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In this supplement, we include the proofs which were omitted from the main text due to space constraints. In
Supplement A, we first describe two technical lemmas from other papers which will be crucial for our proofs.
Next, we prove Theorem 1 on linear models with Gaussian variates in Supplement B and we prove Theorem 2 on
model selection consistency for general additive models in Supplement C. We prove Example 1 in Supplement
D and use Theorem 1 to determine a sufficient sample size for model selection consistency (mentioned in Section
5) in Supplement E.
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A PRELIMINARY LEMMAS

Our first lemma, developed by the first author in recent work, reveals the crucial role that optimization (of
a nonlinear model) plays in assessing whether a particular variable is relevant or irrelevant—by relating the
impurity reduction for a particular variable Xj to the sample correlation between the response variable Y and
any function of Xj . This lemma also highlights a key departure from other approaches in past decision tree
literature that do not consider splits that depend on both input and output data (see, for example, DSTUMP
(Kazemitabar et al., 2017)).

Lemma A.1 (Lemma A.4, Supplementary Material in (Klusowski, 2020)). Almost surely, uniformly over all
functions h(·) of Xj, we have

∆̂(Xj , Y ) ≥ 4V̂ar(h(Xj))

TV2(h)
× Ĉov

2

(
h(Xj)√

V̂ar(h(Xj))
, Y

)
, (A.1)

where TV (h) is the total variation of h(·). Furthermore, almost surely, uniformly over all monotone functions
h(·) of Xj, we have

∆̂(Xj , Y ) ≥ 1

1 + log(2n)
× Ĉov

2

(
h(Xj)√

V̂ar(h(Xj))
, Y

)
. (A.2)

Remark A.1. The bound (A.2) is tight (up to universal constant factors), since ∆̂(Xj , Y ) = 1 and V̂ar(Y ) �
log(n) when, for example, X1j ≤ · · · ≤ Xnj, h(Xij) = Yi, and

Yi =
√

(i− 1)(n− i+ 1)−
√
i(n− i).

Proof sketch of Lemma A.1. For self-containment, we sketch the proof when h(·) is differentiable. The essential

idea is to construct an empirical prior Π on the split points z and lower bound ∆̂(Xj , Y ) by∫
∆̂(z;Xj , Y )dΠ(z).

Recall from Section 2.4 that NL = NL(z) and NR = NR(z) are the number of samples in the left and right
daughter nodes, respectively, if the jth variable is split at z. The special prior we choose has density

dΠ(z)

dz
=

|h′(z)|
√
NL(z)NR(z)∫

|h′(z′)|
√
NL(z′)NR(z′)dz′

,

with support between the minimum and maximum values of the data {Xij}.1 This then yields

∆̂(Xj , Y ) ≥ C(h)× Ĉov
2
(

h(Xj)√
V̂ar(h(Xj))

, Y

)
, where C(h) =

V̂ar(h(Xj))( ∫
|h′(z′)|

√
NL(z′)NR(z′)dz′

)2 .
To prove (A.1), we simply note that the denominator in C(h) is at most TV2(h)/4. To prove (A.2), the factor
C(h) can be minimized (by solving a simple quadratic program) over all monotone functions h(·), yielding the
desired result.

We direct the reader to (Klusowski, 2020, Lemma A.4, Supplementary Material) for the full proof.

Ignoring the factor 4V̂ar(h(Xj))/TV2(h) in (A.1) and focusing only on the squared sample covariance, note that
choosing h(·) to be the marginal projection fj(·), we have

Ĉov
2

(
fj(Xj)√

V̂ar(fj(Xj))
, Y

)
≈ Cov2

(
fj(Xj)√

Var(fj(Xj))
, Y

)
= Var(fj(Xj)),

1In case h(·) is not differentiable, once can replace h′(·) above with the divided difference of h(·) at two adjacent Xij .
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where the last equality can be deduced from the fact that the marginal projection fj(Xj) is orthogonal to the

residual Y −fj(Xj). Thus, in an ideal setting, Lemma A.1 enables us to asymptotically lower bound ∆̂(Xj , Y ) by
a multiple of the variance of the marginal projections—which can then be used to screen for important variables
and control the number of false negatives.

To summarize, the previous lemma shows that ∆̂(Xj , Y ) is large for variables Xj such that gj(Xj) or fj(Xj) is

strongly correlated with Y . Conversely, our next lemma will be used to show that ∆̂(Xj , Y ) is small when Y
does not depend on Xj . A special instance of this lemma, namely, when Y is independent of Xj , was stated in
(Li et al., 2019, Lemma 1) and serves as the inspiration for our proof.

Lemma A.2. Suppose that Zj = Y − fj(Xj) is conditionally sub-Gaussian given Xj, with variance parameter
σ2
Zj

, i.e., E[exp(λZj)|Xj ] ≤ exp(λ2σ2
Zj
/2) for all λ ∈ R. With probability at least 1− 4n exp(−nξ2/(12σ2

Zj
)),

∆̂(Xj , Y ) ≤ 3V̂ar(fj(Xj)) + ξ2.

Proof. Let π be a permutation of the data such that Xπ(1)j ≤ Xπ(2)j ≤ · · · ≤ Xπ(n)j . Recall from the represen-
tation (6) that we have

∆̂(Xj , Y ) = max
1≤k≤n

k

n

(
1− k

n

)( 1

k

∑
Xij≤Xπ(k)j

Yi −
1

n− k
∑

Xij>Xπ(k)j

Yi︸ ︷︷ ︸
(III)

)2

.

Now, since
n∑
i=1

(
1(Xij ≤ Xπ(k)j)

k
−

1(Xij > Xπ(k)j)

n− k

)
= 0,

we can rewrite (III) as

1

k

∑
Xij≤Xπ(k)j

(Yi − fj(Xij))︸ ︷︷ ︸
(a)

− 1

n− k
∑

Xij>Xπ(k)j

(Yi − fj(Xij))︸ ︷︷ ︸
(b)

+

n∑
i=1

(
fj(Xij)−

1

n

n∑
i=1

fj(Xij)

)(
1(Xij ≤ Xπ(k)j)

k
−

1(Xij > Xπ(k)j)

n− k

)
︸ ︷︷ ︸

(c)

.

Therefore, we have that

∆̂(Xj , Y ) = max
1≤k≤n

k

n

(
1− k

n

)
((a)− (b) + (c))2

≤ 3 max
1≤k≤n

k

n

(
1− k

n

)
(a)

2
+ 3 max

1≤k≤n

k

n

(
1− k

n

)
(b)

2
+ 3 max

1≤k≤n

k

n

(
1− k

n

)
(c)

2
,

(A.3)

where we use, in succession, the inequality (x− y + z)2 ≤ 3(x2 + y2 + z2) for any real numbers x, y, and z, and
the fact that the maximum of a sum is at most the sum of the maxima. To finish the proof, we will bound the
terms involving (a)

2
, (b)

2
, and (c)

2
separately.

For the last term in (A.3), notice that by the Cauchy-Schwartz inequality we have

k

n

(
1− k

n

)
(c)

2
=
k

n

(
1− k

n

)[ n∑
i=1

(
fj(Xij)−

1

n

n∑
i=1

fj(Xij)
)
×
(

1(Xij ≤ Xπ(k)j)

k
−

1(Xij > Xπ(k)j)

n− k

)]2

≤ k

n

(
1− k

n

) n∑
i=1

(
fj(Xij)−

1

n

n∑
i=1

fj(Xij)
)2 n∑

i=1

(
1(Xij ≤ Xπ(k)j)

k
−

1(Xij > Xπ(k)j)

n− k

)2

,
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which is exactly equal to

k

n

(
1− k

n

)[
nV̂ar(fj(Xj))

(
k · 1

k2
+ (n− k) · 1

(n− k)2

)]
= V̂ar(fj(Xj)).

Therefore we have shown that

max
1≤k≤n

k

n

(
1− k

n

)
(c)

2 ≤ V̂ar(fj(Xj)). (A.4)

To bound the first term in (A.3), by a union bound we have that

P
(

max
1≤k≤n

k

n

(
1− k

n

)
(a)

2
>
ξ2

6

)
≤

n∑
k=1

P
(k
n

(
1− k

n

)
(a)

2
>
ξ2

6

)
=

n∑
k=1

P
(k
n

(
1− k

n

)(1

k

∑
Xij≤Xπ(k)j

(Yi − fj(Xij))
)2

>
ξ2

6

)
. (A.5)

Next, notice that, conditional on X1j , . . . , Xnj ,
∑
Xij≤Xπ(k)j

(Yi − fj(Xij)) is a sum of k independent, sub-

Gaussian, mean zero random variables. Thus, by the law of total probability, we have that (A.5) is equal
to

n∑
k=1

E

[
P

(∣∣∣∣1k ∑
Xij≤Xπ(k)j

(Yi − fj(Xij))

∣∣∣∣ > ξ

√
n2

6k(n− k)

∣∣∣∣∣ X1j , . . . , Xnj

)]
and, by Hoeffding’s inequality for sub-Gaussian random variables, is bounded by

n∑
k=1

2 exp
(
− k ξ2n2

12k(n− k)σ2
Zj

)
≤ 2n exp

(
− ξ2n

12σ2
Zj

)
.

Note that here we have implicitly used the fact that E[exp(λZj)|Xj ] ≤ exp(λ2σ2
Zj
/2). It thus follows that with

probability at least 1− 2n exp
(
− ξ2n

12σ2
Zj

)
that

max
1≤k≤n

k

n

(
1− k

n

)
(a)

2 ≤ ξ2

6
. (A.6)

A similar argument shows that with probability at least 1− 2n exp
(
− ξ2n

12σ2
Zj

)
, the second terms in (A.3) obeys

max
1≤k≤n

k

n

(
1− k

n

)
(b)

2 ≤ ξ2

6
. (A.7)

Therefore, substituting (A.4), (A.6), and (A.7) into (A.3) and using a union bound, it follows that with probability

at least 1− 4n exp
(
− ξ2n

12σ2
Zj

)
,

∆̂(Xj , Y ) ≤ 3V̂ar(fj(Xj)) + ξ2.

B PROOF OF THEOREM 1

The goal of this section is to prove Theorem 1. First, we include a proof sketch below to highlight the main
ideas. Then in the first subsection, we rigorously prove the lower bound (9) and in the second subsection, we
rigorously prove the upper bound (10).

Throughout this section, for brevity, we let ρj = Cor(Xj , Y ) 6= 0.

Proof sketch of Theorem 1. The first step in proving the lower bound (9) is to apply (A.2) from Lemma A.1 with
h(Xj) = Xj (a monotone function) to see that

∆̂(Xj , Y ) ≥ V̂ar(Y )

log(2n) + 1
× ρ̂ 2(Xj , Y ). (B.1)
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Next, we can apply asymptotic tail bounds for Pearson’s sample correlation coefficient ρ̂ (Xj , Y ) between two cor-
related Gaussian distributions (Hotelling, 1953) to show that with high probability, |ρ̂ (Xj , Y )| ≥ (1−δ)|ρ(Xj , Y )|.
Finally, we divide (B.1) by V̂ar(Y ), use (7), and take square roots to complete the proof of the high probability
lower bound (9).

To prove the upper bound (10), notice that since Xj and Y are jointly Gaussian with mean zero, we have
fj(Xj) = ρj

σY
σXj

Xj , where ρj = ρ(Xj , Y ). Thus, by Lemma A.2 with σ2
Zj

= (1− ρ2
j )σ

2
Y and ξ2 = (1− ρ2

j )σ
2
Y δ

2,

with probability at least 1− 4n exp(−nδ2/12),

∆̂(Xj , Y ) ≤ 3V̂ar(fj(Xj)) + δ2(1− ρ2
j )σ

2
Y 3ρ2

j

σ2
Y

σ2
Xj

V̂ar(Xj) + δ2(1− ρ2
j )σ

2
Y . (B.2)

We further upper bound (B.2) by obtaining high probability upper and lower bounds, respectively, for V̂ar(Xj)

and V̂ar(Y ) in terms of σ2
Xj

and σ2
Y , with a standard chi-squared concentration bound, per the Gaussian as-

sumption. This yields that with high probability,

∆̂(Xj , Y ) . ρ2
j V̂ar(Y ) + δ2V̂ar(Y ). (B.3)

Finally, dividing both sides of (B.3) by V̂ar(Y ), using (7), and taking square roots proves (10).

B.1 Proof of the Lower Bound (9)

Choosing h(Xj) = Xj (which is monotone) in Lemma A.1 to get that

∆̂(Xj , Y ) ≥ 1

log(2n) + 1
× Ĉov

2

(
Xj√

V̂ar(Xj)
, Y

)
=

V̂ar(Y )

log(2n) + 1
× ρ̂ 2(Xj , Y ).

Now observe that ρ̂ (Xj , Y ) is the empirical Pearson sample correlation between two correlated normal distribu-
tions. If ρj > 0, by (Hotelling, 1953, Equation (44)), we have that

P(ρ̂ (Xj , Y ) > (1− δ)ρj) = 1− P(ρ̂ (−Xj , Y ) > −(1− δ)ρj)

∼ 1− (2π)−1/2 Γ(n)

Γ(n+ 1/2)
(1− ρ2

j )
n/2(1− [(1− δ)ρj ]2)(n−1)/2

× (−(1− δ)ρj − (−ρj))−1(1− (−ρj)(−(1− δ)ρj))−n+3/2(1 +O(n−1)).

(B.4)

If ρj < 0 we can show the same bound on P(ρ̂ (Xj , Y ) < (1− δ)ρj). Again by (Hotelling, 1953, Equation (44)),
we have the similar bound

P(ρ̂ (Xj , Y ) < (1− δ)ρj) = 1− P(ρ̂ (Xj , Y ) > (1− δ)ρj)

∼ 1− (2π)−1/2 Γ(n)

Γ(n+ 1/2)
(1− ρ2

j )
n/2(1− [(1− δ)ρj ]2)(n−1)/2

× ((1− δ)ρj − ρj)−1(1− ρj × (1− δ)ρj))−n+3/2(1 +O(n−1)).

(B.5)

Therefore because of (B.4) and (B.5), regardless of the sign of ρj , it follows that there exists a universal constant
C0 for which

P(|ρ̂ (Xj , Y )| > (1− δ)|ρj |) ≥ 1− C0√
2πδ|ρj |

Γ(n)

Γ(n+ 1/2)
(1− ρ2

j )
n
2 (1− (1− δ)2ρ2

j )
n−1
2 (1− (1− δ)ρ2

j )
−n+ 3

2

≥ 1− C0√
nδ|ρj |

exp
(
− ρ2

jn/2− (1− δ)2ρ2
j (n− 1)/2 + (1− δ)ρ2

j (n− 3/2)
)

(B.6)

= 1− C0√
nδ2ρ2

j

exp
(
− ρ2

jnδ
2/2 + ρ2

j (1− δ)2/2− 3(1− δ)ρ2
j/2
)

≥ 1− C0√
nδ2ρ2

j

exp(−ρ2
jnδ

2/2),
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where we used exp(x) ≥ 1 + x and Wendel’s inequality (Wendel, 1948) Γ(n)
Γ(n+1/2) ≤

√
n+1/2
n

1√
n
≤
√

2π
n in the

second inequality (B.6).

Thus, we have that with probability at least 1− C0√
nδ2ρ2j

exp(−ρ2
jnδ

2/2) that

∆̂(Xj , Y ) ≥
(1− δ)2V̂ar(Y )ρ2

j

log(2n) + 1
⇐⇒ ρ̂ 2(Ŷ (Xj), Y ) ≥

(1− δ)2ρ2
j

log(2n) + 1
.

This completes the first half of the proof of Theorem 1.

B.2 Proof of the Upper Bound (10)

We first state the following sample variance concentration inequality, which will be helpful.

Lemma B.1. Let Z1, . . . , Zn be i.i.d. N (0, σ2
Z). For any 0 < δ < 1, we have

P(V̂ar(Z) ≥ (1− δ)n− 1

n
σ2
Z) ≥ 1− exp(−δ2(n− 1)/4) (B.7)

and

P(V̂ar(Z) ≤ (1 + δ)
n− 1

n
σ2
Z) ≥ 1− exp(−(n− 1)(1 + δ −

√
1 + 2δ)/2). (B.8)

Proof of Lemma B.1. Since Zi are independent and normally distributed, by Cochran’s theorem we have

V̂ar(Z) ∼ σ2
Z

n χ
2
n−1. In the notation of (Laurent and Massart, 2000), choosing D = n− 1 and x = δ2(n− 1)/4 for

the chi-squared concentration inequality (4.4) in (Laurent and Massart, 2000), we have that

P
(

V̂ar(Z) ≥ (1− δ)n− 1

n
σ2
Z

)
= 1− P(χ2

n−1 < (1− δ)(n− 1))1− exp(−δ2(n− 1)/4),

proving (B.7). For (B.8), choosing D = n−1 and x = (n−1)(1 + δ−
√

1 + 2δ)/2 in (Laurent and Massart, 2000,
Equation (4.3)) we see that

P
(

V̂ar(Z) ≤ (1 + δ)
n− 1

n
σ2
Z

)
= 1− P(χ2

n−1 > (1 + δ)(n− 1)) ≥ 1− exp(−(n− 1)(1 + δ −
√

1 + 2δ)/2).

Now we are ready to prove the upper bound (10). We begin with the inequality (B.2), as shown in the proof
sketch of Theorem 1. We aim to upper bound the right hand side of (B.2) using Lemma B.1. Since the samples
X1j , . . . , Xnj are i.i.d., using (B.8) and choosing δ = 1, we find that with probability at least 1 − exp

(
−

(n − 1) 2−
√

3
2

)
≥ 1 − exp(−(n − 1)/16), we have that V̂ar(Xj) ≤ 2σ2

Xj
. Similarly, choosing δ = 1/2 in (B.7),

we also have that with probability at least 1 − exp(−(n − 1)/16) that V̂ar(Y ) ≥ σ2
Y /4. Substituting these

concentration inequalities into the right hand side of (B.2), it follows by a union bound that with probability at
least 1− 4n exp(−nδ2/12)− 2 exp(−(n− 1)/16),

∆̂(Xj , Y ) ≤ 24V̂ar(Y )ρ2
j + 4δ2V̂ar(Y ) ⇐⇒ ρ̂ 2(Ŷ (Xj), Y ) ≤ 24ρ2

j + 4δ2.

Finally, noticing that
√

24ρ2
j + 4δ2 < 5|ρj |+ 2δ completes the proof.

C PROOF OF THEOREM 2

The high level idea of the proof will be to show that the impurity reductions for relevant variables dominate
those for irrelevant variables with high probability, meaning that relevant and irrelevant variables are correctly
ranked. The following two propositions, which we prove separately in C.1 and C.2, provide high probability
lower bounds on the impurity reduction for relevant variables.
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C.1 Impurity Reduction Lower Bound for Relevant Variables

Our first result deals with general, smooth marginal projections. Remarkably, it shows that, with high probability,
∆̂(Xj , Y ) captures a portion of the variance in the marginal projection.

Proposition C.1. Under Assumptions 1, 2, 4, and 5, with probability at least 1− 3 exp(−nC1Var(fj(Xj))), we
have

∆̂(Xj , Y ) ≥ C2(Var(fj(Xj)))
1+1/d,

where C1 = c1(B2 + σ2)−1 and C2 = c2L
−2/d and c1 and c2 are universal positive constants.

Proof sketch. The main idea is to apply Lemma A.1 with h(·) equal to a trigonometric polynomial approximation

TM (·) to fj(·). This is done to temper the effect of the factor 4V̂ar(h(Xj))/(
∫ 1

0
|h′(x)|dx)2 from Lemma A.1.

To construct such a function, we employ a Jackson-type estimate in conjunction with Assumption 2 to
show the existence of a good trigonometric polynomial approximation TM (x) = a0 +

∑M
k=1 ak

√
2 cos(2πkx) +∑M

k=1 bk
√

2 sin(2πkx) (of degree M) to fj(·). Because TM (·) is a sum of orthogonal functions,

Var(TM (Xj)) =

M∑
k=1

(a2
k + b2k), (C.1)

and (∫ 1

0

|T ′M (x)|dx
)2

≤
∫ 1

0

|T ′M (x)|2dx = (2π)2
M∑
k=1

k2(a2
k + b2k). (C.2)

Combining (C.1) and (C.2), we find that, with high probability,

V̂ar(TM (Xj))

(
∫ 1

0
|T ′M (x)|dx)2

≈ Var(TM (Xj))

(
∫ 1

0
|T ′M (x)|dx)2

≥
∑M
k=1(a2

k + b2k)

(2π)2
∑M
k=1 k

2(a2
k + b2k)

≥ 1

(2π)2M2
.

Plugging these values into the lower bound (A.1) in Lemma A.1 and choosing M � (Var(fj(Xj)))
−1/(2d), we

find that with high probability,

∆̂(Xj , Y ) & (Var(fj(Xj)))
1/d × Ĉov

2

(
TM (Xj)√

V̂ar(TM (Xj))
, Y

)
. (C.3)

Thus, the lower bound in Proposition C.1 will follow if we can show that the squared sample covariance factor
in (C.3) exceeds Var(fj(Xj)) with high probability. To this end, note that

Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, Y

)
= Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, fj(Xj)

)
︸ ︷︷ ︸

(I)

+ Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, Y − fj(Xj)

)
︸ ︷︷ ︸

(II)

.
(C.4)

With high probability, (I) can be lower bounded by C
√

Var(fj(Xj)), per the choice M from above, using the
approximation properties of TM (·) for fj(·) and a concentration inequality for the sample variance of fj(Xj).
Here, C is some positive constant. Furthermore, since Y − fj(Xj) is orthogonal to any function of Xj , a
Hoeffding type concentration inequality shows that (II) is larger than any (strictly) negative constant, including
−(C/2)

√
Var(fj(Xj)), with high probability. Combining this analysis from (C.3) and (C.4), we obtain the high

probability lower bound on ∆̂(Xj , Y ) given in Proposition C.1.

Now we present the proof of Proposition C.1 more rigorously. First we will present several key ideas and lemmas
which are used in the proof. At the end of the section, we will complete the proof of Proposition C.1.

First, we state and prove a lemma that will be used in later proofs. Though stated in terms of general probability
measures, we will be specifically interested in the case where P is the empirical probability measure Pn and E is
the empirical expectation En, both with respect to a sample of size n.
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Lemma C.1. For any random variables U and V with finite second moments with respect to a probability
measure P,

CovP

( U√
VarP(U)

, V
)
≥
√

VarP(V )− 2
√
EP[(U − V )2].

Proof of Lemma C.1. First note that by the triangle inequality,∣∣√VarP(U)−
√

VarP(V )
∣∣ ≤√VarP(U − V ) ≤

√
EP[(U − V )2]. (C.5)

To complete the proof, we write

CovP(U, V ) =
√

VarP(U)
√

VarP(V ) +
(
CovP(U, V )−

√
VarP(U)

√
VarP(V )

)
(C.6)

and apply (C.5) to arrive at∣∣CovP(U, V )−
√

VarP(U)
√

VarP(V )
∣∣ (C.7)

=
∣∣CovP(U, V )−VarP(U) +

√
VarP(U)

(√
VarP(U)−

√
VarP(V )

)∣∣
≤
∣∣CovP(U, V )−VarP(U)

∣∣+
√

VarP(U)×
∣∣√VarP(U)−

√
VarP(V )

∣∣
≤ 2
√

VarP(U)×
∣∣√VarP(U)−

√
VarP(V )

∣∣ (C.8)

≤ 2
√

VarP(U)
√

EP[(U − V )2],

where the penultimate line (C.8) follows from the Cauchy-Schwarz inequality. Substituting (C.7) into (C.6), we
get

CovP(U, V ) ≥
√

VarP(U)
(√

VarP(V )− 2
√
EP[(U − V )2]

)
,

which proves the claim.

The following sample variance concentration inequality will also come in handy.

Lemma C.2 (Equation 5, (Maurer and Pontil, 2009)). Let U be a random variable bounded by B. Then for all
γ > 0,

P
( n

n− 1
V̂ar(U) ≥ Var(U)− γ

)
≥ 1− exp

(
− (n− 1)γ2

8B2Var(U)

)
.

As explained in the main text, the key step in the proof of Proposition C.1 is to apply Lemma A.1 with a good
trigonometric polynomial approximation TM (·) to the marginal projection fj(·).

Notice that we can extend fj(·) to [−1, 2] so that fj(−1) = fj(2) while also preserving Assumption 2. Then by a
Jackson-type estimate for trigonometric polynomials (Korneichuk, 1991, Section 6.2.4), there exists a trigonomet-

ric polynomial TM (x) = a0+
∑M
k=1 ak

√
2 cos(2πkx)+

∑M
k=1 bk

√
2 sin(2πkx) such that supx∈[0,1] |TM (x)−fj(x)| ≤

KL(M + 1)−d, where K is a universal positive constant.

Next, we set M = b(4−1τ2(KL)−2Var(fj(Xj)))
−1/(2d)c, where τ is a constant less than 1/4, so that

supx∈[0,1] |TM (x) − fj(x)| ≤ KL(M + 1)−d ≤ τ
√

Var(fj(Xj))

2 . Since fj(·) is bounded in magnitude by B, the
approximation properties of TM (·) imply that TM (·) is bounded in magnitude by B0 = (1 + τ/2)B. By Lemma
C.2 with γ = (1/2)Var(TM (Xj)), we find that

V̂ar(TM (Xj)) ≥
n− 1

2n
Var(TM (Xj)) ≥

1

4
Var(TM (Xj)), (C.9)

with probability at least 1−exp
(
− (n−1)Var(TM (Xj))

32B2
0

)
. The same computations as the proof sketch of Proposition

C.1 in the main text yield
Var(TM (Xj))

TV2(TM )
≥

∑M
k=1(a2k+b2k)∑M

k=1 k
2(a2k+b2k)

≥ 1
(2π)2M2 . Thus, by (C.9), with probability at least

1− exp
(
− (n−1)Var(TM (Xj))

32B2
0

)
, we have

∆̂(Xj , Y ) ≥ 4V̂ar(TM (Xj))

TV2(TM )
× Ĉov

2

(
TM (Xj)√

V̂ar(TM (Xj))
, Y

)
≥ 1

(2π)2M2
× Ĉov

2

(
TM (Xj)√

V̂ar(TM (Xj))
, Y

)
.

(C.10)
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The choice of M and the uniform approximation properties of TM (·) above gives

√
En[(fj(Xj)− TM (Xj))2] ≤ KL(M + 1)−d ≤

τ
√

Var(fj(Xj))

2
. (C.11)

It follows by Lemma C.1 along with (C.11) that

Ĉov(TM (Xj), fj(Xj)) ≥
√

V̂ar(TM (Xj))
(√

V̂ar(fj(Xj))− τ
√

Var(fj(Xj))
)
. (C.12)

In the next lemma, we use (C.12) along with Lemma C.2 to obtain a lower bound on the squared covariance
factor in (C.10).

Lemma C.3. With probability at least 1 − exp
(
− (n−1)(1−8τ2)2Var(fj(Xj))

8B2

)
− exp

(
− nτ2Var(fj(Xj))

8(B2+σ2)

)
, we have

that

Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, Y

)
≥ (τ/2)

√
Var(fj(Xj)).

Proof of Lemma C.3. Recalling (C.4), we will prove Lemma C.3 by first getting a concentration bound on (I)
and then getting a concentration bound on (II).

To get a concentration bound on (I), we need Lemma C.2 to lower bound the sample variance on the right hand
side of inequality (C.12). Choosing U = fj(Xj) ∈ [−B,B] and γ = Var(fj(Xj))(1− 8τ2) (which is greater than
zero by assumption that τ < 1/4), notice that Lemma C.2 gives us

P
(

V̂ar(fj(Xj)) ≥
8τ2(n− 1)

n
Var(fj(Xj))

)
≥ 1− exp

(
− (n− 1)(1− 8τ2)2Var(fj(Xj))

8B2

)
,

so that by (C.12),

Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, fj(Xj)

)
≥
√

V̂ar(fj(Xj))− τ
√

Var(fj(Xj))

≥ τ(
√

8
√

1− 1/n− 1)
√

Var(fj(Xj))

≥ τ
√

Var(fj(Xj)),

with probability at least 1− exp
(
− (n−1)(1−8τ2)2Var(fj(Xj))

8B2

)
.

Now we need to get a concentration bound for (II). Let si =
TM (Xij)− 1

n

∑n
k=1 TM (Xkj)√

V̂ar(TM (Xj))
. We need to bound

Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, Y − fj(Xj)

)
=

1

n

n∑
i=1

si(g(Xi)− fj(Xij) + εi).

For notational simplicity, we let X = (Xij) be the n× p data matrix with Xi as rows. First notice that

E

[
exp

(
λ

n

n∑
i=1

si(g(Xi)− fj(Xij) + εi)

)]
= E

[
E

[
exp

(
λ

n

n∑
i=1

si(g(Xi)− fj(Xij) + εi)

)∣∣∣∣∣X
]]

= E

[
exp

(
λ

n

n∑
i=1

si(g(Xi)− fj(Xij))

)
E

[
exp

(
λ

n

n∑
i=1

siεi

)∣∣∣∣∣X
]]
.
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Now, by the sample independence of the errors εi, we can write the above as

E

[
exp

(
λ

n

n∑
i=1

si(g(Xi)− fj(Xij))

)
n∏
i=1

E
[

exp
(λ
n
siεi

)∣∣∣X]]

≤ E

[
exp

(
λ

n

n∑
i=1

si(g(Xi)− fj(Xij))

)
n∏
i=1

exp
(λ2s2

iσ
2

2n2

)]

= E

[
exp

(
λ

n

n∑
i=1

si(g(Xi)− fj(Xij))

)]
exp

(λ2σ2

2n

)
,

where we used Assumption 5 and the fact that 1
n

∑n
i=1 s

2
i = 1. Recalling that si depends on (X1j , X2j , . . . , Xnj)

>,
we have

E

[
exp

(
λ

n

n∑
i=1

si(g(Xi)− fj(Xij))

)]
= E

[
E

[
exp

(
λ

n

n∑
i=1

si(g(Xi)− fj(Xij))

)∣∣∣∣∣X1j , X2j , . . . , Xnj

]]

= E

[
n∏
i=1

E
[

exp
(λ
n
si(g(Xi)− fj(Xij))

)∣∣∣X1j , X2j , . . . , Xnj

]]
,

(C.13)

where we used sample independence in the second equality. Finally, applying Hoeffding’s Lemma along with the
fact that ‖g‖∞ ≤ B, we have that (C.13) is bounded above by

E

[
n∏
i=1

exp

(
λ2s2

iB
2

2n2

)]
≤ exp

(
λ2B2

2n

)
.

Having bounded the moment generating function, we can now apply Markov’s inequality to see that

P

(
1

n

n∑
i=1

si(g(X)− fj(Xj) + εi) ≤ −γ

)
= P

(
exp

(
− λ

n

n∑
i=1

si(g(X)− fj(Xj) + εi)

)
≥ exp(λγ)

)

≤ exp

(
λ2(B2 + σ2)

2n
− γλ

)

≤ exp

(
− nγ2

2(B2 + σ2)

)
,

where the last inequality follows by maximizing over λ. Choosing γ = (τ/2)
√

Var(fj(Xj)), we have by a union
bound that,

Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, Y

)
= Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, fj(Xj)

)
+ Ĉov

(
TM (Xj)√

V̂ar(TM (Xj))
, Y − fj(Xj)

)

≥ τ
√

Var(fj(Xj))− (τ/2)
√

Var(fj(Xj))

= (τ/2)
√

Var(fj(Xj)),

(C.14)

with probability at least 1− exp
(
− (n−1)(1−8τ2)2Var(fj(Xj))

8B2

)
− exp

(
− nτ2Var(fj(Xj))

8(B2+σ2)

)
.

With this setup, we are now ready to finish the proof of Proposition C.1.

Proof of Proposition C.1. By the triangle inequality, the approximation properties of TM (·), and the choice of
M , √

Var(TM (Xj)) ≥
√

Var(fj(Xj))−
√
E[(fj(Xj)− TM (Xj))2] ≥ (1− τ/2)

√
Var(fj(Xj)).
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Therefore, from (C.10), with probability at least 1 − exp
(
− (n−1)Var(TM (Xj))

32B2
0

)
≥ 1 − exp

(
−

(n−1)(1−τ/2)2Var(fj(Xj))

32B2
0

)
,

∆̂(Xj , Y ) ≥ 1

(2π)2M2
× Ĉov

2

(
TM (Xj)√

V̂ar(TM (Xj))
, Y

)
. (C.15)

Combining (C.14) and (C.15) with a union bound, it follows that with probability at least 1 − exp
(
−

(n−1)(1−8τ2)2Var(fj(Xj))
8B2

)
−exp

(
−nτ2Var(fj(Xj))

8(B2+σ2)

)
−exp

(
− (n−1)(1−τ/2)2Var(fj(Xj))

32B2
0

)
≥ 1−3 exp(−C1nVar(fj(Xj)))

that

∆̂(Xj , Y ) ≥ 1

(2π)2M2
× Ĉov

2

(
TM (Xj)√

V̂ar(TM (Xj))
, Y

)

≥ 4−1τ2Var(fj(Xj))

(2π)2b(4−1τ2(KL)−2Var(fj(Xj)))−1/(2d)c2

≥ C2(Var(fj(Xj)))
1+1/d,

where C1 = c1(B2 + σ2)−1 and C2 = c2L
−2/d and c1 and c2 are universal positive constants.

C.2 Impurity Reduction Upper Bound for Irrelevant Variables

Next, we need to ensure that there is a sufficient separation in the impurity reductions between relevant and
irrelevant variables. To do so, we use Lemma A.2 along with the partial orthogonality assumption in Section 4.1
to show that the impurity reductions for irrelevant variables will be small with high probability.

Lemma C.4. Under Assumptions 1, 3 and 5, for each j ∈ Sc, with probability at least 1−4n exp(−nξ2/(12(B2+
σ2))),

∆̂(Xj , Y ) ≤ ξ2.

In other words, if j ∈ Sc, then ∆̂(Xj , Y ) = O(n−1 log(n)) with probability at least 1− n−Ω(1).

Proof of Lemma C.4. Observe that

E[exp(λ(Y − fj(Xj)))|Xj ] = E
[

exp(λ(g(X)− fj(Xj)))E
[

exp(λε)
∣∣X]∣∣Xj

]
≤ E

[
exp(λ(g(X)− fj(Xj)))

∣∣Xj

]
exp(λ2σ2/2) (C.16)

≤ E
[

exp(λ2(B2 + σ2)/2)
]
, (C.17)

where we used Assumption 5 in the penultimate inequality (C.16) and Hoeffding’s Lemma together with As-
sumption 1 in the last inequality (C.17). Using Assumption 3 along with Lemma A.2 with σ2

Zj
= B2 +σ2 proves

Lemma C.4.

C.3 Finishing the Proof of Theorem 2

In this section, we use Proposition C.1 along with Lemma C.4 to complete the proof of Theorem 2.

Proof of Theorem 2. The high-level idea is to show that the upper and lower bounds on the impurity reductions
for irrelevant and relevant variables from Lemma C.4 and Proposition C.1, respectively, are well-separated.

By Proposition C.1 for all variables j ∈ S and a union bound, we see that with probability at least 1 −
3s exp(−C1nv), we have

∆̂(Xj , Y ) ≥ C2v
1+1/d ∀ j ∈ S. (C.18)

By Lemma C.4 and a union bound over all p−s variables in Sc, we have that with probability at least 1−4n(p−
s) exp(−nξ2/(12(B2 + σ2))),

∆̂(Xj , Y ) ≤ ξ2 ∀ j ∈ Sc. (C.19)
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Recall that if we know the size s of the support S, then Ŝ consists of the top s impurity reductions. Note that

choosing ξ2 = C2v
1+1/d

2 in (C.19) will give us a high probability upper bound on ∆̂(Xj , Y ) for irrelevant variables

which is dominated by the lower bound on ∆̂(Xj , Y ) for relevant variables in (C.18). Thus, by a union bound,

it follows that with probability at least 1− 3s exp(−C1nv)− 4n(p− s) exp
(
− nC2v

1+1/d

24(B2+σ2)

)
, we have Ŝ = S.

D PROOF OF STATEMENT IN EXAMPLE 1

In this section, we prove the statement in Example 1.

Proof. Let σ2
1 and σ2

2 be the respective variances of X1 and X2. By the Gaussian assumption, write X2 =

ρ(σ2/σ1)X1 +σ2

√
1− ρ2Z, where ρ 6= ±1 is the correlation between X1 and X2 and Z ∼ N (0, 1) is independent

of X1. Let p(z) = 1− q(z) = P(X2 ≤ z) and p(z|z′) = 1− q(z|z′) = P(X2 ≤ z|Z = z′). Then,

∆(z,X2, Y ) =
Cov2(1(X2 ≤ z), Y )

p(z)q(z)
=

(EZ [Cov(1(X2 ≤ z), Y |Z)])2

p(z)q(z)
.

By the Cauchy-Schwarz inequality,

(EZ [Cov(1(X2 ≤ z), Y |Z)])2

p(z)q(z)
≤ EZ [p(z|Z)q(z|Z)]

p(z)q(z)
× EZ

[Cov2(1(X2 ≤ z), Y |Z)

p(z|Z)q(z|Z)

]
.

Next, observe that EZ [p(z|Z)] = p(z) and by Jensen’s inequality, EZ [p2(z|Z)] > p2(z) (the inequality is strict
since ρ 6= ±1). Thus,

∆(z,X2, Y ) < EZ
[Cov2(1(X2 ≤ z), Y |Z)

p(z|Z)q(z|Z)

]
.

Finally,

∆(X2, Y ) < max
z

EZ
[Cov2(1(X2 ≤ z), Y |Z)

p(z|Z)q(z|Z)

]
≤ EZ

[
max
z

Cov2(1(X2 ≤ z), Y |Z)

p(z|Z)q(z|Z)

]
= EZ [∆(X1, Y )] = ∆(X1, Y ),

where the penultimate equality comes from maxz
Cov2(1(X2≤z),Y |Z)

p(z|Z)q(z|Z) = maxu
Cov2(1(X1≤u),Y )
P(X1≤u)P(X1>u) = ∆(X1, Y ) with

u = (z − σ2

√
1− ρ2Z)/(ρσ2/σ1).

E PROOF OF MODEL SELECTION CONSISTENCY FOR LINEAR MODELS

Recall the setting mentioned in the heading “Minimum sample size for consistency” in Section 5, which
considers the same linear model with Gaussian variates from Theorem 1. To reiterate, we assume that Σ = Ip×p
is the p × p identity matrix,

∑p
k=1 β

2
k = O(1), and minj∈S |βj |2 � 1/s, all of which are special cases of the

more general setting considered in (Wainwright, 2009, Corollary 1). Under these assumptions, we then have
ρ2(Xj , Y ) = β2

j /(σ
2 +

∑p
k=1 β

2
k) & 1/s for any j ∈ S and ρ(Xj , Y ) = 0 for j ∈ Sc. Our goal is to show that

n � s log(n) log(n(p− s)) samples suffice for high probability model selection consistency.

Choosing δ = 1/2 in (9) applied to j ∈ S and using (7), there exists a universal positive constant C0 such that
with probability at least 1− 2C0√

nρ2(Xj ,Y )
exp(−nρ2(Xj , Y )/8), we have

∆̂(Xj , Y ) ≥ V̂ar(Y )× ρ2(Xj , Y )

4(log(2n) + 1)
=

V̂ar(Y )

4(log(2n) + 1)

β2
j

σ2 +
∑p
k=1 β

2
k

&
V̂ar(Y )

s log(n)
(E.1)

Therefore by a union bound over all s relevant variables, we have that with probability at least 1 −
smaxj∈S{ 2C0√

nρ2(Xj ,Y )
exp(−nρ2(Xj , Y )/8)},

∆̂(Xj , Y ) &
V̂ar(Y )

s log(n)
∀j ∈ S. (E.2)
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Furthermore, by applying (10) for j ∈ Sc (and noting that ρ(Xj , Y ) = 0) and using (7), with probability at least
1− 4n exp(−δ2n/64)− 3 exp(−(n− 1)/16), we have

∆̂(Xj , Y ) ≤ V̂ar(Y )δ2.

Therefore by a union bound over all p− s irrelevant variables we have that with probability at least 1− 4n(p−
s) exp(−δ2n/64)− 3(p− s) exp(−(n− 1)/16),

∆̂(Xj , Y ) ≤ V̂ar(Y )δ2 ∀j ∈ Sc.

Now, choosing δ2 = C3

s log(n) for some appropriate constant C3 > 0 which only depends on σ2 to match (E.1), we

see by a union bound that

P(Ŝ = S) ≥

1−max
j∈S

{ 2C0s√
nρ2(Xj , Y )

exp
(
− nρ2(Xj , Y )

8

)}
− 4n(p− s) exp

(
− C3n

64s log(n)

)
− 3(p− s) exp

(
− (n− 1)

16

)
.

Since ρ2(Xj , Y ) & 1/s for all j ∈ S, the above implies that if n(p−s) exp
(
− C3n

64s log(n)

)
→ 0, then P(Ŝ = S)→ 1.

Hence, a sufficient sample size for consistent support recovery is

n � s log(n) log(n(p− s)),

as desired.
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