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Abstract

The Frank-Wolfe method solves smooth con-
strained convex optimization problems at a
generic sublinear rate of O(1/T ), and it (or
its variants) enjoys accelerated convergence
rates for two fundamental classes of con-
straints: polytopes and strongly-convex sets.
Uniformly convex sets non-trivially subsume
strongly convex sets and form a large vari-
ety of curved convex sets commonly encoun-
tered in machine learning and signal pro-
cessing. For instance, the �p-balls are uni-
formly convex for all p > 1, but strongly
convex for p ∈]1, 2] only. We show that
these sets systematically induce accelerated
convergence rates for the original Frank-
Wolfe algorithm, which continuously inter-
polate between known rates. Our acceler-
ated convergence rates emphasize that it is
the curvature of the constraint sets – not
just their strong convexity – that leads to
accelerated convergence rates. These results
also importantly highlight that the Frank-
Wolfe algorithm is adaptive to much more
generic constraint set structures, thus ex-
plaining faster empirical convergence. Fi-
nally, we also show accelerated convergence
rates when the set is only locally uniformly
convex around the optima and provide simi-
lar results in online linear optimization.

1 Introduction

The Frank-Wolfe method [Frank and Wolfe, 1956] (Al-
gorithm 1) is a projection-free algorithm designed to
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solve

argmin
x∈C

f(x), (OPT)

where C is a compact convex set and f a smooth con-
vex function. Many recent algorithmic developments
in this family of methods are motivated by appeal-
ing properties already contained in the original Frank-
Wolfe algorithm. Each iteration requires to solve a
Linear Minimization Oracle (see line 2 in Algorithm
1), instead of a projection or proximal operation that
is not computationally competitive in various settings
[Combettes and Pokutta, 2021]. Also, the Frank-Wolfe
iterates are convex combinations of extreme points
of C, the solutions of the Linear Minimization Ora-
cle. Hence, depending on the extremal structure of
C, early iterates may have a specific structure, be-
ing, e.g., sparse or low rank for instance, that could
be traded-off with the iterate approximation quality
of problem (OPT). These fundamental properties are
among the main features that contribute to the recent
revival and extensions of the Frank-Wolfe algorithm
[Clarkson, 2010, Jaggi, 2011] used for instance in large-
scale structured prediction [Bojanowski et al., 2014,
2015, Alayrac et al., 2016, Seguin et al., 2016, Miech
et al., 2017, Peyre et al., 2017], quadrature rules in
RKHS [Bach et al., 2012, Lacoste-Julien et al., 2015,
Futami et al., 2019], optimal transport [Courty et al.,
2016, Paty and Cuturi, 2019, Luise et al., 2019], and
many others.

Algorithm 1 Frank-Wolfe Algorithm

Input: x0 ∈ C, L upper bound on the Lipschitz con-
stant.

1: for t = 0, 1, . . . , T do
2: vt ∈ argmax

v∈C
�−∇f(xt), v − xt� � LMO

3: γt = argmin
γ∈[0,1]

γ�vt −xt, ∇f(xt)�+ γ2

2 L�vt −xt�2

4: xt+1 = (1− γt)xt + γtvt
5: end for
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Uniform Convexity. Uniform convexity is a global
quantification of the curvature of a convex set C. There
exists several definitions, see for instance, [Goncharov
and Ivanov, 2017, Theorem 2.1.] and [Abernethy et al.,
2018, Molinaro, 2020] for the strongly convex case.
Here, we focus on the generalization of a classic def-
inition of the strong convexity of a set [Garber and
Hazan, 2015].

Definition 1.1 (γ uniform convexity of C). A closed
set C ⊂ Rd is γC-uniformly convex with respect to a
norm � · �, if for any x, y ∈ C, any η ∈ [0, 1] and any
z ∈ Rd with �z� = 1, we have

ηx+ (1− η)y + η(1− η)γC(�x− y�)z ∈ C,

where γC(·) ≥ 0 is a non-decreasing function. In par-
ticular when there exists α > 0 and q > 0 such that
γC(r) ≥ αrq, we say that C is (α, q)-uniformly convex
or q-uniformly convex.

A set is α-strongly convex if and only if it is (α, 2)-
uniformly convex.

The uniform convexity assumption strengthens the
convexity property of C that any line segment between
two points is included in C. It requires a scaled unit
ball to fit in C and results in curved sets. Two com-
mon families of uniformly convex sets are the �p-balls
and p-Schatten balls which are uniformly convex for
any p > 1 but strongly convex for p ∈]1, 2] only, i.e.
2-uniformly convex sets for p ∈]1, 2].

Convergence Rates for Frank-Wolfe. The
Frank-Wolfe algorithm admits a tight [Canon and
Cullum, 1968, Jaggi, 2013, Lan, 2013] general sublin-
ear convergence rate of O(1/T ) when C is a compact
convex set and f is a convex L-smooth function.
However, when the constraint set C is strongly-convex
and infx∈C�∇f(x)� > 0, Algorithm 1 enjoys a linear
convergence rate [Levitin and Polyak, 1966, De-
myanov and Rubinov, 1970]. Later on, Dunn [1979]
showed that linear rates are maintained when the
constraint set satisfies a condition subsuming local
strong-convexity. Interestingly, these linear conver-
gence regimes do not require the strong-convexity of
f , i.e. the lower quadratic additional structure comes
from the constraint set rather than from the function.
When x∗ is in the interior of C and f is strongly
convex, Algorithm 1 also enjoys a linear convergence
rate [Guélat and Marcotte, 1986].

These two linear convergence regimes can both become
arbitrarily bad as x∗ gets close to the border of C, and
do not apply in the limit case where the unconstrained
optimum of f lies at the boundary of C. In this sce-
nario, when the constraint set is strongly convex, Gar-
ber and Hazan [2015] prove a general sublinear rate of

O(1/T 2) when f is L-smooth and µ-strongly convex.
In early iterations, these convergence rates can beat
badly-conditioned linear rates.

Other structural assumptions are known to lead to ac-
celerated convergence rates. However, these require
elaborate algorithmic enhancements of the original
Frank-Wolfe algorithm. Polytopes received much at-
tention in particular, with corrective or away algorith-
mic mechanisms [Guélat and Marcotte, 1986, Hearn
et al., 1987] that lead to linear convergence rates un-
der appropriate structures of the objective function
[Garber and Hazan, 2013a, Lacoste-Julien and Jaggi,
2013, 2015, Beck and Shtern, 2017, Gutman and Pena,
2018, Pena and Rodriguez, 2018, Diakonikolas et al.,
2020, Carderera et al., 2021]. Accelerated versions of
Frank-Wolfe, when the constraint set is a trace-norm
ball (a.k.a. nuclear balls) – which are neither polyhe-
dral nor strongly convex [So, 1990] – have also received
a lot of attention [Freund et al., 2017, Allen-Zhu et al.,
2017, Garber et al., 2018] and are especially useful in
matrix completion [Shalev-Shwartz et al., 2011, Har-
chaoui et al., 2012, Dudik et al., 2012].

Contributions. We show (1) accelerated conver-
gence rates for the Frank-Wolfe algorithm when the
constraint set is uniformly convex, generalizing the
rates of [Polyak, 1966, Demyanov and Rubinov, 1970,
Garber and Hazan, 2015]. This fills the gap between
all known convergence rates, i.e. between O(1/T ) and
the linear rate of [Levitin and Polyak, 1966, Demyanov
and Rubinov, 1970, Dunn, 1979], and between O(1/T )
and the O(1/T 2) rate of [Garber and Hazan, 2015]
(see, e.g., concluding remarks of [Garber and Hazan,
2015]). We also show (2) that accelerated convergence
rates hold when the constraint set is only locally uni-
formly (or weaker) convex around the optimal solu-
tion thus explaining faster convergence rates (see Sec-
tion 5). We state our convergence results (3) with
generic structural assumptions, e.g., Hölderian Error
Bounds on f replace usual strong convexity assump-
tion. We also motivate (local) scaling inequalities as
generic structural assumptions for (local) uniform con-
vexity of the constraint set. Finally, we provide (4)
similar arguments that interpolate between known re-
gret bounds in an example of projection-free online
learning. Namely, we prove accelerated regret bounds
of the simple Follow-The-Leader (FTL) in online lin-
ear learning when the action set is uniformly convex
and not necessarily smooth, see also [Huang et al.,
2017, Molinaro, 2020]. Overall, we illustrate another
key aspect of some projection-free algorithms: they
are adaptive to many generic structural assumptions
[Kerdreux, 2020].
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Outline. In Section 2, we analyze the complexity of
the Frank-Wolfe algorithm when the constraint set is
uniformly convex, under various assumptions on f . In
Section 2.3, we also establish accelerated convergence
rate under weaker assumptions than global or local
uniform convexity of the constraint set, see Section 5
for an illustration. In Section 3, we focus on the online
linear optimization setting and provide analogous re-
sults to the previous section in terms of regret bounds
for Follow-The-Leader (FTL). In Section 4, we give
some examples of uniformly convex sets and relate the
uniform convexity notion for sets with that of spaces
and functions.

Notation. We use d for the ambient dimension of
the compact convex sets C. We denote the boundary of
C by ∂C and let NC(x) � {d | �d, y − x� ≤ 0, ∀y ∈ C}
be the normal cone at x with respect to C. In the
following, x∗ is an (optimal) solution to (OPT) and
(α, q) denotes the uniform convexity parameters of a
set. p stands for the parameters for the various norm
balls and might differ from q. We sometimes assume
strict convexity of f for the sake of exposition (only).
Given a norm �·� we denote by �d�∗ � max�x�≤1�x, d�
its dual norm and we write the primal gap ht � f(xt)−
f(x∗). Finally, recall that a function is L-smooth on
C w.r.t a norm � · � iff for any (x, y) ∈ C

f(y) ≤ f(x) + �∇f(x); y − x�+ L

2
�x− y�2.

2 Frank-Wolfe Convergence Analysis
with Uniformly Convex Constraints

In Theorem 2.2, we show accelerated convergence rate
of the Frank-Wolfe algorithm when the constraint set C
is (α, q)-uniformly convex (with q ≥ 2) and the smooth
convex function satisfies infx∈C�∇f(x)� > 0; this is
the interesting case. In Section 2.3, we then explore
localized uniform convexity on the set C and provide
convergence rates in Theorem 2.5. In Theorem 2.9
we show that (α, q)-uniform convexity ensures conver-
gence rates of the Frank-Wolfe algorithms in between
the O(1/T ) and O(1/T 2) [Garber and Hazan, 2015]
when the function is strongly convex (and L-smooth),
or satisfies a quadratic error bound at x∗. We also pro-
vide generalized convergence rates assuming Hölderian
Error Bounds on f . In all of these scenarios, when
the set is uniformly convex, the Frank-Wolfe algorithm
(with short step as in Line 3 of Algorithm 1) enjoys
accelerated convergence rates with respect to O(1/T ).

Proof Sketch. We now provide an informal discus-
sion as to why the uniform convexity of C leads to
accelerated convergence rates under the classical as-
sumptions that infx∈C�∇f(x)� > 0, i.e. x∗ ∈ ∂C.

Figure 1: vFW
strong, v

FW
uni , v

FW
poly represent the various FW

vertices from the strongly convex set C0, the uniformly
convex set C1 and the polytope C2.

Formal arguments are developed in the proof of Theo-
rem 2.2. The key point is that if C is curved around x∗

and f is L-smooth, when �xt − x∗� converges to zero,
the quantity �xt − vt� also converges to zero, which is
generally not the case, for instance when the constraint
set is a polytope.

In Figure 1 we show various such behaviors. Applying
the L-smoothness of f to the Frank-Wolfe iterates, the
classical iteration inequality is of the form (with γ ∈
[0, 1])

ht+1 ≤ ht−γ�−∇f(xt), vt−xt�+
γ2

2
L�xt−vt�2. (1)

The non-negative quantity �−∇f(xt), vt − xt� partic-
ipates in guaranteeing the function decrease, counter-
balanced with �xt − vt�2. The convergence rate
then depends on specific relative quantification of
these various terms, that we call scaling inequalities
in Lemma 2.1 (which is a known equivalent defini-
tion of uniform convexity [Deville et al., 1993]) and
Lemma 2.4.

2.1 Scaling Inequality on Uniformly Convex
Sets

The following lemma outlines that the uniform con-
vexity of C implies an upper bound on the distance
between the current iterate and the Frank-Wolfe ver-
tex as a power of the Frank-Wolfe gap g(xt) �
�∇f(xt), xt − vt�.
Lemma 2.1 (Scaling Inequality). Assume the com-
pact C ⊂ Rd is an (α, q)-uniformly convex set with re-
spect to a norm � · �, with α > 0 and q ≥ 2. Consider
x ∈ C, φ ∈ Rd and vφ ∈ argmaxv∈C �φ, v�. Then, we
have �φ, vφ − x� ≥ α

2 �vφ − x�q�φ�∗. In particular for
an iterate xt and its associated Frank-Wolfe vertex vt,
this yields

�−∇f(xt), vt − xt� ≥
α

2
�vt − xt�q�∇f(xt)�∗. (2)
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Proof. Because C is (α, q)-uniformly convex, we have
that for any z ∈ Rd of unit norm (x+vφ)/2+α/4�x−
vφ�qz ∈ C. By optimality of vφ, we have �φ, vφ� ≥
�φ, (x+ vφ)/2�+α/4�x− vφ�q�φ, z�. Hence, choosing
the best z implies �φ, vφ−x� ≥ α/2�vφ−x�q�φ�∗.

In other words, when C is uniformly convex, (2) quanti-
fies the trade-off between the Frank-Wolfe gap g(xt) =
�∇f(xt), xt−vt� and the value of �xt−vt� under con-
sideration in (1).

2.2 Interpolating Linear and Sublinear Rates

To our knowledge, no accelerated convergence rate of
the Frank-Wolfe algorithm is known when the con-
straint set is uniformly convex but not strongly convex.
We fill this gap in Theorem 2.2 below. In Section 4.2,
we note that for q ≥ 2, the �q are (1/q, q)-uniformly
convex. Hence, at least for this specific family, when
q goes to +∞, we can recover the classic sublinear
convergence rate of O(1/T ). For general families of
(α, q)-uniformly convex set, we do not know how the
α parameter evolves with the uniform convexity expo-
nent q.

Theorem 2.2. Consider a convex L-smooth function
f and a compact convex set C. Assume that C is (α, q)-
uniformly convex set with respect to a norm � · �, with
q ≥ 2 and α > 0. Assume �∇f(x)�∗ ≥ c > 0 for all
x ∈ C. Then the iterates of the Frank-Wolfe algorithm,
with short step as in Line 3 of Algorithm 1 or exact
line search, satisfy

�
hT ≤ M/(T + k)1/(1−2/q) when q > 2

hT ≤
�
1− ρ

�T
h0 when q = 2,

with ρ = max
�

1
2 , 1 − cα/L

�
, k � (2 − 2η)/(2η − 1)

and M � max{h0k
1/η, 2/((η− (1− η)(2η − 1))C)1/η},

where η � 1− 2/q and C � (cα/2)2/q/(2L).

Proof. By L-smoothness of f and because of the short
step, we have for γ ∈ [0, 1]

f(xt+1) ≤ f(xt)− γg(xt) +
γ2

2
L�xt − vt�2,

where g(xt) is the Frank-Wolfe gap.

With γ = min
�
1, g(xt)/(L�xt − vt�2)

�
we have

f(xt+1) ≤ f(xt)−
g(xt)

2
·min

�
1;

g(xt)

L�xt − vt�2
�
.

Applying Lemma 2.1 with φ = −∇f(xt) gives g(xt) ≥
α/2�xt − vt�q�∇f(xt)�∗. Then

g(xt)

�xt − vt�2
=

�g(xt)
q/2−1g(xt)

�xt − vt�q
�2/q

≥
�
α/2�∇f(xt)�∗

�2/q

g(xt)
1−2/q.

Finally, because g(xt) ≥ f(xt)− f(x∗) = ht, we have

ht+1 ≤ ht −
ht

2
min

�
1;
�α
2
�∇f(xt)�∗

� 2
q

h
1− 2

q

t /L
�
,

and finally,

ht+1 ≤ ht ·max
�1

2
; 1−

�α
2
�∇f(xt)�∗

� 2
q

h
1− 2

q

t /(2L)
�
.

Then, by assumption, for all x ∈ C, we have
�∇f(x)�∗ > c > 0 and hence we obtain

ht+1 ≤ ht ·max
�1

2
; 1−

�cα
2

� 2
q h

1− 2
q

t

2L

�
.

We solve the recursion with Lemma A.1; when q = 2
we recover the linear convergence rate.

Remark 2.3. The convergence rates in Theorem 2.2
imply convergence rates in terms of distance to opti-
mum by applying Lemma 2.1 with φ = −∇f(x∗) and
convexity of f . Indeed, this yields

�xt−x∗�q ≤ 2

cα
�−∇f(x∗), x∗−xt� ≤

2

cα

�
f(xt)−f(x∗)

�
.

Hence, to obtain convergence rates in terms of the dis-
tance of the iterates to the optimum, the uniform con-
vexity of the set supersedes that of the function, which
is not needed here.

2.3 Convergence Rates with Local Uniform
Convexity

Theorem 2.2 relies on the global uniform convexity
of the set. Actually, for the strongly convex case, it
is equivalent to the global scaling inequality (2), see,
e.g., [Goncharov and Ivanov, 2017, Theorem 2.1 (g)].
However, weaker assumptions also lead to accelerated
convergence rates of the Frank-Wolfe algorithm. In
Theorem 2.5, we show accelerated convergence rates
assuming a local scaling inequality at x∗. We then
study the sets for which such an inequality holds. We
say that a local scaling inequality holds at x∗ ∈ C,
when there exists an α > 0 and q ≥ 2 such that for all
x ∈ C

�−∇f(x∗), x∗ − x� ≥ α/2�∇f(x∗)�∗ · �x∗ − x�q. (3)

This combines the position of −∇f(x∗) with respect
to the normal cone of C at x∗ and the local geometry
of C at x∗, see Remark 2.7. When the set C is globally
(α, q)-uniformly convex, this is a direct consequence
of Lemma 2.1 because −∇f(x∗) ∈ NC(x∗). In the
following lemma, we prove that it is also a consequence
of a natural definition of local uniform convexity of C
at x∗. A proof is given in Appendix A.1.
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Lemma 2.4. Consider a compact convex set C and x∗

a solution to (OPT). Assume that C is locally (α, q)-
uniformly convex at x∗ with respect to � ·� in the sense
that, for all x ∈ C, η ∈ [0, 1] and unit norm z ∈ Rd,
we have ηx∗ + (1 − η)x + η(1 − η)α�x∗ − x�qz ∈ C.
Then (3) holds at x∗ with parameters (α, q).

We obtain sublinear convergence rates that are sys-
tematically better than the O(1/T ) baseline for any
q ≥ 2. A proof is deferred to Appendix A.3. In Sec-
tion 5 we illustrate the benefice of local analysis.

Theorem 2.5. Consider f an L-smooth convex func-
tion and a compact convex set C. Assume �∇f(x)�∗ >
c > 0 for all x ∈ C and write x∗ ∈ ∂C a solution of
(OPT). Further, assume that the convex set C satisfies
a local scaling inequality at x∗ with parameters (α, q).
Then the iterates of the Frank-Wolfe algorithm, with
short step satisfy

�
hT ≤ M/(T + k)

1
1−2/(q(q−1)) when q > 2

hT ≤
�
1− ρ

�T
h0 when q = 2,

with ρ = max
�

1
2 , 1−cα/L

�
, k � (2−2η)/(2η − 1) and

M � max{h0k
1/η, 2/((η−(1−η)(2η−1))C)1/η}, where

η � 1− 2/(q(q− 1)) and C � 1/(2LH2). Note that H
depends only on C,α, L and q (see Lemma A.2).

Remark 2.6. When the local scaling inequality
(3) holds with q = 2, we obtain the same lin-
ear convergence regime as in Theorem 2.2. With
q > 2, the sublinear convergence rates are of or-
der O(1/T 1/(1−2/(q(q−1)))) instead of O(1/T 1/(1−2/q))
when the set is (α, q)-uniformly convex and the global
scaling inequality (2) holds. It is an open question to
close this gap in the convergence regime with the local
scaling inequality only.

A similar approach appears in [Dunn, 1979] which in-
troduces the following functional

ax∗(σ) � inf
x∈C

�x−x∗�≥σ

�∇f(x∗), x− x∗�,

and shows that when there exists A > 0 such that
ax∗(σ) ≥ A�x−x∗�2, then the Frank-Wolfe algorithm
converges linearly, under appropriate line-search rules.
This result of [Dunn, 1979] thus subsumes that of [Lev-
itin and Polyak, 1966, Demyanov and Rubinov, 1970].
However, no analysis was conducted for uniformly (but
not strongly) convex set.

In Lemma 2.4 we showed that a given quantification
of local uniform convexity implies the local scaling
inequality and hence accelerated convergence rates.
However, there are many situations where such a local
notion of uniform convexity does not hold but (3) does.
This was the essence of [Dunn, 1979, Remark 3.5.] that
we state here. A proof is given in Appendix A.1.

Corollary 2.7. Assume there exists a compact and
(α, q)-uniformly convex set Γ such that C ⊂ Γ and
NΓ(x

∗) ⊂ NC(x∗), where x∗ is the solution of (OPT).
If −∇f(x∗) ∈ NΓ(x

∗), then (3) holds at x∗ with the
(α, q) parameters.

There exist numerous notions of local uniform con-
vexity of a set that may imply local scaling inequali-
ties. See for instance, the local directional strong con-
vexity in [Goncharov and Ivanov, 2017, §Local Strong
Convexity]. Alternatively, in the context of functions,
Hölderian Errors Bounds (HEB) offer a weaker de-
scription of localized uniform convexity assumptions
while retaining the same convergence rates [Kerdreux
et al., 2019]. And these are known to hold generi-
cally for various classes of function [Lojasiewicz, 1965,
Kurdyka, 1998, Bolte et al., 2007]. Obtaining a sim-
ilar characterization for set is of interest. In particu-
lar, it is natural to relate enhanced convexity proper-
ties of the set gauge function � · �C [Rockafellar, 1970,
§15] to convexity properties of the set or directly to
local scaling inequalities. Error bounds as guaran-
teed with �Lojasiewicz-type arguments on the gauge
function could imply local scaling inequalities, show-
ing that theses inequalities hold somewhat generically.
A precise treatment of these questions is however out
of the scope of this paper, see, e.g., [Kerdreux et al.,
2021] for some connection between the properties of
the set gauge function and the set uniform convexity.

2.4 Interpolating Sublinear Rates for
Arbitrary x∗

When the function is µ-strongly convex and the set C is
α-strongly convex, Garber and Hazan [2015] show that
the Frank-Wolfe algorithm (with short step) enjoys a
general O(1/T 2) convergence rate. In particular, this
result does not depend on the location of x∗ with re-
spect to C. We now generalize this result by relaxing
the strong convexity of the constraint set C and the
quadratic error bound on f .

Hölderian Error Bounds. Let f be a strictly con-
vex L-smooth function and x∗ = argminx∈Cf(x) where
C is a compact convex set; the strict convexity assump-
tion is only required to simplify exposition and the
results hold more generally with the usual generaliza-
tions. We say that f satisfies a (µ, θ)-Hölderian Error
Bound when there exists θ ∈ [0, 1/2] such that

�x− x∗� ≤ µ(f(x)− f(x∗))θ. (HEB)

When the function f is subanalytic, (HEB) is known
to hold generically [Lojasiewicz, 1965, Kurdyka, 1998,
Bolte et al., 2007]. For instance, when f is (µ, r)-
uniformly convex with r ≥ 2 (see Definition C.1), then
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it satisfies a ((2/µ)1/r, 1/r)-Hölderian Error Bound,
which follows from

f(xt) ≥ f(x∗) + �∇f(x∗), xt − x∗�� �� �
≥0

+
µ

2
�xt − x∗�r2.

Hence, we generalize the convergence result of [Garber
and Hazan, 2015] and show that as soon as the set C
is (α, q)-uniformly convex with q ≥ 2 and the function
f satisfies a non-trivial (µ, θ)-HEB, the Frank-Wolfe
algorithm (with short step) enjoys an accelerated con-
vergence rate with respect to O(1/T ). In particular
when f is µ-strongly convex, it satisfies a (µ, 1/2)-HEB
and by varying q ≥ 2 we interpolate all sublinear con-
vergence rates between O(1/T ) and O(1/T 2).

In Lemma 2.8, we show an upper bound on �xt − vt�
when combining the uniform convexity of C and a
Hölderian Error Bound for f . Lemma 2.8 is then
the basis for the convergence analysis and similar to
Lemma 2.1. The proofs are deferred to Appendix A.4.

Lemma 2.8. Consider a compact and (α, q)-
uniformly convex set C with respect to � · �. De-
note f a strictly convex L-smooth function and x∗ =
argminx∈Cf(x). Assume that f satisfies a (µ, θ)-HEB
�x−x∗� ≤ µ(f(x)−f(x∗))θ with θ ∈ [0, 1/2]. Then for
xt ∈ C we have α/(2µ)�xt − vt�qh1−θ

t ≤ g(xt), where
g(xt) is the Frank-Wolfe gap and vt the Frank-Wolfe
vertex.

Theorem 2.9. Consider a L-smooth convex function
f that satisfies a (µ, θ)-HEB with µ > 0 and θ ∈
]0, 1/2]. Assume C is a compact and (α, q)-uniformly
convex set with respect to � · � with q ≥ 2. Then the
iterates of the Frank-Wolfe algorithm, with short step
or exact line search, satisfy

hT ≤ M/(T + k)1/(1−2θ/q),

with k � (2 − 2η)/(2η − 1) and M �
max{h0k

1/η, 2/((η − (1 − η)(2η − 1))C)1/η}, where
η � 1 − 2θ/q and C � (α/(2µ))2/q/L. In particular
for q = 2 and θ = 1/2, we obtain the O(1/T 2) of
[Garber and Hazan, 2015].

Overall, Theorem 2.2, Theorem 2.5 and Theorem 2.9
give an (almost) complete picture of all the accelerated
convergence regimes one can expect with the vanilla
Frank-Wolfe algorithm.

3 Online Learning with Linear
Oracles and Uniform Convexity

In online convex optimization, the algorithm sequen-
tially decides an action, a point xt in a set C, and then
incurs a (convex smooth) loss lt(xt). Algorithms are

designed to reduce the cumulative incurred losses over
time, Ft =

1
t

�t
τ=1 lτ (xτ ). The comparison to the best

action in hindsight is then defined as the regret of the
algorithm, i.e. RT �

�T
t=1 lt(xt)−minx∈C

�T
t=1 lt(x).

Interesting correspondences have been established be-
tween the Frank-Wolfe algorithm and online learning
algorithms. For instance, recent works [Abernethy
and Wang, 2017, Abernethy et al., 2018] derive new
Frank-Wolfe-like algorithms and analyses via two on-
line learning algorithms playing against each other.
Furthermore, a series of work proposed projection-free
online algorithms inspired by their offline counterpart,
e.g., Hazan and Kale [2012] design a Frank-Wolfe on-
line algorithm. In following works, Garber and Hazan
[2013a,b] propose projection-free algorithms for on-
line and offline optimization with optimal convergence
guarantees where the decision sets are polytopes and
the loss functions are strongly-convex. In the same
setting, Lafond et al. [2015] analyze the online equiva-
lent of the away-step Frank-Wolfe algorithm via a sim-
ilar analysis to [Lacoste-Julien and Jaggi, 2013, 2015]
in the offline setting. Recently, Hazan and Minasyan
[2020] proposed a randomized projection-free algo-
rithm that has a regret of O(T 2/3) with high probabil-
ity improving over the deterministicO(T 3/4) of [Hazan
and Kale, 2012] and Levy and Krause [2019] designed a
projection-free online algorithm over smooth decision
sets; dual to uniformly convex sets [Vial, 1983].

Online Linear Optimization and Set Curvature.
At a high level, when the constraint set is strongly-
convex, the analyses of the simple Follow-The-Leader
(FTL) for online linear optimization [Huang et al.,
2016] is analogous to the offline convergence analy-
ses of the Frank-Wolfe algorithm when not assum-
ing strong-convexity of the objective function as in
[Polyak, 1966, Demyanov and Rubinov, 1970, Dunn,
1979]. Indeed, by definition, linear functions do not
enjoy non-linear lower bounds, i.e. uniform convexity-
like assumptions.

In the online linear setting, we write the functions
lt(x) = �ct, x� and assume that (ct) belong to a
bounded set W (smoothness). FTL consists in choos-
ing the action xt at time t that minimizes the cumu-
lative sum of the previously observed losses, i.e. each
iteration solves the minimization of a linear function
over C

xT ∈ argmin
x∈C

T−1�

t=1

lt(x) = �
T−1�

t=1

ct, x�. (4)

In general, FTL incurs a worst-case regret of O(T )
[Shalev-Shwartz et al., 2012]. For online linear learn-
ing, Huang et al. [2016, 2017] study the conditions
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under which the strong convexity of the decision set
C leads to improved regret bounds. In particular,
when there exists a c > 0 such that for all T ,
min1≤t≤T � 1

t

�t
τ=1 cτ�∗ ≥ c > 0, then FTL enjoys the

optimal regret bound ofO(log(T )) [Huang et al., 2017].
Molinaro [2020] extends this result by dropping the
smoothness assumption on C required in [Huang et al.,
2017]. This convergence result with FTL is the counter
part of the offline linear convergence analyses of the
Frank-Wolfe algorithm when infx∈C�∇f(x)�∗ ≥ c > 0
and C is a strongly convex set [Polyak, 1966, Demyanov
and Rubinov, 1970, Dunn, 1979]. In Theorem 3.1, we
hence further support this analogy between online and
offline settings. We show that FTL enjoys continu-
ously interpolated regret bounds between O(log(T ))
and O(T ) for all types of uniform convexity of the deci-
sion sets. Again, this covers a much broader spectrum
of curved sets, and is similar to Theorem 2.2 in the
Frank-Wolfe setting. A proof is deferred to Appendix
B.

Theorem 3.1. Let C be a compact and (α, q)-
uniformly convex set with respect to � ·�. Assume that
LT = min1≤t≤T � 1

t

�t
τ=1 cτ�∗ > 0. Then the regret

RT of FTL (4) for online linear optimization satisfies




RT ≤ 2M
� 2M

αLT

� 1
q−1

�q − 1

q − 2

�
T 1− 1

q−1 , q > 2

RT ≤ 4M2

αLT
(1 + log(T )), q = 2,

where M = supc∈W�c�∗, with the losses lt(x) = �ct, x�
and (ct) belong to the bounded set W.

With the simple FTL, we obtain non-trivial regret
bounds, i.e., o(T ), whenever the set is uniformly con-
vex, without any curvature assumption on the loss
functions (because they are linear). In particular for
q ∈ [2, 3], it improves over the general tight regret
bound of O(

√
T ) for smooth convex losses and com-

pact convex decision sets [Shalev-Shwartz et al., 2012].
Interestingly, with the same assumption on C, Dekel
et al. [2017] obtain for online linear optimization, the
same asymptotical regret bounds with a variation of
Follow-The-Leader incorporating hints. It is remark-
able that the presence of hints or the assumption
min1≤t≤T � 1

t

�t
τ=1 cτ�∗ ≥ c > 0 for all T both lead

to the same bounds.

4 Examples of Uniformly Convex
Objects

The uniform convexity assumptions refine the convex
properties of several mathematical objects, such as
normed spaces, functions, and sets. In this section,
we provide some connection between these various no-
tions of uniform convexity, see, e.g., [Kerdreux et al.,

2021] for an in-depth discussion. In Section 4.1, we
recall that norm balls of uniformly convex spaces are
uniformly convex sets, and show set uniform convex-
ity of classic norm balls in Section 4.2. In Appendix
C.2, we show that the level sets of some uniformly con-
vex functions are uniformly convex sets, extending the
strong convexity results of [Garber and Hazan, 2015,
Section 5].

4.1 Uniformly Convex Spaces

The uniform convexity of norm balls (Definition 1.1)
is closely related to the uniform convexity of normed
spaces [Polyak, 1966, Balashov and Repovs, 2011,
Lindenstrauss and Tzafriri, 2013, Weber and Reisig,
2013]. Some classical works establish sharp uniform
convexity results for classical normed spaces such as lp,
Lp or Cp. Most of the practical examples of uniformly
convex sets are norm balls and are hence tightly linked
with uniformly convex spaces. The property of these
sets has many consequences, e.g., in learning theory
[Donahue et al., 1997]. It also relates to concentra-
tion inequalities in Banach Spaces [Juditsky and Ne-
mirovski, 2008] and hence implications [Ivanov, 2019]
for approximate versions of the Carathéodory theorem
[Combettes and Pokutta, 2019].

Clarkson [1936], Boas Jr [1940] define a uniformly con-
vex normed space (X, �·�) as a normed space such that,
for each � > 0, there is a δ > 0 such that if x and y are
unit vectors in X with �x− y� ≥ �, then (x+ y)/2 has
norm lesser or equal to 1 − δ. Specific quantification
of spaces satisfying this property is obtained via the
modulus of convexity, a measure of non-linearity of a
norm.

Definition 4.1 (Modulus of convexity). The modulus
of convexity of the space (X, � · �) is defined as

δX(�) = inf
�x�,�y�≤1

�
1−

���x+ y

2

���
����x− y� ≥ �

�
.

A normed space X is said to be r-uniformly convex in
the case δX(�) ≥ C�r. These specific lower bounds on
the modulus of convexity imply that the balls stem-
ming for such spaces are uniformly convex in the sense
of Definition 1.1. There exist sharp results for Lp

and �p spaces in [Clarkson, 1936, Hanner et al., 1956].
Matrix spaces with p-Schatten norm are known as
Cp spaces, and sharp results concerning their uniform
convexity can be found in [Dixmier, 1953, Tomczak-
Jaegermann, 1974, Simon, 2005, Ball et al., 1994]. The
following gives a link between the set γC and space δX
modulus of convexity, see proof in Appendix C.1 or
[Molinaro, 2020, Appendix A].

Lemma 4.2. If a normed space (X, � · �) is uni-
formly convex with modulus of convexity δX(·), then
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its unit norm ball is δX(·) uniformly convex with re-
spect to � · �. Note that if the unit ball B�·�(1) is
(α, q)-uniformly convex w.r.t. � · �, then B�·�(r) is
(α/rq−1, q)-uniformly convex w.r.t. � · �.

4.2 Uniform Convexity of Some Classic
Norm Balls

When p ∈]1, 2], �p-balls are strongly convex sets and
((p − 1)/2, 2)-uniformly convex with respect to � · �p,
see, e.g., [Hanner et al., 1956, Theorem 2] or [Garber
and Hazan, 2015, Lemma 4]. When p > 2, the �p-
balls are (1/p, p)-uniformly convex with respect to �·�p
[Hanner et al., 1956, Theorem 2]. Uniform convexity
also extends the strong convexity of group �s,p-norms
(with 1 < p, s ≤ 2) [Garber and Hazan, 2015, §5.3.
and 5.4.] to the general case p, s > 1.

Dixmier [1953], Tomczak-Jaegermann [1974], Simon
[2005], Ball et al. [1994] focus of the uniform convexity
of the (Cp, � ·�S(p)) spaces, i.e. spaces of matrix where
the norm is the �p-norm of a matrix singular values .
Their unit balls are hence the p-Schatten balls. For
p ∈]1, 2], p-Schatten balls are ((p − 1)/2, 2)-uniformly
convex with respect to �·�S(p), see [Garber and Hazan,
2015, Lemma 6] and the sharp results of [Ball et al.,
1994]. For the case p > 2, Dixmier [1953] showed that
the p-Schatten balls are (1/p, p)-uniformly convex with
respect to � · �S(p), see also [Ball et al., 1994, §III].

5 A Numerical Illustration

Uniform convexity is a global assumption. Hence, in
Theorem 2.2, we obtain sublinear convergence that do
not depend on the specific location of the solution
x∗ ∈ ∂C. However, some regions of C might be rel-
atively more curved than others and hence empirically
exhibit faster convergence rates. We show that local
scaling inequality is an adequate quantification of lo-
cal curvature around the optimum, and we proved ac-
celerated convergence rates in Theorem 2.5. We now
provide some examples of these observed accelerated
regimes.

In Figure 2-3, we solve (OPT) with the Frank-Wolfe
algorithm where f is a quadratic with condition num-
ber 100 and the constraint sets are various �p-balls of
radius 5. We vary p so that all balls are uniformly
convex but not strongly-convex. We also change the
approximate location of the optimum x∗ in the bound-
ary of the �p-balls.

Subfigures (2a), and (2b) are associated to an opti-
mization problem where the solution x∗ of (OPT) is
near the intersection of the �p-balls and the half-line

generated by
�d

i=1 ei (where the (ei) is the canonical
basis), i.e. in curved regions of the boundaries of the
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Figure 2: On a line, each plot exhibits the behavior of
the Frank-Wolfe algorithm iterates with different step
size strategy: deterministic line-search (i.e. 1/(k+1)),
short step and exact line-search. To avoid the oscillat-
ing behavior of Frank-Wolfe gap, the y-axis represents
mink=1,...,T g(xk) where g(·) is the Frank-Wolfe gap
and T the number of iterations.
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Figure 3: Same as Figure 2 but with deterministic
line-search.



Thomas Kerdreux, Alexandre d’Aspremont, Sebastian Pokutta

�p-balls. Subfigures (2c), and (2d) corresponds to the
same optimization problem where the solution x∗ to
(OPT) is close to the intersection between the half-line
generated by e1 and the boundary of the �p-balls, i.e.
in flat regions of the boundaries of the �p-balls. We ob-
serve that when the optimum is at a curved location,
the convergence is quickly linear for p sufficiently close
to 2 and appropriate line-search (see Subfigures (2a)
and (2b)). However, when the optimum is near the
flat location, we indeed observe sublinear convergence
rates (see Subfigures (2c) and (2d)). It still becomes
linear for p = 2.1 with exact line-search in Subfigure
(2d).

Also, Theorem 2.2 gives accelerated rates when us-
ing the Frank-Wolfe algorithm with exact line-search
or short step. In Subfigures (3a) and (3b), we show
examples of the convergence of the Frank-Wolfe algo-
rithm when using deterministic line-search. The rates
are indeed sublinear in O(1/T ).

6 Conclusion

Our results fill the gap between known convergence
rates for the Frank Wolfe algorithm and show that it
is (also) the curvature of the constraint set that accel-
erates the convergence of the Frank-Wolfe algorithm,
not just the strong convexity of the function or the
set. In applications where the constraints are likely
to be active (e.g., regularization), the assumption that
infx∈C�∇f(x)�∗ ≥ c > 0 is not restrictive and the
value of c quantifies the relevance of the constraints.

Importantly, we also prove the linear convergence of
the vanilla Frank-Wolfe without requiring the set’s
global strong convexity. Apart from [Dunn, 1979], we
are not aware of any other work leveraging such local
set properties as in Section 2.3. This could also have
an impact in online learning or learning theory, see,
e.g., [Kerdreux et al., 2021, §6.2.] for a connection be-
tween the uniform convexity of a set and upper-bounds
on Rademacher constants.

We provide similar results in online learning following
the analysis of FTL on strongly convex sets [Huang
et al., 2017, Molinaro, 2020]. We prove that the simple
Follow-The-Leader (FTL) enjoys fast regret bounds
when the action set is uniformly convex and without
smoothness assumption on the domain. FTL and FW
are both projection-free methods, i.e., iterative algo-
rithms minimizing a linear function on a given domain
at each iteration.

This work also proves that projection-free methods
can be adaptive to a variety of structural properties of
(OPT), i.e. the unknown global or local uniform con-
vexity parameters of the set or the unknown Hölderian

Error Bounds (HEB) parameters of the function, e.g.,
Theorem 2.9. These results hence complement other
works emphasizing such properties, e.g., the adaptive
properties of corrective versions of Frank-Wolfe with
HEB [Kerdreux et al., 2019] or the affine invariant
analysis of FW in a variety of settings [Jaggi, 2013,
Lacoste-Julien and Jaggi, 2013, Kerdreux et al., 2020].

In this paper, we also highlight the importance of the
scaling-inequalities as useful characterizations of the
uniform convexity of the sets as opposed to the clas-
sical definition. Finally, we note that in the infinite-
dimensional settings, the set curvature (i.e. uniform
convexity), or the situation where the optimum is
in the interior of the constraints [Bach et al., 2012,
Lacoste-Julien et al., 2015], are the only known struc-
tural sources of acceleration for the Frank-Wolfe algo-
rithms.



Projection-Free Optimization on Uniformly Convex Sets

Acknowledgements

T.K. thanks Pierre-Cyril Aubin for very interesting
discussions on Banach spaces, which contributed is
the motivation for studying the convergence rates of
projection-free methods with uniform convexity as-
sumptions. T.K. also acknowledges funding from the
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