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Abstract

Decision trees and their ensembles are en-
dowed with a rich set of diagnostic tools
for ranking and screening variables in a pre-
dictive model. Despite the widespread use
of tree based variable importance measures,
pinning down their theoretical properties has
been challenging and therefore largely unex-
plored. To address this gap between the-
ory and practice, we derive finite sample
performance guarantees for variable selection
in nonparametric models using a single-level
CART decision tree (a decision stump). Un-
der standard operating assumptions in vari-
able screening literature, we find that the
marginal signal strength of each variable
and ambient dimensionality can be consid-
erably weaker and higher, respectively, than
state-of-the-art nonparametric variable selec-
tion methods. Furthermore, unlike previous
marginal screening methods that estimate
each marginal projection via a truncated ba-
sis expansion, the fitted model used here is a
simple, parsimonious decision stump, thereby
eliminating the need for tuning the number of
basis terms. Thus, surprisingly, even though
decision stumps are highly inaccurate for es-
timation purposes, they can still be used to
perform consistent model selection.

1 INTRODUCTION

A common task in many applied disciplines involves
determining which variables, among many, are most
important in a predictive model. In high-dimensional
sparse models, many of these predictor variables may
be irrelevant in how they affect the response variable.
As a result, variable selection techniques are crucial
for filtering out irrelevant variables in order to pre-
vent overfitting, improve accuracy, and enhance the
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interpretability of the model. Indeed, algorithms that
screen for relevant variables have been instrumental in
the modern development of fields such as genomics,
biomedical imaging, signal processing, image analysis,
and finance, where high-dimensional, sparse data is
frequently encountered (Fan and Lv, 2008).

Over the years, numerous parametric and nonparamet-
ric methods for variable selection in high-dimensional
models have been proposed and studied. For lin-
ear models, the LARS algorithm (Efron et al., 2004)
(for Lasso (Tibshirani, 1996)) and Sure Independence
Screening (SIS) (Fan and Lv, 2008) serve as proto-
typical examples that have achieved immense success,
both practically and theoretically. Other strategies for
nonparametric additive models such as Nonparametric
Independence Screening (NIS) (Fan et al., 2011) and
Sparse Additive Models (SPAM) (Ravikumar et al.,
2009) have also enjoyed a similar history of success.

1.1 Tree-based Variable Selection

Alternatively, because they are built from highly inter-
pretable and simple objects, decision tree models are
another important tool in the data analyst’s reper-
toire. Indeed, after only a brief explanation, one is
able to understand the tree output in terms of mean-
ingful domain specific attributes of the variables. In
addition to being interpretable, tree based model have
good computational scalability as the number of data
points grows, making them faster than many other
methods when dealing with large datasets. In terms of
flexibility, they can naturally handle a mixture of nu-
meric variables, categorical variables, and missing val-
ues. Lastly, they require less preprocessing (because
they are invariant to monotone transformations of the
inputs), are quite robust to outliers, and are relatively
unaffected by the inclusion of many irrelevant variables
(Hastie et al., 2009; Klusowski, 2020), the last point
being of relevance to the variable selection problem.

Conventional tree structured models such as CART
(Breiman et al., 1984), random forests (Breiman,
2001a), ExtraTrees (Geurts et al., 2006), and gradient
tree boosting (Friedman, 2001) are also equipped with
heuristic variable importance measures that can be
used to rank and identify relevant predictor variables
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for further investigation (such as plotting their partial
dependence functions). In fact, tree based variable im-
portance measures have been used to discover genes in
bioinformatics (Breiman, 2001b; Lunetta et al., 2004;
Bureau et al., 2005; Diaz-Uriarte and de Andrés, 2006;
Huynh-Thu et al., 2010), identify loyal customers and
clients (Buckinx et al., 2007; W. Buckinx, 2005; Lar-
iviere and den Poel, 2005), detect network intrusion
(Zhang and Zulkernine, 2006; Zhang et al., 2008), and
understand income redistribution preferences (Keely
and Tan, 2008), to name a few applications.

1.2 Mean Decrease in Impurity

An attractive feature specific to CART methodology
is that one can compute, essentially for free, measures
of variable importance (or influence) using the optimal
splitting variables and their corresponding impurities.
The canonical CART-based variable importance mea-
sure is the Mean Decrease in Impurity (MDI) (Fried-
man, 2001, Section 8.1), (Breiman et al., 1984, Section
5.3.4), (Hastie et al., 2009, Sections 10.13.1 & 15.3.2),
which calculates an importance score for a variable
by summing the largest impurity reductions (weighted
by the fraction of samples in the node) over all non-
terminal nodes split with that variable, averaged over
all trees in the ensemble. In contrast to the afore-
mentioned variable selection procedures like SIS, NIS,
Lasso, and SPAM, except for a few papers, little is
known about the finite sample performance of MDI.
Theoretical results are mainly limited to the asymp-
totic, fixed dimensional data setting and to showing
what would be expected from a reasonable measure
of variable importance. For example, it is shown in
(Louppe et al., 2013) that the MDI importance of a
categorical variable (in an asymptotic data and en-
semble size setting) is zero precisely when the variable
is irrelevant, and that the MDI importance for relevant
variables remains unchanged if irrelevant variables are
removed or added.

Recent complementary work by (Scornet, 2020) estab-
lished the large sample properties of MDI for addi-
tive models by showing that it converges to sensible
quantities like the variance of the component func-
tions, provided the decision tree is sufficiently deep.
However, these results are not fine-grained enough to
handle the case where either the dimensionality grows
or the marginal signals decay with the sample size.
Furthermore, (Scornet, 2020) crucially relies on the
assumption that the CART decision tree has a small
approximation error, which is currently only known for
additive models (Scornet et al., 2015). It is therefore
unclear whether the techniques can be generalized to
models beyond those considered therein. On the other
hand, our results suggest that tree based variable im-
portance measures can still have good variable selec-

tion properties even though the underlying tree model
may be a poor predictor of the data generating pro-
cess—which can occur with CART and random forests.

Lastly, we mention that important steps have also been
taken to characterize the finite sample properties of
MDI; (Li et al., 2019) show that MDI is less biased
for irrelevant variables when each tree is shallow. This
work therefore covers one facet of the variable selection
problem, i.e., controlling the number of false positives,
and will be employed in our proofs.

1.3 New Contributions

The lack of theoretical development for tree based
variable selection is likely because the training mecha-
nism involves complex steps such as bagging, boosting,
pruning, random selections of the predictor variables
for candidate splits, recursive splitting, and line search
to find the best split points (Kazemitabar et al., 2017).
The last consideration, importantly, means that the
underlying tree construction (e.g., split points) de-
pends on both the input and output data, which en-
ables it to adapt to structural properties of the under-
lying statistical model (such as sparsity). This data
adaptivity is a double-edged sword from a theoretical
standpoint, though, since unravelling the data depen-
dence is a formidable task.

Despite the aforementioned challenges, we advance the
study of tree based variable selection by focusing on
the following two fundamental questions:

e Do tree based methods enjoy finite sample guar-
antees for variable ranking?

e What are the benefits of tree based methods over
other variable screening methods?

Specifically, we derive rigorous finite sample guaran-
tees for what we call the SDI importance measure, a
sobriquet for Single-level Decrease in Impurity, which
is a special case of MDI for a single-level CART deci-
sion tree or “decision stump” (Iba and Langley, 1992).
This is similar in spirit to the approach of DSTUMP
(Kazemitabar et al., 2017) but, importantly, SDI in-
corporates the line search step by finding the optimal
split point, instead of the empirical median, of every
predictor variable. As we shall see, ranking variables
according to their SDI is equivalent to ranking the vari-
ables according to the marginal sample correlations
between the response data and the optimal decision
stump with respect to those variables. This equiva-
lence also yields connections with other variable selec-
tion methods: for linear models with Gaussian vari-
ates, we show that SDI is asymptotically equivalent to
SIS (up to logarithmic factors in the sample size), and
so SDI inherits the so-called sure screening property
(Fan and Lv, 2008) under suitable assumptions.



Jason M. Klusowski, Peter M. Tian

Unlike SIS, however, SDI is accompanied by provable
guarantees for nonparametric models. We show that
under certain conditions, SDI achieves model selection
consistency; that is, it correctly selects the relevant
variables of the model with probability approaching
one as the sample size increases. In fact, the min-
imum signal strength of each relevant variable and
maximum dimensionality of the model are shown to
be less restrictive for SDI than NIS or SPAM. In the
linear model case with Gaussian variates, SDI is shown
to nearly match the optimal sample size threshold
(achieved by Lasso) for exact support recovery. These
favorable properties are striking when one is reminded
that the underlying model fit to the data is a simple,
parsimonious decision stump—in particular, there is
no need to specify a flexible function class (such as
polynomial splines) and be concerned with calibrating
the number of basis terms or bandwidth parameters.
Finally, we empirically compare SDI to other contem-
poraneous variable selection algorithms, namely, SIS,
NIS, Lasso, and SPAM, and find that it performs com-
petitively.

2 SETUP AND ALGORITHM

In this section we introduce notation, formalize the
learning setting, and give an explicit layout of our SDI
algorithm. At the end of the section, we discuss its
complexity and provide several interpretations.

2.1 Notation

For labeled data {(U1,V4),..., (Un,Vs))} drawn from
a population distribution (U, V), we let Cov(U,V) =
2 i (U= D) (Vi = V), Var(U) = 3 320, (U; = D)2,

U=15" U, and p(UV) =

- CovUV) _ denote

v/ Var(U)Var(V)

the sample covariance, variance, mean, and Pearson
product-moment correlation coefficient respectively.
The population level covariance, variance, and corre-
lation are denoted by Cov(U,V), Var(U) = o7, and
p(U, V), respectively.

2.2 Learning Setting

Throughout this paper, we operate under a standard
regression framework where the statistical model is
Y = ¢g(X) + ¢, the vector of predictor variables is
X = (X1,...,X,)", and ¢ is statistical noise. While
our results are valid for general nonparametric models,
for conceptual simplicity, the canonical model class we
have in mind is additive models, i.e.,

9( X1, Xp) = 1(X1) + -+ + gp(Xp) (1)

for some univariate component functions
91(:)s- -, 9p(4)- As is standard with additive
modeling (Hastie et al., 2009, Section 9.1.1), for
identifiability of the components, we assume that the

9;(X;) have population mean zero for all j. This
model class strikes a balance between flexibility and
learnability—it is more flexible than linear models,
but, by giving up on modeling interaction terms, it
does not suffer from the curse of dimensionality.

We observe data D = {(Xy,Y1),...,(X,,Y,)} with
the ' sample point (X;,Y;) = (Xi1,--.,Xip,Ys)
drawn independently from the model above. Note that
with this notation, X;; are i.i.d. instances of the ran-
dom variable X;. We assume that the regression func-
tion g(-) depends only on a small subset of the vari-
ables {X;},cs, which we call relevant variables with
support S C {1,...,p} and sparsity level s = |S| < p.
Equivalently, g;(-) is identically zero for the irrelevant
variables {X;}jese. In this paper, we consider the
variable ranking problem, defined here as ranking the
variables so that the top s coincide with S with high
probability. As a corollary, this will enable us to solve
the wvariable selection problem, namely, determining
the subset S. We pay special attention to the high-
dimensional regime where p > n. In fact, in Section
4.3 we will provide conditions under which consistent
variable selection occurs even when p = exp(o(n)).

2.3 Prior Art

The conventional approach to marginal screening for
nonparametric additive models is to directly estimate
either the nonparametric components g;(X;) or the
marginal projections

fi(X;5) = E[Y[X;],

with the ultimate goal of studying their variances or
their correlations with the response variable.! To ac-
complish this, SIS, NIS, and (Hall and Miller, 2009)
rank the variables according to the correlations be-
tween the response values and least squares fits over a
univariate model class H, i.e.,

n

p(h(X; h(-) € ar minl ; — ii))?
p((X;),Y), h()e rgmin ;:I(Yz h(Xi5))°-
(2)

The model class H is chosen to make the above opti-
mization tractable, while at the same time, be suffi-
ciently rich in order to approximate f;(X;). For ex-
ample, if H is the space of polynomial splines of a fixed
degree, then h(-) in (2) can be computed efficiently via
a truncated B-spline basis expansion

ALV (X;) + B2Wa(X;) + -+ + B4, Va, (X;), Bj €R,

(3)
as is done with NIS. Similarly, SIS takes H to be the
family of linear functions in a single variable. Comple-

mentary methods that aim to directly estimate each

!'Note that f;(X;) need not be the same as g;(X;) un-
less, for instance, the predictor variables are independent
and the noise is independent and mean zero.
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9;(X;) include SPAM, which uses a smooth back-
fitting algorithm with soft-thresholding, and (Huang
et al., 2010), which combines adaptive group Lasso
with truncated B-spline basis expansions.

As we shall see, SDI is equivalent to ranking the vari-
ables according to (2) when # consists of the collection
of all decision stumps in X; of the form

ﬁll(Xj SZ)+ﬂ21(X] >Z)7 Z;517BQGR' (4)

Unlike previous models such as polynomial splines (3),
a one-level decision tree, realized by the model (4)
above, severely underfits the data and would there-
fore be ill-advised for estimating f;(X;), if that were
the goal. Remarkably, we show that this rigidity does
not hinder SDI for variable selection. What redeems
SDI is that, unlike the aforementioned methods that
are based on linear estimators, decision stumps (4) are
nonlinear since the splits points can depend on the re-
sponse data. These model nonlinearities equip SDI
with the ability to discover nonlinear patterns in the
data, despite its poor approximation capabilities.

2.4 The SDI Algorithm

In this section, we provide the details for the SDI al-
gorithm. We first provide some high-level intuition.

In order to determine whether, say, X; is relevant for
predicting Y from X, it is natural to first divide the
data into two groups according to whether X; is above
or below some predetermined cutoff value and then as-
sess how much the variance in Y changes before and
after this division. A small change in the variability in-
dicates a weak or nonexistent dependence of Y on Xj;
whereas, a moderate to large change indicates hetero-
geneity in Y across different values of X;. As we now
explain, this is precisely what SDI does when the pre-
determined cutoff value is sought by a least squares fit
over all possible ways of dividing the data.

Let z be a candidate split for a variable X; that di-
vides the response data Y into left and right daughter
nodes based on the j*™ variable. Define the mean of
the left daughter node to be Y = ﬁ Zi:XijSZK
and the mean of the right daughter node to be Y p =
NLR Xy >n Y; and let the size of the left and right
daughter nodes be Ny, = #{i : X;; < z} and Np =
#{i : X;; > z}, respectively. For CART regression
trees, the impurity reduction (or variance reduction) in
the response variable Y from choosing the split point

z for the j*" variable is defined to be

n

—~ 1 — 1
Az X;,Y) = ﬁZ(Yi ~Y)? -~

=1 itXi]‘ SZ
1 —
2
- E (Y; = Yr)™.
i:X,:j>Z

(5)

For each variable X;, we choose a split point Z; that
maximizes the impurity reduction

Z; € arg max ﬁ(z;Xj, Y),

and for convenience, we denote the largest impurity
reduction by

A(X;,Y) =A% X,,Y).2
We then rank the variables commensurate with the
sizes of their impurity reductions, i.e., we obtain
a ranking (ji,...,Jp) where A(X;,Y) > ..o >
A(Xj;,,Y). If desired, these rankings can be repur-

o~

posed to perform model selection (e.g., an estimate S
of 8), as we now explain. If we are given the sparsity
level s in advance, we can choose S to be the top s
of these ranked variables; otherwise, we must find a
data-driven choice of how many variables to include.
Equivalently, the latter case is realized by choosing &
to be the indices j for which A(X;,Y) > ., where 7,
is a threshold to be described in Section 2.5. This is of
course a delicate task as including too many variables
may lead to more false positives.

By (Breiman et al., 1984, Section 9.3), using a sum
of squares decomposition, we can rewrite the impurity
reduction (5) as

E(Z,X],Y) = &&(?L_?R)a (6)

n o n

which allows us to compute the largest impurity re-
ductions for all possible split points with a single pass
over the data by first ordering the data along X; and
then updating Y, and Y g in an online fashion. This
alternative expression for the objective function fa-
cilitates its rapid evaluation and exact optimization.
Pseudocode for SDI is given in Algorithm 1.

2.5 Data-driven Choices of 7,

As briefly mentioned in Section 2.4, if we do not know
the sparsity level s in advance, we can instead use a
data-driven threshold 7, to control the number of se-
lected variables. Here we propose a data-driven meth-
ods to determine the threshold ~,,, which is similar to

2The impurity reduction can be highly non-concave and
therefore the optimal split point need not be unique. In
such cases, we break ties arbitrarily.
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Algorithm 1: Single-level Decrease in Impurity
(SDI)

Input: Dataset D = {(X1,...,
for j=1,...,pdo

XUHY;) zT'L:l

Relabel D with X;; sorted in increasing order
Initialize Y, =0, Yz =Y, A(X,;,Y) =0
fori=1,...,n—1do
Update Y.« %?L + %, ?R —
n— z+1Y _ Y
Co?ngute o
A(XU?X YV)=1(1-)(YL-Yr)?
it A(X,; X Y) > A(X,,Y) then
| Update A(X;,Y) « A(X”, X;,Y)
end
end
end
Output: Ranking (j1,---,Jp) such that
A(X;,.Y) > - > A(X;,.Y)

the Iterative Nonparametric Independence Screening
(INIS) method based on NIS (Fan et al., 2011, Section
4). The first step is to choose a random permutation
m:{1,...,n} = {1,...,n} of the data to decouple X;
from Y; so that the new dataset D™ = {(X(;),Y:)}
follows a null model. Then we choose the thresh-
old v, to be the maximum of the impurity reduc-
tions A(X;,Y;D™) over all j based on the dataset D™.
We can also generate T different permutations 7 and
take the maximum of A(X;,Y;D™) over all such per-
muted datasets to get a more significant threshold, i.e.,
Yo = max;, » A(X;,Y;D™). With ~, selected in this
way, SDI will then output the variable indices S con-
sisting of the indices j for which the original impurity
reductions A(X;,Y;D) are at least ,. Interestingly,
this method is similar to MDA in that we permute
the data values of a given variable and calculate the
resulting change in the quality of the fit.

2.6 Computational Issues

We now briefly discuss the computational complexity
of Algorithm 1—or equivalently—the computational
complexity of growing a single-level CART decision
tree. For each variable X, we first sort the input data
along X; with O(n log n) operations. We then evaluate
the decrease in impurity along n data points (as done
in the nested for-loop of Algorithm 1), and finally find
the maximum among these n values (as done in the
nested if-statement of Algorithm 1), all with O(n) op-
erations. Thus, the total number of calculations for all
of the p variables is O(pnlog(n)). This is only slightly
worse than the complexity of SIS for linear models
O(pn), comparable to NIS based on the complexity
of fitting B-splines, and favorable to that of Lasso or

stepwise regression O(p® + p?n), especially when p is
large (Efron et al., 2004; Hastie et al., 2009). While
approximate methods like coordinate descent for Lasso
can reduce the complexity to O(pn) at each iteration,
their convergence properties are unclear. As SPAM is
a generalization of Lasso for nonparametric additive
models, its implementation (via a functional version
of coordinate descent) may be similarly expensive.

2.7 Interpretations of SDI

In this section, we outline two interpretations of SDI.
Interpretation 1. Our first interpretation of SDI
is in terms of the sample correlation between the re-

sponse and a decision stump. To see this, denote the
decision stump that splits X; at z by

YV(X;) =Y 1(X; <2)+Yr1(X; > 2)

and one at an optimal split value Z; by

YV(X;) =Y 1(X; < %)+ Yr1(X, > %)

Note that ¥ (X ;) equivalently minimizes the marginal
sum of squares (2) over the collection of all decision
stumps (4). Next, by Lemma A.1 in (Klusowski, 2020),
we have:

Az, X;,Y) = Var(Y) x p2(Y(X;),Y), and
Y (Xi5))? (7)

WoTe

)
PTG)Y) =1 - 2

1z“<<>—WM—ﬁ
T () VR xS, T)

is the Pearson product-moment sample correlation
coefficient between the data Y and decision stump
Y (X;). In other words, we see from (7) that an opti-
mal split point Z; is chosen to maximize the Pearson
sample correlation between the data Y and decision
stump Y(X ). This reveals that SDI is, at its heart, a
correlation ranking method, in the same spirit as SIS,
NIS, and (Hall and Miller, 2009) via (2).

>0

Like r? for linear models, (7) reveals that the squared
sample correlation ﬁQ(EN/(Xj), Y') equals the coefficient
of determination R?, i.e., the fraction of variance in Y’
explained by a decision stump Y (X;) in X;.* Thus,
SDI is also equivalent to ranking the variables accord-
ing to the goodness-of-fit for decision stumps of each
variable.

3However, unlike linear models, for this relationship to
be true, the decision stump Y (X;) need not necessarily be
a least squares fit, i.e., Y (Xj;).
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Interpretation 2. The other interpretation is in
terms of the aforementioned MDI importance measure.
Recall the definition of MDI in Section 1.2, i.e., for an
individual decision tree T', the MDI for X; is the to-
tal reduction in impurity attributed to the splitting
variable X;. More succinctly, the MDI of T" for X;

equals
Z@&(Xj,y\xax (8)

t
where the sum extends over all non-terminal nodes t
in which X; was split, N(t) is the number of sample
points in t, and A(Xj, Y|X € t) is the largest reduc-
tion in impurity for samples in t. Note that if T is
a decision stump with split along X, then (8) equals
K(X ;,Y), the largest reduction in impurity at the root
node. Because a split at the root node captures the
main effects of the model, A(X;,Y’) can be seen as
a first order approximation of (1.2) in which higher
order interaction effects are ignored.

3 LINEAR MODELS

To connect SDI to other variable screening methods
that are perhaps more familiar to the reader, we first
consider a linear model with Gaussian distributed vari-
ables. We allow for any correlation structure between
covariates. Recall from (7) that A(X;,Y) is equal to

\//'z;"(Y) times ﬁQ(?(Xj), Y’), so that SDI is equivalent
to ranking by ﬁ(}/}(Xj), Y). Our first theorem shows
that ﬁ(?(Xj),Y), the sample correlation between Y’
and an optimal decision stump in Xj, is, with high
probability, sandwiched between constant multiples of
p(X;,Y), the correlation between a linear model YV
and a coordinate X;. Because of space constraints,
the proof is deferred to Supplement B.

Theorem 1 (SDI is asymptotically SIS) Let

Y = X1 + foXo + - + Bp X, + € and assume
that X ~ N(0,X) for some positive semi-definite
matriz ¥ and ¢ ~ N(0,02) for some o®> > 0.
Let § € (0,1). There exists a universal positive
constant Coy such that, with probability at least

1-— \/ﬁm eXp(fn52p2(XJ,Y)/2),
S 1—=9)|p(X,;,Y
pr(x)y) > LT
log(2n) +1
Furthermore,  with  probability at least 1 —
4n exp(—nd?/12) — 2exp(—(n — 1)/16),
FIV(X,).Y) <5lp(X,,Y)[+25.  (10)

Theorem 1 shows that with high-probability, SDI
is asymptotically equivalent (up to logarithmic fac-
tors in the sample size) to SIS for linear models in

that it ranks the magnitudes of the marginal sample
correlations between a variable and the model, i.e.,
p(X;,Y) ~ p(X;,Y). As a further parallel with deci-
sion stumps (see Section 2.7), the square of the sample
correlation, p2(X;,Y), is also equal to the coefficient
of determination r2 for the least squares linear fit of
Y on X;. We confirm the similarity between SDI and
SIS empirically in Section 6.

One corollary of Theorem 1 is that, like SIS, SDI also
enjoys the sure screening property, under the same
assumptions as (Fan and Lv, 2008, Conditions 1-4),
which include mild conditions on the eigenvalues of
the design covariance matrices and minimum signals of
the parameters 3;. Similarly, like SIS, SDI can also be
paired with lower dimensional variable selection meth-
ods such as Lasso or SCAD (Antoniadis and Fan, 2001)
for a complete variable selection algorithm in the cor-
related linear model case.

On the other hand, SDI, a nonlinear method, applies
to broader contexts far beyond linear models. In the
next section, we will investigate how SDI performs
for general nonparametric models with additional as-
sumptions on the distribution of the variables.

4 NONPARAMETRIC MODELS

In this section, we establish the variable ranking and
selection consistency properties of SDI for general non-
parametric models; that is, we show that for Algorithm
1, we have P(§ =S§) — 1 as n — oo.

Although our approach differs substantively, to facil-
itate easy comparisons with other marginal screening
methods, our framework and assumptions will be sim-
ilar. As mentioned earlier, SDI is based on a more
parsimonious but significantly more biased model fit
than those than underpin conventional methods. As
we shall see, despite the decision stump severely under-
fitting the data, SDI nevertheless achieves model selec-
tion guarantees that are similar to, and in some cases
stronger than, its competitors. This highlights a key
difference between quantifying sensitivity and screen-
ing—in the latter case, we are not concerned with
obtaining consistent estimates of the marginal projec-
tions f;(X;) and their variances. Doing so demands
more from the data and is therefore less efficient, when
otherwise crude estimates would work equally well.

4.1 Assumptions

Here we describe the key assumptions and ideas which
will be needed to achieve model selection consistency.
The assumptions will be similar to those in the in-
dependence screening literature (Fan et al., 2011;
Fan and Lv, 2008), but are weaker than most past
work on tree based variable selection Li et al. (2019);
Kazemitabar et al. (2017).
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Assumption 1 (Bounded regression function)
The regression function g¢(-) is bounded with
B = [|glloc < o0.

Assumption 2 (Smooth marginal projections)
Let r be a positive integer, let0 < a < 1, letd = r+a,
and let 0 < L < co. The r*® order derivative of f;(-)
exists and is L-Lipschitz of order «, i.e.,

0@ = £ @) < Lie -2/, 2,2’ €R.

Assumption 3 (Partial orthogonal covariates)
The collections {X;}jes and {X;}jese are indepen-
dent of each other.

Assumption 4 (Uniform relevant variables)
The marginal distribution of each X;, for j € S, is
uniform on the unit interval.

Assumption 5 (Sub-Gaussian error distribution)

The error distribution is  conditionally  sub-
Gaussian gwen X, de, E[gX] = 0 and
Elexp(Ae) | X] < exp(\202/2) for all A € R
with % > 0.

4.2 Discussion of the Assumptions

Assumption 2 is a standard smoothness assumption
for variable selection in nonparametric additive models
(Fan et al., 2011, Assumption A) and (Huang et al.,
2010, Section 3). Because SDI does not involve tuning
parameters that govern its approximation properties
of the nonparametric constituents (such as with NIS
and SPAM), Assumption 2 can be relaxed to allow for
different levels of smoothness in different dimensions
and, by straightforward modifications of our proofs,
one can show that SDI adapts automatically.

Assumption 3 is essentially the so-called “partial or-
thogonality” condition in marginal screening methods
(Fan and Song, 2010). Importantly, it allows for cor-
relation between the relevant variables {X;};jes, un-
like previous works on tree based variable selection
(Kazemitabar et al., 2017; Li et al., 2019). Notably,
NIS and SPAM do allow for dependence between rel-
evant and irrelevant variables, under suitable assump-
tions on the data matrix of basis functions. However,
these assumptions are difficult to translate in terms of
the joint distribution of the predictor variables and dif-
ficult to verify given the data. We do not believe this
assumption is strictly necessary, however. The follow-
ing example illustrates how SDI can be asymptotically
impervious to confounders (see also the empirical evi-
dence in Section 6).

Example 1 Suppose (X1,Xs,...,X,) ~ N(0,X%).
Suppose that Xy is an irrelevant variable that is un-
correlated with every relevant variable expect for one,
say, X1. Then, asymptotically, as long as X1 and X,
are not perfectly correlated, SDI will always rank X,

above Xo; in other words A(X2,Y) < A(X1,Y), where
A(X;,Y) is the population version of E(Xj,Y) (i.e.,
the almost sure limit of A(Xj, Y) asn — o). This is
quite remarkable given that'Y can have arbitrary non-
linear dependence on both X1 and Xo. Due to space
constraints we include the full proof of this result in
Supplement D.

Assumption 4 is stated as is for clarity of exposition
and is not strictly necessary for our main results to
hold. For instance, we may assume instead that the
marginal densities of the relevant variables are com-
pactly supported and uniformly bounded above and
below by a strictly positive constant, as in (Fan et al.,
2011; Huang et al., 2010). More generally, other distri-
butional relaxations are made possible by the fact that
CART decision trees are invariant to monotone trans-
formations, enabling us to reduce the general setting
to the case where each predictor variable is uniformly
distributed on [0, 1].

4.3 Main Results

Assuming we know the size s of the support S, we can
use the SDI ranking from Algorithm 1 to choose the
top s most important variables. Alternatively, if s is
unknown, we instead choose an asymptotic threshold
Yn of the impurity reductions to select variables; that
is, S = {j : A(X;,Y) > ~,}. We state our variable
ranking guarantees in terms of the minimum signal
strength of the relevant variables:

vi= IIleiélvar(fj(Xj))a

identical to the minimum variance parameter in in-
dependence screening papers (e.g., (Fan et al., 2011,
Assumption C)). Note that v measures the minimum
contribution of each relevant variable alone to the vari-
ance in Y, ignoring the effects of other variables.

Theorem 2 Suppose Assumptions 1, 2, 3, 4, and 5

hold. Then the top s most important variables ranked

by Algorithm 1 equal the correct set S of relevant vari-

ables with probability at least

nc2vl+l/d

- 24(B? + 02)>’
(1)

where C; = ¢1(B? + 02)7! and Cy = s L7249 and ¢

and co are universal positive constants.

1 —3sexp(—Cinv) —4n(p — s) exp (

Remark 1 As a corollary of Theorem 2, we obtain a
quantitative version of Proposition 1 in (Scornet et al.,
2015) for the root node of a CART decision tree, which
states more generally that a relevant variable is selected
at each node with probability converging to one.
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4.4 Minimum Signal Strengths

Like all marginal screening methods, the theoretical
basis for SDI is that each marginal projection for a
relevant variable should be nonconstant, or equiva-
lently, that v > 0. Note that when the relevant vari-
ables are independent and the underlying model is
additive, per (1), the marginal projections equal the
component functions of the additive model. Hence,
v = minjes Var(g;(X;)), which will always be strictly
greater than zero. As Theorem 2 shows, v controls the
probability of a successful ranking of the variables. In
practice, many of the relevant variables may have very
small signals—therefore we are particularly interested
in cases where v is allowed to become small when the
sample size grows large, as we now discuss.

We see from Theorem 2 that in order to have model se-

lection consistency with probability at least 1—n=?(1)
it suffices to have
d
vz (log(n(p—S)))dﬂ, 12)
n

up to constants that depend only on B, o, L, r, and a.
That is, (12) is a sufficient condition on the signal of
all relevant variables so that P(S =8) — 1 as n — oc.

5 COMPARISONS

In this section, we compare the finite sample guaran-
tees of SDI given in Section 4.3 and Section 3 to those
of NIS, Lasso, and SPAM. To summarize, we find that
SDI enjoys model selection consistency even when the
marginal signal strengths of the relevant variables are
smaller than those for NIS and SPAM. We also find
that the minimum sample size of SDI for high proba-
bility support recovery is nearly what is required for
Lasso, which is minimax optimal. Finally, we show
that SDI can handle a larger number of predictor vari-
ables than NIS and SPAM.

Minimum signal strength for NIS. We analyze
the details of Fan et al. (2011) to uncover the cor-
responding threshold v for NIS. In order to control
the number of false positives, the probability bound in
(Fan et al., 2011, Theorem 2) must approach one as
n — oo, which necessitates

n1—4m 1/3
dn S , 1
~ (1og(np)) (13)

where d,, is the number of spline basis functions and
k is a free parameter (in the notation of (Fan et al.,
2011)). However notice that by (Fan et al., 2011, As-
sumption F), we must also have that d,, > n%, and
combining this with (13) shows that we must have

1 2d+1
oz (B EE

Now substituting (13) and (14) into v = d,,n~2* ((Fan
et al., 2011, Assumption C)), it follows that we have

v (log(np))ﬁ
n

for NIS, which is a significantly stronger minimum sig-
nal requirement than our (12).

Minimum signal strength for SPAM. When
d = 2, by (Ravikumar et al., 2009, Section 6.1), we
must have v > n~%/15 10g'%/? (np) for SPAM to achieve
consistent model selection. For comparison, our al-
gorithm allows for a smaller signal v 2> (%)2/3,
which is obtained by setting d = 2 in (12).

Minimum sample size for consistency. Con-
sider the linear model with Gaussian variates from
Theorem 1, where for simplicity we additionally as-
sume that 3 = I, is the p x p identity matrix, yield-
ing p2(X,,Y) = 82/(0® + 0_, 82).

Following the same steps used to prove Theorem 2 but
using Theorem 1 and Lemma A.2 instead, we can de-
rive a result similar to Theorem 2 for the probabil-
ity of exact support recovery, but for a linear model
with Gaussian variates. The full details are in Supple-
ment E. With the specifications Y ¥_, 7 = O(1) and
minjes |32 < 1/s, we find that a sufficient sample
size for high probability support recovery is

n > slog(n)log(n(p — s)),
which happens when
n > slog(p — s) x (log(s) +loglog(p —s)).  (15)

Now, it is shown in (Wainwright, 2009a, Corollary 1)
that the minimax optimal threshold for support re-
covery under these parameter specifications is n =
slog(p — s), which is achieved by Lasso (Wainwright,
2009b). Amazingly, (15) coincides with this optimal
threshold up to log(s) and loglog(p — s) factors, de-
spite SDI not being tailored to linear models.

Mazximum dimensionality. Suppose the signal
strength v is bounded above and below by a positive
constant when the sample size increases. Then Theo-
rems 2 shows model selection consistency for SDI up to
dimensionality p = exp(o(n)). This is larger than the
maximum dimensionality p = exp(o(n?(@—1/2d+1)))
for NIS (Fan et al., 2011, Section 3.2), thus applying
to an even broader spectrum of ultra high-dimensional
problems. Furthermore, when d = 2, SPAM is able to
handle dimensionality up to p = exp(o(n'/®)) (Raviku-
mar et al., 2009, Equation (45)), which is again lower
than the dimensionality p = exp(o(n)) for SDI.
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6 EXPERIMENTS

In this section, we conduct computer experiments of
SDI with synthetic data. As there are many ex-
isting empirical studies of the related MDI measure
(Kazemitabar et al., 2017; Li et al., 2019; Louppe,
2014; Louppe et al., 2013; Lundberg et al., 2018; Strobl
et al., 2007; Wang et al., 2016; Wei et al., 2015), we
do not aim for comprehensiveness.

Our experiments compare the performance of SDI with
SIS, NIS, Lasso, SPAM, MDI for a single CART de-
cision tree, and MDI for a random forest. Specifi-
cally, we assess performance based on the probability
of exact support recovery. To ensure a fair comparison
between SDI and the other algorithms, we assume a
priori knowledge of the true sparsity level s, which is
incorporated into Lasso and SPAM by specifying the
model degrees of freedom in advance. These simula-
tions were conducted in R using the packages rpart for
SDI, SAM for SPAM, SIS for SIS, and glmnet for Lasso
with default settings. We also compute two versions of
MDI: MDI RF using the package randomForest with
ntrees = 100 and MDI CART (based on a pruned
CART decision tree) using the package rpart with de-
fault settings. The source code from (Fan et al., 2011)
was used to conduct experiments with NIS.

In all our experiments, we generate n samples from
an s-sparse additive model g(X) = ijl g;(X;) for
various types of components g;(X;). The error distri-
bution is ¢ ~ N(0,0?), the sparsity level is fixed at
s = 4, and the ambient dimension is fixed at p = 2000.
We consider the following model types.

Model 1. Consider linear additive components
9;(X;) = X, and variables X ~ N(0,X), where
the covariance matrix 3 has diagonal entries equal
to 1 and off-diagonal entries equal to some constant
p € (=1,1). We set the noise level 02 = 1 and con-
sider correlation level p = 0.5.

Model 2. We consider additive components
9j(X;) = cos(4mX;), where X ~ Uniform([0,1]?) (i.e.,
all predictor variables are independent) and o2 = 1.

Model 3. Consider nonlinear additive components

4sin(2nx)
- = 20— 1 2 = —
gl(‘r) o, 92(m> 3( z ) ) 93(‘7;) 9 _ sin(27m:)’
ga(z) = 6(0.1sin(27x) 4 0.2 cos(2mz) + 0.3 sin? (27 )

+ 0.4 cos®(2mz) + 0.5 sin®(27x)).

Let X ~ Uniform([0,1]?) and set the noise level o2 =
1.74. This is the same model as Example 3 of (Fan
et al., 2011) with ¢ = 0 (and correlation 0).

Model 1 tests the correlated Gaussian linear model set-
ting of Theorem 1 while Models 2 and 3 test the set-
ting of Theorem 2 for general nonparametric models.

Though our main results apply to general nonparamet-
ric models, we have chosen to focus our experiments
on additive models to facilitate comparison with other
methods designed for the same setting.

For our experiments on exact recovery, we fix the
sparisty level s = 4 and estimate the probability of
exact support recovery by running 50 independent
replications and computing the fraction of replications
which exactly recover the support. In Figure 1, we plot
this estimated probability against various sample sizes
n < p, namely, n € {100, 200, 300, ...,1000}. In agree-
ment with Theorem 1, in Figure 1la, we observe that
SDI and SIS exhibit similar behavior for correlated
Gaussian linear models, a case in which all methods
appear to achieve model selection consistency. As ex-
pected, Figure 1b and 1c show that SDI, NIS, SPAM,
and MDI significantly outperform SIS and Lasso when
the model has nonlinear and non-monotone additive
components. For more irregular component functions
such as sinusoids, SDI appears to outperform SPAM,
as seen in Figure 1b. In general, for additive models,
SDI appears to outperform its progenitor MDI CART
though it seems to sacrifice a small amount of accuracy
for simplicity compared to MDI RF.
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Figure 1: Plots of estimated ]P’(§ = §) as n increases
for various models (approximate signal to noise ratio
in parentheses).
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