actually outperform distribution-dependent oracle bounds. Dziugaite and Roy (2018) use differential privacy to
select a prior using data and obtain distribution-dependence. They study a two-stage learning process in neural
networks where the prior is centered at weights learned using SGLD in an approximately private way and then
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the posterior is optimized based on this prior. There is a similar U-shaped tradeoff seen between optimizing the
prior and the tightness of the bound.

Could these techniques be useful for continual learning? In continual learning, it’s not uncommon to
use posteriors from earlier on as priors for later data/tasks. This bears some resemblance to our methodology
here for data-dependent oracle priors. Note, however, that the effect we are exploiting is when certain training
data have outsized influence on the learned predictor. It’s useful to condition on this overly influential training
data because the effect it has on the learned predictor is atypical / hard to predict. In a continual or meta-
learning setting, we might expect some relationship between tasks. In this case, we’re hoping to learn typical
properties of upcoming tasks from prior tasks, and so the role of data-dependence is quite different. Of course,
we also want our PAC-Bayes priors to be tuned to the data distribution. Oracle priors capture all the relevant
distribution dependence. Even so, they miss out on the atypical parts that are training-data specific, which is why
data-dependent oracle priors can be superior. If obtaining generalization bounds for continual and meta-learning
problems also suffer from the hard to predict influence of data, similar techniques may be applicable.
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Figure 7: Top row: MNIST, LeNet-5; middle row: Fashion-MNIST, LeNet-5; bottom row: MNIST, FC;
y-axis: error-rate; x-axis: fraction α of the data used by the α-prefix run of SGD to predict the weights
produced by the base run of SGD; dashed lines: test error; solid lines: bound on the error of a Gaussian
Gibbs classifier whose mean is the weights learned by the base run of SGD and whose covariance has been
optimized to minimize a PAC-Bayes risk bound; legend: training error that was used as the stopping criterion
for the base run; left column: test error and PAC-Bayes generalization bounds with isotropic prior covariance;
right column: hypothetical bounds with diagonal prior variance set to optimal. The improvement is seen only
for low α values. At higher α values, the bounds are similar to the ones obtained with isotropic prior variance.
The best test error bound on MNIST (approximately 11%) is significantly better than the 46% bound by Zhou
et al. (2019).
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Figure 8: Top row: MNIST, LeNet-5; bottom row: MNIST, FC; y-axis: error-rate; x-axis: fraction α of the
data used by the α-prefix run of SGD to predict the weights produced by the base run of SGD; left column:
test error and PAC-Bayes error bounds with isotropic prior covariance using half of MNIST data; right column:
data and oracle prior bounds, where the prior is an isotropic Gaussian. The oracle prior is approximated by
using ghost samples. When using ghost samples, some improvement on the bounds is seen for small values of α
(below 0.2). For large values of α (at around 0.9) and some stopping times, the bound with a data and oracle
dependent prior is worse than with a data-dependent prior.
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