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A Offline Proofs

A.1 Proof of the Scaling Inequalities

Proof of Lemma 2.4. By definition of local uniform convexity between x∗ and x, we have that for any z ∈ Rd of
unit norm (x∗ + x)/2 + α/4�x∗ − x�qz ∈ C. Then, by optimality of x∗, i.e. x∗ ∈ argmaxv∈C�−∇f(x∗), v�, we
have �−∇f(x∗), x∗� ≥ �−∇f(x∗), (x∗ + x)/2�+ α/4�x∗ − x�qz�. Choosing the best z implies

�−∇f(x∗), x∗ − x� ≥ α/2�x∗ − x�q�∇f(x∗)�∗.

Proof of Corollary 2.7. Here, because −∇f(x∗) ∈ NΓ(x
∗), we have that x∗ ∈ argmaxv∈Γ�−∇f(x∗), v�. Also,

for x ∈ C ⊂ Γ, by (α, q)-uniform convexity of Γ, we also have that for any z ∈ Rd of unit norm that (x∗ + x)/2+
α/4�x∗−x�qz ∈ Γ. Then, by optimality of x∗, we have �−∇f(x∗), x∗� ≥ �−∇f(x∗), (x∗+x)/2�+α/4�x∗−x�qz�.
Choosing the best z implies (for any x ∈ C) �−∇f(x∗), x∗ − x� ≥ α/2�x∗ − x�q�∇f(x∗)�∗.

A.2 Recursive Lemma

The proofs of Theorems 2.2, 2.5, and 2.9 involve finding explicit bounds for sequences (ht) satisfying recursive
inequalities of the form,

ht+1 ≤ ht ·max{1/2, 1− Chη
t }. (5)

with η < 1. An explicit solution with η = 1/2 is given in [Garber and Hazan, 2015] and corresponds to
ht = O(1/T 2), while for η = 1 we recover the classical sublinear Frank-Wolfe regime of O(1/T ). For a η ∈]0, 1],
we have O(1/T 1/η) (see for instance [Temlyakov, 2011] or [Nguyen and Petrova, 2017, Lemma 4.2.]), which can
be guessed via h(t) = (Cη)1/ηt−1/η the solution of the differential equation h�(t) = −Ch(t)η+1 for t > 0. A
quantitative statement is, for instance, given in [Xu and Yang, 2018, proof of Theorem 1.] that we reproduce
here.

Lemma A.1 (Recurrence and sub-linear rates). Consider a sequence (ht)t∈N of non-negative numbers satisfying
(5) with 0 < η ≤ 1, then hT = O

�
1/T 1/η

�
. More precisely for all t ≥ 0,

ht ≤
M

(t+ k)1/η

with k � (2− 2η)/(2η − 1) and M � max{h0k
1/η, 2/((η − (1− η)(2η − 1))C)1/η}.

A.3 Convergence Rates with Local Scaling Inequality

The local scaling inequality expresses a property between x∗ and any x ∈ C. In Lemma A.2, we show that albeit
we only have access to a local scaling inequality, it is still possible to control the variation of the distance of the
iterate to its Frank-Wolfe vertex �xt − vt� in terms of a power of the primal gap, see beginning of Section 2 for
a qualitative explanation.

Lemma A.2. Consider f a L-smooth convex function and a compact convex set C. Assume infx∈C�∇f(x)�∗ >
c > 0 and write x∗ ∈ ∂C the solution of (OPT). Assume that C satisfies a local scaling inequality at x∗ for
problem (OPT) with α > 0 and q ≥ 2, i.e. for all x ∈ C

�−∇f(x∗), x∗ − x� ≥ α/2�∇f(x∗)�∗ · �x∗ − x�q. (6)

Write vt � argmaxv∈C�−∇f(xt), v� the Frank-Wolfe vertex. Assume that ht = f(xt) − f(x∗) ≤ 1 (a simple
burn-in phase). Then, we have

�xt − vt� ≤ Hh
1/(q(q−1))
t , (7)

with H � 2 ·max
��

2L
cα

�1/(q−1)�
2
cα

�1/(q(q−1))

,
�

2
cα

�1/q�
.
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Proof. We apply the local scaling inequality (6) with x = vt and x = xt. We obtain two important inequalities:
one (7) that upper bounds �xt − vt� in terms of f(xt) − f(x∗) and another (8) that upper bounds �vt − x∗�
in terms of �x∗ − xt�, where vt is the Frank-Wolfe vertex related to iterate xt. These two inequalities rely of
convexity, L-smoothness and (6), but do not rely on strong convexity of the function f .

By optimality of the Frank-Wolfe vertex vt, we have ∇f(xt)
T vt ≤ ∇f(xt)

Tx∗. Hence, combining that with the
local scaling inequality evaluated at vt andCauchy-Schwartz, we get

�∇f(x∗)−∇f(xt)� �vt − x∗� ≥ �∇f(x∗)−∇f(xt), vt − x∗�+ �∇f(xt), vt − x∗�� �� �
≤0

≥ �∇f(x∗), vt − x∗� ≥ cα/2�vt − x∗�q.

Then, L-smoothness applied to the left hand side leaves us with

�xt − x∗� ≥ cα

2L
�vt − x∗�q−1. (8)

Then, the triangular inequality gives

�xt − vt� ≤ �vt − x∗�+ �x∗ − xt�

�xt − vt� ≤
�2L
cα

�1/(q−1)

�xt − x∗�1/(q−1) + �x∗ − xt�.

Finally applying (6) with x = xt with infx∈C�∇f(x)�∗ > c > 0 and using the convexity of f (i.e., f(xt) ≥
f(x∗) + �∇f(x∗);xt − x∗�), we have �xt − x∗� ≤

�
2
cα

�1/q

h
1/q
t which leads to

�xt − vt� ≤
�2L
cα

�1/(q−1)� 2

cα

�1/(q(q−1))

h
1/(q(q−1))
t +

� 2

cα

�1/q

h
1/q
t .

We can simplify this previous expression, and we assumed without loss of generality (i.e. up to a

burning-phase) that ht ≤ 1, which implies for q ≥ 2 that h
1/(q(q−1))
t ≥ h

1/q
t . With H � 2 ·

max
��

2L
cα

�1/(q−1)�
2
cα

�1/(q(q−1))

,
�

2
cα

�1/q�
, we then have

�xt − vt� ≤ Hh
1/(q(q−1))
t .

We now give the proof of Theorem 2.5. Recall that this theorem gives the convergence rates of the Frank-Wolfe
algorithm when the set C satisfies a local scaling inequality (that is, for instance, with Lemma 2.4 a consequence
of local uniform convexity of the constraint set C). It does not require uniform convexity of the function f , but
assumes that f is a convex L-smooth function with infx∈C�∇f(x)�∗ > 0.

Theorem 2.5�. Consider f a L-smooth convex function and a compact convex set C. Assume �∇f(x)�∗ > c > 0
for all x ∈ C and write x∗ ∈ ∂C a solution of (OPT). Further, assume that C satisfies a local scaling inequality
at x∗ with the (α, q) parameters. Then the iterates of the Frank-Wolfe algorithm, with short step satisfy

�
f(xT )− f(x∗) ≤ M/(T + k)

1
1−2/(q(q−1)) when q > 2

f(xT )− f(x∗) ≤
�
1− ρ

�T
h0 when q = 2,

(9)

with ρ = max
�

1
2 , 1− cα/L

�
, k � (2− 2η)/(2η − 1) and M � max{h0k

1/η, 2/((η − (1− η)(2η − 1))C)1/η}, where
η � 1− 2/(q(q − 1)) and C � 1/(2LH2). Note that H depends only on C,α, L and q (see Lemma A.2).

Proof of Theorem 2.5. With Lemma A.2, which satisfies the assumption of Theorem 2.5, we have

�xt − vt� ≤ Hh
1/(q(q−1))
t ,
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with H � 2 · max
��

2L
cα

�1/(q−1)�
2
cα

�1/(q(q−1))

,
�

2
cα

�1/q�
. We plug this last expression in the classical descent

guarantee given by L-smoothness

ht+1 ≤ (1− γ)ht + γ2L

2
�vt − xt�2

ht+1 ≤ (1− γ)ht + γ2L

2
H2h

2/(q(q−1))
t .

The optimal decrease γ ∈ [0, 1] is γ∗ = min
�

h
1−2/(q(q−1))
t

LH2 , 1
�
. When γ∗ = 1, or equivalently ht ≥

�
LH2

�2/(q(q−1))
,

we have ht+1 ≤ ht/2. In other words, for the very first iterations, there is a brief linear convergence regime.
Otherwise, when γ∗ ≤ 1, we have

ht+1 ≤ ht

�
1− 1

2LH2
h
1−2/(q(q−1))
t

�
. (10)

When q = 2, this corresponds to the strongly convex case and we recover the classical linear-convergence regime.

We conclude using Lemma A.1 that the rate is O
�
1/T 1/(1−2/(q(q−1)))

�
.

A.4 Proof without restriction on the location of the optimum.

We regroup here the proofs of the lemma and the theorem contained in Section 2.4.

Proof of Lemma 2.8. By Lemma 2.1 we have g(xt) = �−∇f(xt); vt − xt� ≥ α/2�xt − vt�q�∇f(xt)�∗. Then, by
combining the convexity of f , Cauchy-Schwartz and (µ, θ)-Hölderian Error Bound, we have

f(xt)− f(x∗) ≤ �∇f(xt), x− x∗� ≤ �∇f(xt)�∗ · �xt − x∗� ≤ µ�∇f(xt)�∗ ·
�
f(xt)− f(x∗)

�θ
,

so that
�
f(x)− f(x∗)

�1−θ ≤ µ�∇f(x)�∗ and finally g(xt) ≥ α/(2µ)�xt − vt�qh1−θ
t .

Proof of Theorem 2.9. From the proof of Theorem 2.2, L-smoothness and the step size decision we have

h(xt+1) ≤ h(xt)−
g(xt)

2
·min

�
1;

g(xt)

L�xt − vt�2
�
.

From Lemma 2.8, we have g(xt) ≥ α/(2µ)�xt − vt�qh1−θ
t . Hence, we can rewrite

g(xt)

�xt − vt�2
=

�g(xt)
q/2−1g(xt)

�xt − vt�q
�2/q

≥
�
α/(2µ)

�2/q

g(xt)
1−2/qh

(1−θ)2/q
t .

And because g(xt) ≥ ht, we have

g(xt)

�xt − vt�2
≥

�
α/(2µ)

�2/q

h
1−2θ/q
t .

We finally end up with the following recursion

h(xt+1) ≤ h(xt) ·max
�1

2
; 1−

�
α/(2µ)

�2/q

h
1−2θ/q
t /L

�
,

and we conclude with Lemma A.1.

B Proofs in Online Optimization

The following is the generalization of [Huang et al., 2017, (6)] when the set is uniformly convex (see Definition 1.1).
Note that in our version C can be uniformly convex with respect to any norm.
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Proposition B.1. Assume C ⊂ Rd is a (α, q)-uniformly convex set with respect to � · �, with α > 0 and q ≥ 2.
Consider the non-zero vectors φ1,φ2 ∈ Rd and vφ1 ∈ argmaxv∈C �φ1, v� and vφ2 ∈ argmaxv∈C �φ2, v�. Then

�vφ1
− vφ2

, φ1� ≤
� 1

α

�1/(q−1) �φ1 − φ2�1+1/(q−1)
∗

(max{�φ1�∗, �φ2�∗})1/(q−1)
, (11)

where � · �∗ is the dual norm to � · �.

Proof. By definition of uniform convexity, for any z of unit norm, vγ(z) ∈ C where

vγ(z) � γvφ1
+ (1− γ)vφ2

+ γ(1− γ)α�vφ1
− vφ2

�qz.

By optimality of vφ1
and vφ2

, we have �vγ(z), φ1� ≤ �v1, φ1� and �vγ(z), φ2� ≤ �v2, φ2�, so that

�vγ(z), γφ1 + (1− γ)φ2� ≤ γ�v1, φ1�+ (1− γ)�v2, φ2�.

Write φγ = γφ1 + (1− γ)φ2. Then, when developing the left hand side, we get

γ(1− γ)α�vφ1
− vφ2

�q�z, φγ� ≤ γ(1− γ)�vφ1
− vφ2

, φ1 − φ2�

Choosing the best z of unit norm we get

α�vφ1
− vφ2

�q�φγ�∗ ≤ �vφ1
− vφ2

, φ1 − φ2�

and for γ = 0 and γ = 1 and via generalized Cauchy-Schwartz we get

α�vφ1
− vφ2

�q ·max{�φ1�∗, �φ2�∗} ≤ �vφ1
− vφ2

� · �φ1 − φ2�∗,

Hence

�vφ1
− vφ2

� ≤
� 1

α

�1/(q−1) �φ1 − φ2�1/(q−1)
∗

(max{�φ1�∗, �φ2�∗})1/(q−1)
.

Then, since �vφ2 − vφ1 ;φ2� ≥ 0 by optimality of vφ2 , we have

�vφ1
− vφ2

, φ1� ≤ �vφ1
− vφ2

� · �φ1 − φ2�∗ ≤
� 1

α

�1/(q−1) �φ1 − φ2�1+1/(q−1)
∗

(max{�φ1�∗, �φ2�∗})1/(q−1)
,

and we finally obtain (11).

We now provide a proof of Theorem 3.1.

Theorem 3.1�. Let C be a compact and (α, q)-uniformly convex set with respect to � · �. Assume that LT =
min1≤t≤T � 1

t

�t
τ=1 cτ�∗ > 0. Then the regret RT of FTL (4) for online linear optimization satisfies





RT ≤ 2M
� 2M

αLT

�1/(q−1)�q − 1

q − 2

�
T 1−1/(q−1) when q > 2

RT ≤ 4M2

αLT
(1 + log(T )) when q = 2,

(12)

where M = supc∈W�c�∗, with the losses lt(x) = �ct, x� and (ct) belong to the bounded set W.

Proof of Theorem 3.1. The proof follows exactly that of [Huang et al., 2017, Theorem 5]. Write M =
supc∈W�c�∗, Ft(x) =

1
t

�t
τ=1 �ct, x� and short cut ∇Ft � 1

t

�t
τ=1 ct the gradient of the linear function Ft(x).

Recall that with FTL, xt is defined as

xt ∈ argminx∈C�
t−1�

τ=1

ct, x�.

As in [Huang et al., 2017, Theorem 5] we have

�∇Ft −∇Ft−1�∗ ≤ 2M

t
.
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Using [Huang et al., 2017, Proposition 2] and Proposition B.1 we get the following upper bound on the regret

RT =

T�

t=1

t�xt+1 − xt, ∇Ft� ≤
� 1

α

�1/(q−1) T�

t=1

t
�∇Ft −∇Ft−1�1+1/(q−1)

∗
(max{�∇Ft�∗, �∇Ft−1�∗})1/(q−1)

.

Hence, with LT = min1≤t≤T �∇Ft�∗ > 0 and �∇Ft −∇Ft−1�∗ ≤ (2M)/t, we have

RT ≤ 2M
� 2M

αLT

�1/(q−1) T�

t=1

t−1/(q−1).

Then we have for q > 2

T�

t=1

t−1/(q−1) = 1 +

T�

t=2

t−1/(q−1) ≤ 1 +

� T−1

x=1

x−1/(q−1)dx = 1 +
� t1−1/(q−1)

1− 1/(q − 1)

�T−1

1
,

so that finally

RT ≤ 2M
� 2M

αLT

�1/(q−1)�q − 1

q − 2

�
T 1−1/(q−1).

C Uniform Convexity

C.1 Uniformly Convex Spaces

Proof of Lemma 4.2. The argument is similar to that in [Molinaro, 2020, Appendix A], we repeat it for com-
pleteness. Assume (X, � · �) is uniformly convex with modulus of convexity δ(·). Let us write C � B�·�(1). Then

for any (x, y, z) ∈ C, we have by definition 1− �x+y�
2 ≥ δ(�x− y�) and then

���
���x+ y

2
+ δ(�x− y�)z

���
��� ≤

���
���x+ y

2

���
���+ δ(�x− y�) ≤ 1 .

Hence, x+y
2 + δ(�x− y�)z ∈ C. Without loss of generality, consider η ∈]0; 1/2]. We need to show that ηx+ (1−

η)y+δ(�x−y�)z ∈ C for any z with norm lesser than 1. First, note that ηx+(1−η)y = (1−2η)y+(2η)(x+y)/2.
Note also that because 1− 2η ∈ [0, 1], we have for any z of norm lesser than 1

(1− 2η)x+ (2η)
�
(x+ y)/2 + δ(�x− y�)z

�
∈ C.

Hence, for any z of norm lesser than 1, we have

ηx+ (1− η)y + 2ηδ(�x− y�)z ∈ C.

In particular, choosing z� = (1− η)z gives that for any z of norm less than 1

ηx+ (1− η)y + 2η(1− η)δ(�x− y�)z ∈ C,

which proves that C is δ(·)-uniformly convex with respect to � · �.
Let us now assume that B�·�(1) is (α, q)-uniformly convex w.r.t. ��. Let us show that B�·�(r) is (α/rq−1, q)-
uniformly convex. Consider (x, y) ∈ B�·�(r) and z with �z� ≤ 1, we have (with x� = x/r and y� = y/r)

I �
��ηx+ (1− η)y + η(1− η)αr−(q−1)�x− y�qz

��
= r

��ηx� + (1− η)y� + η(1− η)α�x� − y��qz
�� ≤ r.
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C.2 Uniformly Convex Functions

Uniform convexity is also a property of convex functions and defined as follows.

Definition C.1. A differentiable function f is (µ, r)-uniformly convex on a convex set C w.r.t. � · � if there
exists r ≥ 2 and µ > 0 such that for all (x, y) ∈ C

f(y) ≥ f(x) + �∇f(x), y − x�+ µ

2
�x− y�r .

We now state the equivalent of [Journée et al., 2010, Theorem 12] for the level sets of uniformly convex functions.
This was already used in [Garber and Hazan, 2015] in the case of strongly-convex sets.

Lemma C.2. Let f : Rd → R+ be a non-negative, L-smooth and (µ, r)-uniformly convex function on Rd w.r.t.
� · �2, with r ≥ 2. Then for any w > 0, the level set

Lw =
�
x | f(x) ≤ w

�
,

is (α, r)-uniformly convex w.r.t. with α = µ

2r−1
√
2wL

.

Proof. The proof follows exactly that of [Journée et al., 2010, Theorem 12], replacing �x−y�2 with �x−y�r. We
state it for the sake of completeness. Consider w0 > 0, (x, y) ∈ Lw and γ ∈ [0, 1]. We denote z = γx+ (1− γ)y.
For u ∈ Rd, by L-smoothness applied at z and at x∗ (the unconstrained optimum of f), we have

f(z + u) ≤ f(z) + �∇f(z), u�+ L

2
�u�22

≤ f(z) + �∇f(z)�2 · �u�2 +
L

2
�u�22

≤ f(z) +
�
2Lf(z)�u�2 +

L

2
�u�22 =

��
f(z) +

�
L

2
�u�2

�2

.

Note that (µ, r)-uniform convexity of f w.r.t. � ·�2 implies that (see, e.g., [Kerdreux et al., 2021, Definition 3.2.])

f(z) ≤ γf(x) + (1− γ)f(y)− µ

2r−1
γ(1− γ)�x− y�r.

In particular then, because x, y ∈ Lw, we have f(z) ≤ w − µ
2r−1 γ(1− γ)�x− y�r so that

f(z + u) ≤
��

w − µ

2r−1
γ(1− γ)�x− y�r +

�
L

2
�u�

�2

. (13)

Then, with the concavity of the square-root, we get

f(z + u) ≤
�√

w − µ

2r
√
w
γ(1− γ)�x− y�r +

�
L

2
�u�

�2

. (14)

Hence for any u such that

�u� =
µ

2r−1
√
2wL

γ(1− γ)�x− y�r,

we have z + u ∈ Lw. Hence Lw is a ( µ

2r−1
√
2wL

, r)-uniformly convex set.

Lemma C.2 restrictively requires smoothness of the uniformly convex function f . Hence we provide the analogous
of [Garber and Hazan, 2015, Lemma 3].

Lemma C.3. Consider a finite dimensional normed vector space (X, � · �). Assume f(x) = �x�2 is (µ, s)-

uniformly convex function (with r ≥ 2) with respect to � · �. Then the norm balls B�·�(r) =
�
x ∈ X | �x� ≤ r

�

are ( µ
2r−1r , s)-uniformly convex.
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Proof. The proof follows exactly that of [Garber and Hazan, 2015, Lemma 3] which itself follows that of [Journée
et al., 2010, Theorem 12], where operations involving L-smoothness are replaced by an application of the trian-
gular inequality.

Let’s consider s ≥ 2, (x, y) ∈ B�·�(r) and γ ∈ [0, 1]. We denote z = γx + (1 − γ)y. For u ∈ X, applying
successively the triangular inequality and with the (µ, s)-uniform convexity of f(x) = �x�2, we get

f(z + u) = �z + u�2 ≤
�
�z�+ �u�

�2

=
��

f(z) + �u�
�2

≤
��

γf(x) + (1− γ)f(y)− µ

2r−1
γ(1− γ)�x− y�s + �u�

�2

≤
��

r2 − µ

2r−1
γ(1− γ)�x− y�s + �u�

�2

.

We then use concavity of the square root as before to get

�z + u�2 ≤
�
r − µ

2r−1r
γ(1− γ)�x− y�s + �u�

�2

.

In particular, for u ∈ X such that �u� = µ
2r−1rγ(1 − γ)�x − y�s, we have z + u ∈ B�·�(r). Hence B�·�(r) is

( µ
2r−1r , s)- uniformly convex with respect to � · �.

These previous lemmas hence allow to translate functional uniformly convex results into results for classic balls
norms. For instance, [Shalev-Shwartz, 2007, Lemma 17] showed that for p ∈]1, 2] f(x) = 1/2�x�2p was (p − 1)-
uniformly convex with respect to � · �p.


