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1 Global to Local Frame Transformations

Figure 1, shows two trajectories generated using the same
steering commands from two different starting positions.
Note that in the global frame of reference, the two paths
despite having the same steering commands produce dif-
ferent relative translation vectors. This is due to the fact
that the 2 trajectories are oriented differently in the global
frame of reference.

Figure 1: This figure shows two trajectories traversed by
the ego-vehicle in the global frame of reference. Despite
executing the same sequence of steering commands, the
corresponding relative translation vectors point in different
directions.

To deal with this, we redefine the vectors to a local frame
of the reference such that the forward direction is always in
the x′-direction and the lateral movement is defined in the
y′-direction.

Note that the relative translation vector for a previous im-
age gives the direction of motion of the car for the current
time step. V t and V t+1 are the relative translation vectors
for the previous and current image in the global frame of
the reference, respectively. We have already defined the
local frame of reference such that the direction of the cur-

Figure 2: This figure demonstrates the effects of retrieving
the relative position vector in the local frame of reference.
V t and V t+1 represents the relative position vectors at time
t and t + 1, respectively in the global frame of the refer-
ence. Note that despite the same lateral movement of the
car in the 2 examples, these vectors have different coordi-
nates. However, after projecting them in their respective
local frames of reference, the new vectors dx and dy have
the same values in the 2 cases.

rent motion of the car is in the x′-direction. Hence, in this
new local frame, V t will be aligned with the x′-axis. The
rotation matrix which aligns V t in the x′-direction can be
formulated as:
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After having solved for the rotation matrix, we can multiply
the vector V t+1, to get dx and dy indicating the forward and
lateral movements in the local frame of reference.[
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Figure 2 shows the effect of this transformation. Here, 2
examples with different vectors V t and V t+1 (correspond-
ing to the same steering command) in the global frame of
reference have the same dx and dy in their respective lo-
cal frame of reference. Alternatively, the angle θ can be
determined from the cosine similarity between the vectors
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Figure 3: This figure shows a point cloud generated with
visual odometry. We use the estimated poses (in red) to
train our models.

V t and V t+1. The sign of dy can be found by determining
which side the vector V t+1 is with respect to the line formed
by the vector V t . We train a neural network to predict the
lateral movement dy, by minimizing the L1 loss between
the prediction and this calculated label.

2 Data Collection and Testing

The CARLA simulator [Dosovitskiy et al., 2017] data used
for training was collected by running the car in autopilot
mode at a frame rate of 30fps. The car is controlled by ad-
justing the throttle and steering command. The throttle in-
fluences the speed whereas the steering command controls
the steering angle of the car. The throttle ranges between
a value of 0 and 1. The car is at rest when the throttle is
at zero and moves faster as it is increased to a maximum
value of 1. In the autopilot mode, the mean throttle value
is around 0.5. Moreover, the average speed at which the
car executes the turn is around 20 km/h. This is within the
range of values at which the car does not slip and therefore
also matches with our assumption described in Section 2.2
of the main paper. The steering command varies between
-1 and -1 with 1 corresponding to 70◦.

Visual Odometry:

During the data collection phase images of size 512×512
pixels are recorded along with the corresponding ground
truth steering angles. Note that this ground truth steer-
ing angle data is only used to train the Oracle (supervised
model). Whereas our model is trained with the visual
odometry camera poses. Figure 3 shows the trajectory of
the estimated poses (in red) and the resulting point cloud
generated when running Stereo DSO [Wang et al., 2017].

Front Wheel Steering:

Note that in the bicycle model described in Section 2.2 the
left and right front wheels were both modeled by a single
front wheel with a steering angle δ . As depicted in Fig-
ure 4, while executing a turning maneuver the left and right

Figure 4: Depicts the steering angles of the 2 front wheels
which are different as the car executes a turning maneuver.
The 2 front wheels are oriented in a manner such that they
have the same instantaneous center of rotation.

front wheels, will have slightly different steering angles de-
noted by δl and δr for the same instantaneous center of ro-
tation O. When the car is making a left turn, than δl > δr
and vice versa, i.e., the steering angle of the inner front
tyre would be greater than that of the outer front tyre. The
difference can be approximated to be [Rajamani, 2012]:

∆δ = δ
2 W

L
(3)

Where, L is the length of the wheelbase, and W is the track
width of the car and

δ =
δl +δr

2
. (4)

The Ackermann steering mechanism [Zhao et al., 2013]
can be used to ensure that the ∆δ between the two front
tyres is maintained while the car is making a turn. The
CARLA simulator already caters for this difference and
no additional correction needs to be performed. Figure 5
depicts the difference in steering angles of the front tyres
when the inner tyre is at a maximum of 70◦

Model Architecture:

Note that this method uses stereo visual odometry, thereby
also giving the notion of scale. However, the neural net-
work model only requires a single image to predict the lat-
eral component of the translation vector for the next frame
at a fixed distance of dx apart. The architecture of the
network is described in Figure 6. The image is down-
scaled to a lower resolution of 128× 128, thereby simpli-
fying the architecture. Note that the model comprises of
a Feature Extraction Module (FEM) and a Steering Angle
Prediction (SAP) Module. The FEM is a series of Con-
volution, Maxpooling and ReLU activation layers. Mean-
while, the SAP has 2 fully connected layers with one ReLU
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Figure 5: Depicts the orientation of the 2 front wheels
when the wheel towards the inner circle of the radius of
the turn is at the maximum value of approximately 70◦.
Note that the outer wheel has a lower turning angle since
it has to cover a larger curvature distance. Figure is taken
from [Subirón, 2018].

activation in between. The training was done with an
initial learning rate of 0.0001 using the Adam optimizer
[Kingma and Ba, 2015].

Testing at higher speeds:

The equations derived in Section 2.2 of the main paper
were based around the critical assumption that the car is
moving at moderately low speeds. A car turning at 5 m/s
will be subjected to very low lateral forces on the tyres and
hence experience negligible slipping [Rajamani, 2012].
While this assumption is reasonable in many urban scenar-
ios, it may not hold in other circumstances. Therefore, we
would like to assess how our models will behave if this
assumption does not hold when turning. We successively
enhance the throttle of the car, which leads to an increase in
speed. The online performance of the models trained with
2, 4, 6, 8, and 10 trajectories is reported. This is depicted
in Figure 7.

It can be observed that as the throttle is increased, so is
the mean speed. Models trained with more trajectories are
more robust to the speed than the ones trained with less
number of trajectories. At a throttle value of 0.7, when the
mean speed of the car is 7.5 m/s the models trained with 6
or more trajectories still maintain the same performance.
Moreover, at a mean speed of around 9 m/s the perfor-
mance of these high trajectory models only drops by about
10%. This is despite an increase in speed by approx. 80%
from the assumption of 5 m/s. On the other hand, mod-
els trained with fewer trajectories show a dramatic drop in
performance as the speed is successively increased. This
demonstrates that training with more trajectories tends to
be more robust in performance as the speed deviates far-
ther away from our assumption. Nevertheless, an increase
in the mean speed beyond 9 m/s leads to a significant drop
in performance even for the models trained with a greater
number of trajectories. To cater for this limitation, the lat-
eral dynamics of the car would also need to be incorporated
into the model to enable the car to perform stable high-
speed turning maneuvers. While this is beyond the scope

Figure 6: The convolution layers numbered 1, 4, and 7 have
a kernel size of 5, with stride 2, and no additional padding.
The number of kernels in each of these convolution layers
is 30. The max pooling layers numbered 2, 5, and 8 have
a kernel size of 2, and stride of 2 with no padding. The
concatenation of the 3-dimensional vector is a one-hot en-
coding, indicating the car to turn left, right or keep move
straight.

Figure 7: Shows the effect of gradually increasing the throt-
tle on the mean speed of the car and the online performance
for the models trained with 2, 4, 6, 8, and 10 trajectories.
The speed of the car (right vertical axis) is reported in me-
ters per second. The online performance (left vertical axis)
is reported as the ratio of time the car remains within its
driving track.



Self-Supervised Steering Angle Prediction for Vehicle Control Using Visual Odometry

of this paper, we leave it for further work.

Testing on a new Town:

The results from the main paper show that our self-
supervised framework for steering angle prediction is com-
parable to the supervised method. The models were trained
and evaluated in the same Town albeit across different
weathers. However, generalization to unseen environments
is also important. CARLA v0.8.2 provides 2 different
towns. Therefore, in this supplementary material, an addi-
tional experiment is performed. Our method and the super-
vised model are trained on Town2 but evaluated on Town1.
Figure 8 shows the performance of both methods across all
15 weather conditions. The performance of both methods
in an unseen environment drops slightly in comparison to
when trained and evaluated in the same towns. However, it
is important to observe that our method is still on par with
the supervised method. This aligns with the results from
the main paper.

Figure 8: The plot exhibits the ratio of time the car remains
within its own driving track for 2 models approach across
all the 15 different weather conditions. Both models were
trained on Town2 but evaluated on Town1. Higher is better.

3 Video

The video supplementary video.mp4 shows the perfor-
mance between the visual odometry models trained with
one and trained with multiple trajectories. As can be ob-
served, the multiple trajectory model is capable of recover-
ing the course despite some deviations from the reference.
This is in contrast to the model trained with only one VO
trajectory.
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