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Abstract

The dominant term in PAC-Bayes bounds
is often the Kullback—Leibler divergence be-
tween the posterior and prior. For so-called
linear PAC-Bayes risk bounds based on the
empirical risk of a fixed posterior kernel, it
is possible to minimize the expected value of
the bound by choosing the prior to be the
expected posterior, which we call the oracle
prior on the account that it is distribution
dependent. In this work, we show that the
bound based on the oracle prior can be subop-
timal: In some cases, a stronger bound is ob-
tained by using a data-dependent oracle prior,
i.e., a conditional expectation of the poste-
rior, given a subset of the training data that
is then excluded from the empirical risk term.
While using data to learn a prior is a known
heuristic, its essential role in optimal bounds
is new. In fact, we show that using data can
mean the difference between vacuous and non-
vacuous bounds. We apply this new principle
in the setting of nonconvex learning, simulat-
ing data-dependent oracle priors on MNIST
and Fashion MNIST with and without held-
out data, and demonstrating new nonvacuous
bounds in both cases.

1 INTRODUCTION

In this work, we are interested in the application of
PAC-Bayes bounds (McAllester, 1999b; Shawe-Taylor
and Williamson, 1997) to the problem of understand-
ing the generalization properties of learning algorithms.
Our focus will be on supervised learning from i.i.d. data,
although PAC-Bayes theory has been generalized far
beyond this setting, as summarized in a recent survey
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by Guedj (2019). In our setting, PAC-Bayes bounds
control the risk of Gibbs classifiers, i.e., randomized
classifiers whose predictions, on each input, are deter-
mined by a classifier h sampled according to some dis-
tribution @ on the hypothesis space . The hallmark of
a PAC-Bayes bound is a normalized Kullback—Leibler
(KL) divergence, m~'KL(Q||P), defined in terms of a
Gibbs classifier P that is called a “prior” because it must
be independent of the m data points used to estimate
the empirical risk of Q.

In applications of PAC-Bayes bounds to generalization
error, the contribution of the KL divergence often dom-
inates the bound: In order to have a small KL with a
strongly data-dependent posterior, the prior must, in
essence, predict the posterior. This is difficult without
knowledge of (or access to) the data distribution, and
represents a significant statistical barrier to achieving
tight bounds. Instead, many PAC-Bayesian analyses
rely on generic priors chosen for analytical convenience.

Generic priors, however, are not inherent to the PAC-
Bayes framework: every valid prior yields a valid
bound. Therefore, if one does not optimize the prior
to the data distribution, one may obtain a bound that
is loose on the account of ignoring important, favorable
properties of the data distribution.

Langford and Blum (2003) were the first to consider
the problem of optimizing the prior to minimize the ez-
pected value of the high-probability PAC-Bayes bound.
In the realizable case, they show that the problem
reduces to optimizing the expected value of the KL
term. More precisely, they consider a fixed learning
rule S — Q(9), ie., a fixed posterior kernel, which
chooses a posterior, Q(S), based on a training sam-
ple, S. In the realizable case, the bound depends lin-
early on the KL term. Then E[KL(Q(S)||P)] is min-
imized by the expected posterior, P* = E[Q(S)], i.e.,
P*(B) = E[Q(S)(B)] for measurable B C H. Both ex-
pectations are taken over the unknown distribution of
the training sample, S. We call P* the oracle prior.
If we introduce an H-valued random variable H sat-
isfying P[H|S] = Q(S) a.s., we see that its distribu-
tion, P[H], is P* and thus, the “optimality” of the or-
acle P* is an immediate consequence of the identity
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I(S; H) = E[KL(Q(S)[[P*)] = infp, E[KL(Q(S)|[P")],
a well-known variational characterization of mutual in-
formation in terms of KL divergence.

For so-called linear PAC-Bayes bounds (introduced be-
low), the oracle prior is seen to minimize the bound
in expectation when all the data are used to estimate
the risk. This holds even in the unrealizable setting.
Thus, having settled on a learning rule S — Q(5), we
might seek to achieve the tightest linear PAC-Bayes
bound in expectation by attempting to approximate
the oracle prior, P*. Indeed, there is a large litera-
ture aimed at obtaining localized PAC-Bayes bounds
via distribution-dependent priors, whether analytically
(Catoni, 2003; Catoni, 2007; Lever, Laviolette, and
Shawe-Taylor, 2010; Lever, Laviolette, and Shawe-
Taylor, 2013), through data (Ambroladze, Parrado-
Hernandez, and Shawe-Taylor, 2007; Negrea et al.,
2019), or by way of concentration of measure, privacy,
or stability (Dziugaite and Roy, 2018; Oneto, Anguita,
and Ridella, 2016; Oneto, Ridella, and Anguita, 2017;
Rivasplata, Parrado-Hernandez, et al., 2018).

One of the contributions of this paper is the demon-
stration that an oracle prior may not yield the tightest
linear PAC-Bayes risk bound in expectation, if we allow
ourselves to consider also using only subsets of the data
to estimate the risk. Proposition 3.1 gives conditions
on a learning rule for there to exist data-dependent
priors that improves the bound based upon the oracle
prior. This phenomenon is a hitherto unstated prin-
ciple of PAC-Bayesian analysis: data-dependent priors
are sometimes necessary for tight bounds. Note that, as
the prior must be independent of data used to compute
the bound a posteriori, if m training data are used to
define the prior, only the remaining n — m data should
be used to compute the bound (i.e., compute the em-
pirical risk term and divide the KL term). Note that
all n training data are used by the learning algorithm.
We formalize these subtleties in the body of the paper
and discuss some other misconceptions in Appendix J.

We give an example of a learning problem where Propo-
sition 3.1 implies data-dependent priors dominate. The
example is adapted from a simple model of SGD in a
linear model by Nagarajan and Kolter (2019b). In the
example, most input dimensions are noise with no sig-
nal and this noise accumulates in the learned weights.
In our version, we introduce a learning rate schedule,
and so earlier data points have a larger influence on the
resulting weights. Even so, there is enough variability
in the posterior that the oracle prior yields a vacuous
bound. By conditioning on early data points, we reduce
the variability and obtain nonvacuous bounds.

The idea of using data-dependent priors to obtain
tighter bounds is not new (Ambroladze, Parrado-

Hernandez, and Shawe-Taylor, 2007; Dziugaite and
Roy, 2018; Parrado-Hernédndez et al., 2012; Rivas-
plata, Parrado-Hernandez, et al., 2018). The idea is
also implicit in the luckiness framework (Shawe-Taylor,
Bartlett, et al., 1996). However, the observation that
using data can be essential to obtaining a tight bound,
even in full knowledge of the true distribution, is new,
and brings a new dimension to the problem of con-
structing data-dependent priors.

In addition to demonstrating the theoretical role of
data-dependent priors, we investigate them empirically,
by studying generalization in nonconvex learning by
stochastic (sub)gradient methods. As data-dependent
oracle priors depend on the unknown distribution, we
propose to use held-out data (“ghost sample”) to es-
timate unknown quantities. Unlike standard held-out
test set bounds, this approach relies implicitly on a type
of stability demonstrated by SGD. We also propose ap-
proximations to data-dependent oracle priors that use
no ghost sample, and find, given enough data, the ad-
vantage of the ghost sample diminishes significantly.
We show that both approaches yield state-of-the-art
nonvacuous bounds on MNIST and Fashion-MNIST
for posterior Gaussian distributions whose means are
clamped to the weights learned by SGD. Our MNIST
bound (11%) improves significantly on the best pub-
lished bound (46%) (Zhou et al., 2019). Finally, we
evaluate minimizing a PAC-Bayes bound with our data-
dependent priors as a learning algorithm. We demon-
strate significant improvements to both classifier accu-
racy and bound tightness, compared to optimizing with
generic priors.

2 PRELIMINARIES

Let Z be a space of labeled examples, and write M (Z)
for the space of (probability) distributions on Z. Given
a space H of classifiers (e.g., neural network predic-
tors defined by their weights w) and a bounded loss
function ¢ : H x Z — [0,1], the risk of a hypothe-
sis w € H is Lp(w) = E,opll(w,z)]. We also con-
sider Gibbs classifiers, i.e., elements P in the space
M (H) of distributions on H, where risk is defined
by Lp(P) = Ey~pLp(w). As D is unknown, learn-
ing algorithms often work by optimizing an objective
that depends on i.i.d. training data S ~ D", such as
the empirical risk Lg(w) = Lp, (w) = 2 30 | l(w, 2),
where D,, is the empirical distribution of S. Writing
Q(S) for a data-dependent Gibbs classifier (i.e., a pos-
terior), our primary focus is its risk, Lp(Q(5)), and its
relationship to empirical estimates, such as Lg(Q(S5)).

The PAC-Bayes framework (McAllester, 1999b; Shawe-
Taylor and Williamson, 1997) provides generalization
bounds on data-dependent Gibbs classifiers. Let Q, P €
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M1 (H) be probability measures defined on a common
measurable space H. When @ is absolutely continuous
with respect to P, written QQ < P, we write % H —
R4 U {0} for some Radon-Nikodym derivative (aka,
density) of @ with respect to P. The Kullback-Liebler
(KL) divergence from @ to P is KL(Q||P) = [In % d@
if @ < P and oo otherwise. Assuming ) and P admit
densities ¢ and p, respectively, w.r.t. some sigma-finite
measure v € M(#H), the definition of the KL divergence
satisfies

q(w)
KL(Q||P) = / lo w)v(dw).
(@IP) = [ 1og L atwpviaw)
The following PAC-Bayes bound follows from

(McAllester, 2013, Thm. 2), taking 8 = 1 — 1/(2)).
(See also Catoni (2007, Thm. 1.2.6).)

Theorem 2.1 (Linear PAC-Bayes bound). Let 3,0 €
(0,1), n € N, D € My(Z), and P € My(H). With
probability at least 1 — § over S ~ D™, for all Q €
Ml(H)7

KL(Q||P) + log%
26(1 - B)IS|

LMQ)SW@AQJﬁﬁfg%LAQH—

As is standard, we call P the prior.

Note that the KL term in the bound depends on the
data S through the kernel Q(S). If we are interested
in obtaining the tightest possible bound for the kernel
Q(S), then we can seek to minimize the KL term in
some distribution sense. Our control of the KL term
comes from the prior P. Since the bound is valid for
all priors independent from S, we can choose P by op-
timizing, e.g., the risk bound in expectation, as first
proposed by Langford and Blum (2003):

Theorem 2.2. Let n € N and fix a probability ker-
nel @ : Z" — My(H). For dall 5,6 € (0,1) and
D e Mi(Z), Egupn¥Ups(Q(S), P;S) is minimized, in
P, by the “oracle” prior P* = Eg.p»[Q(S5)].

Note that, in other PAC-Bayes bounds, the KL term
sometimes appears within a concave function. In this
case, oracle priors can be viewed as minimizing an up-
per bound on bound. We focus on linear PAC-Bayes
bounds here for analytical tractability.

3 DATA-DEPENDENT ORACLE
PRIORS

Here we demonstrate that, for linear PAC-Bayes
bounds, one may obtain a stronger bound using a
“data-dependent oracle” prior, rather than the usual
(data-independent) oracle prior. Further, using a data-
dependent oracle prior may mean the difference be-
tween a vacuous and nonvacuous bound.

A typical PAC-Bayes generalization bound for a poste-
rior kernel S — Q(S) is based on the empirical risk
Lg(Q(S)) computed from the same data fed to the
kernel. Instead, let J be a (possibly random) subset
of [n] of size m < n, independent from S, let S; de-
note the subsequence of data with indices in J, and let
S\ S; denote the complementary subsequence. Con-
sider now the PAC-Bayes bound based on the estimate
Ls\s,(Q(S)). In this case, the prior need only be in-
dependent from S\ S;. The o(Sy)-measurable data-
dependent oracle prior P*(S;) = E[Q(S)]S] arises as
the solution of the optimization

inf
PeZlVl =M1 (H)

EKL@QS)IP(S))]- (1)

Letting @ be a random element in H satisfying
Plw|S, J] = Q(S5) a.s., the value of Eq. (1) is the condi-
tional mutual information I(w; S|Ss). This conditional
mutual information represents the expected value of
the KL term in the linear PAC-Bayes bound and so
this data-dependent prior achieves, in expectation, the
tightest linear PAC-Bayes bound based on the estimate

" Ls\s, (Q(9))-

We can also consider restricting the prior distribution
to a family F C M;(H) of distributions, in which case
the optimization in Eq. (1) is over the set of kernels
ZWl — F. We refer to a solution of this optimization
as a data-dependent oracle prior in F, denoted P3(Sy),
and refer to the value of Eq. (1) as the conditional F-
mutual information, denoted Iz(w;S|Ss). The uncon-
ditional F-mutual information is defined equivalently.
In Section 4, we study data-dependent oracle priors in
a restricted family F in a setting where dealing with
the set of all priors is intractable.

Fix F and define the information rate gain (from using
S to choose the prior in F) and the excess bias (from
using S\ S to estimate the risk) to be, respectively,

Ir(h; S5, J)
1S\ S,

Ir(h; 5) B

(2)
and

B(w:5]Sy) = El[Ls\s, (@) — Ls(@)]. (3)

Note that, if J is chosen uniformly at random, then
B(w; S]Sy) = 0. Using these two quantities, we can

"When F is the set of all distributions, we drop F
from the notation. The notation P*(S) is understood
to also specify the data S; held out from the estimate
of risk. Thus, Pr denotes the distribution-dependent but
data-independent oracle prior when the choice of prior is
restricted to F, just as P* represents the distribution-
dependent but data-independent oracle prior when the
choice of prior is unrestricted.
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characterize whether a data-dependent prior can out-
perform the oracle prior. The following result is an
immediate consequence of the above definitions. (We
present the straightforward proof in Appendix A for
completeness.)

Proposition 3.1. Let 5,6 € (0,1), n € N, and
D e My(Z). Fix Q : Z" — My(H) and let
J C [n] be a (possibly random) subset of nonran-
dom cardinality m < n, independent from S ~
D™. Conditional on S and J, let W have distribution
Q(S) Then EJ]ESNDn\I’B’g(Q(S)7P_;:(SJ);S \ Sy) <
Espn¥p,5(Q(S), Px; S) if and only if

Ror (15 S]Sy) = 2(1 = B) B(ibs §]Ss) + 55 720 (1)
i.e., Eq. (4) holds if and only if the linear PAC-
Bayes bound with a oracle (data-independent) prior
is no tighter, in expectation, than that with the data-
dependent oracle prior.

To interpret the proposition, consider f = 1/2: then
a data-dependent prior yields a tighter bound, if the
information rate gain is larger than the excess bias and
a term that accounts for excess variance.

Do such situations arise naturally? In fact, they do.
The following demonstration uses a linear classification
problem presented by Nagarajan and Kolter (2019b).
Their example was originally constructed to demon-
strate potential roadblocks to studying generalization
in SGD wusing uniform convergence arguments. We
make one, but important modification: we modify the
learning algorithm to have another feature of SGD in
practice: a decreasing step size. As is the case in or-
dinary training, the decreasing step size causes earlier
data points to have more influence. As the data are
noisy, the noise coming from these early samples has an
outsized effect that renders a linear PAC-Bayes bound
vacuous. By leaving the initial data out of the estimate
of risk, and using a data-dependent oracle prior, we
achieve a tighter bound. Indeed, we obtain a nonvacu-
ous bound, while the optimal data-independent oracle
prior yields a vacuous bound.

Example 3.2. Consider the hypothesis class H = R,
interpreted as linear classifiers

for w € R%.

(5)

Assume that d = K + D, with D > K, and decompose
each input € R? as & = (x1, x3), where &; € R¥ and
xy € RP. (We will decompose the weights similarly.)
Labels y take values in {1} and so a prediction of 0
(i.e., on the decision boundary) is a mistake.

x — sign((z, w)) : R = {~1,0,1},

Consider the following n i.i.d. training data: Let u € R”
be a nonrandom vector and, for each i = 1,...,n,

1=
S

e
9
G

error (bound)
S
wn
S
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Figure 1: Lower (orange x’s) and upper (blue dots)
bounds on the expected value of a linear PAC-Bayes
bound as a function of the fraction, «, of the 100
training data used by the data-dependent (PAC-Bayes)
prior. Each bound uses the optimal (in expectation)
tradeoff 8 and data-dependent prior P(Sy;), for J = [k].
Without using data (i.e., J = ), the bound is provably
vacuous as the lower bound exceeds one. The upper
bound is approximately 0.15 when the oracle prior is
computed conditionally given the first 24 data points
(i.e., J =[24] and o = 0.24.).

choose y; uniformly at random in {£1}, let x; 1 = y;u,
and let x; » be multivariate normal with mean 0 and
covariance (02/D) Ip, where Ip is the D x D identity
matrix. Let D denote the common marginal distribu-
tion of each training example (y;, x;).

Consider the following one-pass learning algorithm: Let
wy = 0, then, for t = 1,...,n and n = 1/t, put
w; = wy_1 + Mysx:. Then define the final weights to
be W = w,, + (0,&), where £ is an independent, zero-
mean multivariate Gaussian with covariance k Ip. Note
that w, = (wn,1,wy, 2) where w, 1 = (3;—, 7;)u and
Wy 2 = Z?:l NiYiZi 2.

We will compare bounds based on oracle priors with
those based on data-dependent oracle priors. To that
end, let S = {(y;,x;)}"; and define @ by P[W|S] =
Q(S) a.s. Let [n] = {1,...,n}. For a subset J C [n],
let S; be the corresponding subset of the data S and
let S\ S; be the complement.

Lemma 3.3. There are constants n, D, o, k,0,u such
that the infimum

inf E[Us5(Q(S), P(S,); S\ S,)],
J,B,P

(6)

where J ranges over subsets of [n], B ranges over
(0,1), and P ranges over measurable functions Z!71 —
M (H), is achieved by a nonempty set J. In particular,
the optimal prior is data dependent.

Lower and upper bounds on the objective (Eq. (6)) for
J of the form {1,...,|100«]}, for a € [0,1], are visu-
alized in Fig. 1. Using a data-dependent prior in this
scenario is critical for obtaining a nonvacuous bound.
The derivation of these bounds as well as a sketch of
the proof and a complete rigorous proof, can be found
in Appendix B. <
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In summary, data-dependent oracle priors, by defini-
tion, minimize linear PAC-Bayes bounds in expecta-
tion. The example above demonstrates that data-
dependence can be essential in using linear PAC-Bayes
bounds to obtain nonvacuous bounds. The example re-
lies in a crucial way on the step size decreasing, so that
some data points have an outsized impact on the noise
that is injected into the classifier. In the remainder,
we consider the problem of exploiting data dependent
priors in the setting of learning with SGD.

4 DATA-DEPENDENT PRIORS FOR
SGD

As the theoretical results in the previous section demon-
strate, data-dependent oracle priors can lead to dramat-
ically tighter bounds. In this section, we take the first
steps towards understanding whether data-dependent
priors can aid us in the study of deep learning with
stochastic gradient descent (SGD).

Most attempts to build nonvacuous PAC-Bayes bounds
for neural networks learned by SGD fail when the
bounds are derandomized (Nagarajan and Kolter,
2019a; Neyshabur et al., 2018). In order to gain tight
control on the derandomization, one requires that the
posterior is concentrated tightly around the weights
learned by SGD. This leads to a significant challenge as
the prior must accurately predict the posterior, other-
wise the KL term explodes. Can data-dependent priors
allow us to use more concentrated priors? While we
may not be able to achieve derandomized bounds yet,
we should be able to build tighter bounds for stochastic
neural networks with lower empirical risk.

In Example 3.2, we studied a posterior that depended
more heavily on some data points than others. This
property was introduced intentionally in order to serve
as a toy model for SGD. Unlike the toy model, however,
we know of no representations of the marginal distribu-
tion of the parameters learned by SGD that would allow
us to optimize or compute a PAC-Bayes bound with re-
spect to a data-dependent oracle prior. As a result, we
are forced to make approximations.

Issues of tractability aside, another obstacle to using
a data-dependent oracle prior is its dependence on the
unknown data distribution. Ostensibly, this statistical
barrier can be surmounted with extra data, although
this would not make sense in a standard model-selection
or self-bounded learning setup. In these more tradi-
tional learning scenarios, one has a training data set
S and wants to exploit this data set to the maximum
extent possible. Using some of this data to estimate or
approximate (functionals of) the unknown distribution
means that this data is not available to the learning al-

gorithm or the PAC-Bayes bound. Indeed, if our goal is
simply to obtain the tightest possible bound on the risk
of our classifier, we ought to use most of this extra data
to learn a better classifier, leaving out a small fraction
to get a tight Hoeffding-style estimate of our risk.

However, if our goal is to understand the generaliza-
tion properties of some posterior kernel @ (and indi-
rectly an algorithm like SGD), we do not simply want
a tight estimate of risk. Indeed, a held-out test set bound
is useless for understanding as it merely certifies that
a learned classifier generalizes. If a classifier general-
izes due to favorable properties of the data distribution,
then we must necessarily capture these properties in our
bound. These properties may be natural side products
of the learning algorithm (such as weight norms) or
functionals of the unknown distribution that we must
estimate (such as data-dependent oracle priors or func-
tionals thereof). In this case, it makes sense to exploit
held out data to gain insight.

4.1 Optimal isotropic Gaussian priors

In order to make progress, we begin by optimizing a
prior over a restricted family F. In particular, we con-
sider the family of Gaussian priors when the posterior
kernel chooses Gaussian posteriors. Based on empirical
findings on the behavior of SGD in the literature, we
propose an approximation to the data-dependent oracle
prior.

Let (2, F,v) be a probability space representing the
distribution of a source of randomness. Our focus
here is on kernels @ : Q x Z" — M;(H) where
Q(U, S) = N(wg, X) is a multivariate normal, centered
at the weights wg € RP learned by SGD (using ran-
domness U, which we may assume without loss of gen-
erality encodes both the random initialization and the
sequence of minibatches) on the full data set, S. Such
posteriors underlie several recent approaches to obtain-
ing PAC-Bayes bounds for SGD. In these bounds, the
covariance matrix X is chosen to be diagonal and the
scales are chosen to allow one to derive the bound on a
deterministic classifier from the bound on a randomized
classifier ). For example, Neyshabur et al. (2018) de-
rive deterministic classifier bounds from a PAC-Bayes
bound based on (an estimate of) the Lipschitz constant
of the network.

Fix some nonnegative integer m < n and let & = m/n.
Let S, denote the size m subset of S correspond-
ing to the first m indices processed by SGD. (Note
that these indices are encoded in U.) Writing ES=U[]
for the conditional expectation operator given S, U,
Theorem 2.2 implies that the tightest (linear PAC-
Bayes) bound in expectation is obtained by minimizing
ES«V[KL(Q(U, S)||P)] in terms of P, which yields the
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Figure 2: MNIST, FC; x-axis: parameter values of
base run; y-axis: parameter values of a-prefix run; left
to right: « values equal to {0,0.1,0.5,0.9}. As « in-
creases, the correlation between the parameters learnt
by SGD on all of the data and an « fraction of the data
increases.

data-dependent oracle prior P = E%V[Q(U, S)]. (We
are permitted to condition on U because U is indepen-
dent from S.)

As this prior is assumed to be intractable and the
data distribution is unknown, we make a few ap-
proximations. First, as proposed in Example 3.2,
we consider optimizing the prior over a family F
of priors. Specifically, consider the identifying the
isotropic Gaussian prior P = N(wq,opI) that mini-
mizes BV [KL(Q(U, S)||P)]. (We will revisit this sim-
plification in Appendix I, where we consider priors and
posteriors with non-isotropic diagonal covariance matri-
ces. In short, we show that not much can be gained with
diagonal priors.) If we fix op, then based on the KL
divergence between multivariate Gaussians (Eq. (33)),
the optimization problem reduces to

(7)

argmin E5*Y[||lwg — wea|?].

Wa
It follows that the mean of the Gaussian oracle prior
(with fixed isotropic covariance) is the conditional ex-
pectation ES«:Uwg] of the weights learned by SGD.
Under this choice, the contribution of the mean com-
ponent to the bound is the value of the expectation in
Eq. (7), which can be seen to be the trace of the condi-
tional covariance of wg given S,,U. For the remainder
of the section we will focus on the problem of approx-
imating the oracle prior mean. The optimal choice of
op depends on the distribution of ¥. One approach,
which assumes that we build separate bounds for dif-
ferent values of op that we combine via a union bound
argument, is outlined in Appendix C.

4.2 Ghost samples

In the setting above, the optimal Gaussian prior mean
is given by the conditional expectation E%:V[wg]. Al-
though the distribution D is presumed to be unknown,
there is a natural statistical estimate for ES~U[wg].
Namely, consider a ghost sample, S¢, independent from
and equal in distribution to S. Let S$ be the data set
obtained by combining S, with a 1 — a fraction of S¢.
(We can do so by matching the position of S, within
S and within S$.) Note that S$ is also equal in dis-

tribution to S. We may then take wS to be the mean
of Q(U, S%), i.e., the weights produced by SGD on the
data set S using the randomness U.

By design, SGD acting on S$ and randomness U will
process S, first and then start processing the data from
the ghost sample. Crucially, the initial « fraction of the
first epoch in both runs will be identical. By design,
w& and wg are equal in distribution when conditioned
on S, and U, and so w§ is an unbiased estimator for
]ESQ,U[wS} 2

4.3 Terminology

We call the run of SGD on data S, the a-prefix run.
The run of SGD on the full data is called the base run.
A prior is constructed from the a-prefix run by cen-
tering a Gaussian at the parameters obtained after T
steps of optimization. Prefix stopping time T is chosen
from a discrete set of values to minimize L? distance to
posterior mean.® Note, that for o = 0, w, = wy, i.e.,
the prior is centered at random initialization as it has
no access to data. This is equivalent to the approach
taken by Dziugaite and Roy (2017). When the prior
has access to data S, we call an SGD run training on
S& an a-prefiz+ghost run, obtaining parameters w$

P

The procedure of running the a-prefiz and base runs
together for the first a-fraction of a base run epoch us-
ing shared information U (storing the data order) is
an example of a coupling. This coupling is simple and
does not attempt to match base and a-prefiz runs be-
yond the first m/b iterations (where b is the batch size,
which we presume divides m evenly for simplicity). It
exploits the fact that the final weights have an outsized
dependence on the first few iterations of SGD. More
advanced coupling methods can be constructed. Such
methods might attempt to couple beyond the first a—
fraction of the first epoch.

As argued above, it is reasonable to use held-out data to
probe the implications of a data-dependent prior as it
may give us insight into the generalization properties of
Q. At the same time, we may be interested in approx-
imations to the data-dependent oracle that do not use
a ghost sample. Ordinarily, we would expect two inde-
pendent runs of SGD, even on the same dataset, to pro-
duce potentially quite different weights (measured, e.g.,
by their L? distance) (Nagarajan and Kolter, 2019b).
Fig. 2 shows that, when we condition on an initial prefix
of data, we dramatically decrease the variability of the

2We can minimize the variance of the KL term by pro-
ducing conditionally i.i.d. copies of w$ and averaging, al-
though each such copy requires an independent n — m-sized
ghost sample.

3We account for these data-dependent choices via a union
bound, which produces a negligible contribution.
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Algorithm 1 PAC-Bayes bound computation (right) and optimization (left). Given:Data S, ghost data S (if
a-prefiz+ghost), batch size b. Hyperparameters:stopping criteria &, prefix fraction a, prefix stopping time T,

prior variance op.

function BounD-OPT (o, 0p,T, 1)
Sa {zl,..,za|5|} cS

w9 ¢ SGD(wg, Sa, b, 5ely

ws + SGD(w?, S, b, 00, 0)

P+ N(wi,opl,)

fq « (w3, 0p)

> Let Q(0g) = N (wl,opl,)

for i < 1to T do
Sample minibatch S’ € S\ S, |S'| =b.
g + 0o — Ve, UH(Q(0q), P; S\ Sa)

Bound < U%(Q(0g), P; S\ Sa)

return Bound

> Select a-prefix
> Coupling
> a-prefiz

> () trainable params

function GET-BOUND(E, o, T, 0p)
Sa {217..,Za|5|} cS
w9 ¢ SGD(wo, Sa, b, 5el)
> Perform base run
wg < SGD(w?, S, b, 0, &)
> Perform a-prefiz+ghost run
w§ <+ SGD( w?,SS,b, T, ")
P+ N(’wg,(fplp)
Q + N(ws,opl,)
Bound « ¥3(Q,P; S\ Sa)
return Bound

0.00175

0.0030 —— Prefix 1 —— Prefix 0.040| —— Prefix
8 Prefix + Ghost | 0:00150 Prefix + Ghost | 0.035 Prefix + Ghost
§0.0025 0.00125 0.030
£0.0020 0.00100 0.025
§0.0015 0.00075 0.020
50.0010 0.00050 0.015
s V.
z ) : 0.010(~___

0.0005 — 0.00025 0.005

0% 0.2 0.4 0.6 0.8 1.0 0% 0.2 0.4 0.6 0.8 1o %% 0.2 0.4 0.6 0.8 1.0
a a a

Figure 3: left: MNIST, LeNet-5; center: Fashion-MNIST, LeNet-5; right: MNIST, FC; x-axis: a used for
a-prefiz a-prefir+ghost Tuns; y-axis: squared L? distance divided by (1 — «)|S|. For a Gaussian priors and
posteriors with fixed covariance, smaller distances yields tighter bounds.

learned weights. This experiment shows that we can
predict fairly well the final weights of SGD on the full
data set using only a fraction of the data set, implying
that most of the variability in SGD comes in the be-
ginning of training. Crucially, the two runs are coupled
in the same manner as the ghost-sample runs: the first
a-fraction of first epoch is identical. When only a frac-
tion of the data is available, SGD treats this data as the
entire data set, starting its second epoch immediately.

5 EMPIRICAL METHODOLOGY

Example 3.2 shows that a data-oracle priors can yield
tighter generalization bounds than an oracle prior. In
this section, we describe the experimental methodology
we use to evaluate this phenomenon in neural networks
trained by stochastic gradient descent (SGD).

Pseudocode. Algorithm 1 (right) describes the pro-
cedure for obtaining a PAC-Bayes risk bound on a net-
work trained by SGD.* Note that the steps outlined

4Algorithm 1 (right) uses a fixed learning rate and a
vanilla SGD for simplicity, but the algorithm can be adapted
to any variants of SGD with different learning rate sched-
ules.

in Lines 1-3 do not change with op and therefore the
best op can be chosen efficiently without rerunning the
optimization. If ghost data is not used, Ss should be
replaced with S,.

if LY '(w) < € then
break
return w

To avoid choos-

Algorithm 2 Stochastic Grad. ing 3, we use a
Descent variational KL
Hyperparameters: Learning bound, described
rate n in Appendix D,
function SGD(wo,5,b,t,€ = which allows us
—00) to optimize [ a
w < Wo posteriori  for a

for i< 1totdo small penalty. This
Sample S" € S, S| =b  PAC-Bayes bound

w < w —nVLg (w) on risk, denoted

Vi@, P;S \ Sa),
is evaluated with
6 = 0.05 confidence

level in all of our
experiments during evaluation/optimization.

Datasets and Architectures. We use three
datasets: MNIST, Fashion-MNIST and CIFAR-10. See
Appendix E for more details. The architectures used
are described in detail in Appendix F. For the details
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Figure 4: top: MNIST, LeNet-5; center: Fashion-MNIST, LeNet-5; bottom: MNIST, FC; y-axis: error-rate;
x-axis: fraction a of the data used by the a-prefiz run of SGD to predict the weights produced by the base run
of SGD, wg; dashed lines: test error; solid lines: error bound for a Gaussian Gibbs classifier @), with mean
wg and isotropic covariance minimizing a PAC-Bayes risk bound; legend: training error used as the stopping
criterion for the base run of SGD. The best error bound on MNIST (= 11%) is significantly better than the 46%

bound by Zhou et al. (2019).

of the training procedure, see Appendix G.

Stopping criteria. We terminate SGD optimization
in the base run once the empirical error (L°~! in Algo-
rithms 1 and 2) measured on all of S fell below some
desired value £, which we refer to as the stopping cri-
teria. We evaluate the results for different stopping
criteria.

6 EMPIRICAL STUDY OF
TRAINED NETWORKS

Evaluating data-dependent priors. A PAC-Bayes
risk bound trades off empirical risk and the contribu-
tion coming from the KL term. For isotropic Gaus-
sian priors and posteriors, the mean component in the
KL is proportional to the squared difference in means
normalized by the effective number of training samples

not seen by the prior, i.e., d(a, Sy ) := % This
scaled squared L2 distance term determines the tight-
ness of the bound when the prior variance and the pos-
terior ) and data S are fixed, as the bound grows with

d(a, Sy). In this section we empirically evaluate how

d(a, o) and d(a, SS) vary with different values of a.

Our goal is to evaluate whether, on standard vision
datasets and architectures, a data-dependent oracle
prior can be superior to an oracle prior. Since we do
not have access to an oracle prior, we approximate it
by using a ghost sample S¢ with a = 0, as described in
Section 4.2. Data-dependent oracle priors are approxi-
mated by using a combination of training samples and
ghost samples.

Our experimental results on MNIST and Fashion-
MNIST appear in Fig. 3, where we plot d(«, S,) and
d(a, SS). The results suggest that the value of a min-
imizing d(a, S$) is data- and architecture-dependent.
The optimal prefix size for MNIST, FC minimizing
d(a, Sq) is @ > 0.2. For MNIST, LeNet-5 and Fashion-
MNIST, LeNet-5, the optimal « is between 0 and 0.1.
We found that batch size affects the optimal «, whether
on a-prefix or ghost data. As one might expect, the
best « is larger for smaller batch sizes. We hypothesize
that this is due to increased stochasticity of SGD.

Interestingly, at larger values of a we observe that the
gap between d(«, S,) and d(a, SS) closes. This hap-
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Figure 5: Y-axis: error-rate; x-axis: fraction « of the
data used to learn the prior mean; dashed lines: test
error; solid lines: bound on the error of a Gaussian
Gibbs classifier whose mean and diagonal covariance
are learned by optimizing the bound surrogate; legend:
dataset and network architecture. For each scenario,
under the optimal «, the bound is tight and test error is
within a few percent of standard SGD-trained networks.

pens in all three experimental setups by o = 0.4: we
observe that the prior mean obtained with S, training
data alone is as close to final SGD weights as the prior
mean obtained with S$.

Generalization bounds for SGD-trained net-
works. We apply data-dependent priors to obtain
tighter PAC-Bayes risk bounds for SGD-trained net-
works. We do not use ghost data in these experiments,
as oracle priors are inaccessible in practice. Thus the
prior mean is obtained by the a-prefiz run on prefix
data alone. See Algorithm 1 (right) and Section 5 for
the details of the experiment.

From the data in Fig. 4, it is apparent that o has a
significant impact on the size of the bound. In all of
the three networks tested, the best results are achieved
for a > 0.

One of the clearest relationships to emerge from the
data is the dependence of the bound on the stopping
criterion: The smaller the error at which the base run
was terminated, the looser the bound. This suggests
that the extra optimization introduces variability into
the weights that we are not able to predict well. In
Appendix I, we use oracle bounds to quantify limits
on how much tighter these generalization bounds could
be, were we able to optimize a diagonal prior variance.
The results suggest that a diagonal prior offers little
advantage over an isotropic prior.

Direct risk bound minimization. One of the dom-
inant approaches to training Gaussian neural networks
is to minimize the evidence lower bound (ELBO), which
essentially takes the same form as the bound in The-
orem 2.1, but with a different relative weight on the
KL term. Here, we optimize a PAC-Bayes bound using

our data-dependent prior methodology which can be
related to empirical Bayes approaches. The details of
the algorithm are outlined in Algorithm 1, left, where
\IIE(Q, P; S\ S,) denotes a PAC-Bayes bound computed
with differentiable surrogate loss. We perform exper-
iments on 3 different datasets and architectures (see
Appendix H for further details).

Fig. 5 presents the error of the posterior @ (dashed
line) optimized using Algorithm 1 with different val-
ues of a. It is apparent from the figure that for all
the networks and datasets tested, the error of () drops
dramatically as « increases, all the way up to around
a = 0.9. Note that ) with the optimal a achieves
very high performance even compared to state-of-the-
art networks and at the same time comes with a valid
guarantee on error. For example, ResNet20 (without
data augmentation and weight decay) trained on CI-
FARI10 achieved error of around 0.16, and the best-
performing @ in Fig. 5 gets an average error of ~ 0.2
with a bound = 0.23 that holds with 0.95 probability.

Open-source implementation. Code for replicat-
ing the main empirical results is available at https:
//github.com/kylehkhsu/role-of-data.
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