Supplementary Material for “Sharp Analysis of a Simple Model for
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In this supplement, we give proofs of Theorem 1, Theorem 4, and Theorem 5 and an auxiliary lemma used in
the proof of Theorem 2.

1 PROOFS

1.1 Proof of Theorem 1

Proof. We first decompose the approximation error as follows:

E[(Y(X) — f(X))?] (S.1)
=B :(ZE@[Wl(f(Xi) — £(X))] = 1(£9) f( ))2}

1=1
= &[( Y RelWi(£(X:) — FX))]) | +ELEN O] (8.2)
<E[( Y BeWi(f(X) - )] + BoRGE). 53

Next, by Assumption 2 in the main text, we have that |f(X;) — f(X)| < Z;'i:1 Hajf\|oo|XZ(-j) — X, and thus,
Wilf(X:) = F(X)] < Wi 325 110 flloo (b;(X) = @;(X)). This shows that
d
ZW F(X I< Z 103 flloo (b (X) = a;(X)

II(9 Flloo (85(X) = a;(X)).

TM& HM:

Taking expectations with respect to © of both sides of this inequality, we may bound the first term in (S.3) b
d 2
E[( 3105 fllcBo b5 (X) — ;X)) .
j=1

Jensen’s inequality for the square function then yields a further upper bound of dZ;-l:l 10, fIIZE[(Ee[b;(X) —
a; (X)])?]. O
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1.2 Proof of Theorem 4

Proof. Using (S.2) from the proof of Theorem 1, Jensen’s inequality for the square function, and exchangeability
of the data, we obtain the following lower bound on the approximation error:

[( 3 EalWatrx) - 5x))]) ]

> Bx[( Y Bxa.oox, ol WiFX0) - £0)])]
i=1

= n’Ex|[(Ex,....x,.0[W1(f(X1) — f(X))])?].

Recall the form of the weights
1(X1 S t) ( ) . 1(X1 S t)
S X Et) I+ Y 1(X e t)
Define T'= 37,5, 1(X; € t) and Ay = f(X;) — f(X). By a conditioning argument, we write

Ex[(Ex,,. x,eW:i(f(X1)— f(X)])?

Wi =

B (B, o [LELE D]V
= 5| (Bo ... x. [ 1061 € 0] )]

1 2
= Ex[(Bx...ox. [717]) (Bxoontx c o) ]
X (\Exe... %0 |77 x,,0[1(X1 € t)A4]
where the last line follows from the fact that Exg’”_,xn[l_ﬁ} is independent of ©, a consequence of T' being

conditionally distributed Bin(n — 1,2~ [log, k”) given X and ©. Next, we can use Jensen’s inequality on the
convex function x — 1/(1 + z) to lower bound

EX27~~-7xn|:

1 } 1
14+T

1+ (n—1)2-Nogz knl”
Hence, we obtain that n?Ex[(Ex, .. x,.e[Wi(f(X1) — f(X))])?] is at least

( n
1+ (n — 1)2ogz kn]

) Ex[(Ex, o[L(X: € t)A)?) (8.4)

Next, in giving a lower bound on Ex[(Ex, o[1(X; € t)A;])?], we will show that
Ex,,0[1(X1 € t)(8,X; — X)] (S.5)

can be written as a weighted sum of d independent Uniform(0, 1) variables minus their mean, 1/2. Consequently,
the squared expectation of (S.5) with respect to X is the sum of the respective variances. Using this, we will

show that
Ex[(Ex, o[1(X1 € t)(8, X1 — X)])?]

9—2[log kn] 25:1 |5(j)|(1 _ pj/2)2ﬂogz ka1 (S.6)
N 12 '

To prove (S.6), observe that
1(X; € t)(8, X1 — X)]

m& HM& z
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B9 TT Ml by DEgn [LXT € [a;(X), by(X)(X] = X)), (S.7)
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Next, note that because X)) ~ Uniform(0, 1), we have

By [1(XT € [a;(X), b (X)) (X - XD)]
= (b;(X) — a;(X)) (M _ X(j>)_

Since bj(X) — a;(X) = 2755, we have

Ey ) [1(X{ € [a;(X), b;(X)))(XT) — X))

X @)
=92 K, (M — X(j)>.
2

Combining this with (S.7) and J]7_, 2% = 2-°s2kn1 yields
Ex,[1(X1 € t)(8,X; — X)]

d
— 9—Tlog, k] ) (%(X) +6;(X)
27 loe ;,6 (=4 X)),

Now, by (4) from the main text, which expresses the endpoints of the interval along the j** feature as randomly
stopped binary expansions of X)| we have

4 (X)+6;(X) ) dg-r;—1 _ > B2t

2
E>Kj+1

d A~ K. _
£2755(1/2 =) Bryk,27F)
k>1

4 9-K; (1/2 — X)),
where X is uniformly distributed on [0, 1]¢. Taking expectations with respect to ©, we have that

Exl,@[l(xl € t)<ﬂ7 X1 — X>]

d
4 9—Tlog, kn] Zﬂ(j)(l — p;/2)llog2knl (172 — X)), (S.8)

j=1

Observe that (S.8) is a sum of mean zero independent random variables, and hence, its squared expectation is
equal to the sum of the individual variances, viz.,

Ex[(Ex, e[1(X1 € t)(8, X1 - X)])?]

d
— 9—2[log, kn | Z 1BD2(1 — p;/2)2M1o¢: k] Var (X))
j=1
_2?los k50 B9 2(1 - py/2)20se ]
12 '

Thus, combining (S.4) and (S.9), we have shown that
E[(Y/(X) - f(X))?]
d j o
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1.3 Proof of Theorem 5
Proof. First, note that by (Biau, 2012, Section 5.2, p. 1083-1084),

E[(Y(X) - Y(X))’]

= noE[(Ee[W1])?]

= no’E[Ee[W1]Ee [W1]]

:]E{ no?1(X; e tNt’) ]
1+, 1(Xi € t))(1+ X, 1(X; € t))

:]E{ no?A(tNt') ]

1+, (X € t))(1+ X7, 1(X; e t)) )

where ©’ is an independent copy of ©. We first lower bound

. 1
Ko, X [(1 +30 L 1X et)(1+3 0, 1(X; € t/))]

via Jensen’s inequality, which yields

1
Ex,,. x, [(1+ X, 1(Xiet)(1+ X1, 1(X; et))]

Next, we use linearity of expectation to write

Bxo, (14 01K € 0) (14 10K € )]

=1+42(n—1)27 M08kl 4 (n — 1)(n —2)272M82 k] | (n — )A(ENTE)
< 5n?/k2,

where the last inequality follows from n > 2floga knl and AtNt) < 9~ oga knl, Hence, the estimation error
E[(Y(X) — Y(X))?] can be lower bounded by

o2k2
"Eg o (At Nt 1
= oo AN, (5.10)

where ©’ is an independent copy of ©. Thus by (S.10) and (12) from the main text, we are done if we can show

that Eg e [2_% 25 IKj_K;‘] has a lower bound similar in form to the upper bound in (13) from the main text.
But this follows directly from Lemma S.1, since

Bo,er[27% =1 1975 1) = Bg o[22 Tier 16 15]

N (47)~

" [Liepps x ([logy kn])b~1’
provided [logy ky, |p; > 1. O
1.4 Auxiliary lemma
Lemma S.1. Let M = (My,..., M) be distributed according to a multinomial distribution with m trials and

class probabilities (p1,...,pr), each of which is nonzero. Let M' = (M7, ..., M]) be an independent copy. Then,

k
E[Q*%Zﬁzl\MrM;\] < 8

(S.11)

Furthermore, if mp; > 1 for all j, then

-k
IR S
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Proof. The proof requires only elementary facts about the multinomial distribution and Stirling’s approximation.
First, note that

k

]E[27% Z]‘:l |MJ7M‘7/|:|

Z P( ﬁ“M] - M| = wj})2*%2§:1 w;

W1,-eeyWh j=1

k—1

> > P( (M - Mj = Tjwj})T% X, (S.12)

Wiy We—1 7E€{—1,+1}F—1 Jj=1

IN

Next, let p(m) = (mlmmk)pf“ -+ pp™ denote the multinomial mass function and let m* be ones of its modes.

Then, we can bound each probability in (S.12) by

k—1

P(({M; = M) =73} ) = > p(m)p(m + Tw)

j=1 m

< p(m").
Combining these two inequalities, we have

E[2~2 Zh |M; =Ml

< ¥ T pme i

Wi, We—1 7E{—1,+1}F1

< (44 2V2)F1p(m*). (S.13)

Next, using a refinement of Stirling’s approximation (see for example (Robbins, 1955)), we have m! <
ev2rm(m/e)™ and m;! > /2mm;(m;/e)™ > e~ 1\/2m(m; + 1)((m; + 1)/e)™i. Using these inequalities, we

upper bound the multinomial coefficient (m m k), which in turn yields an upper bound on p(m*), namely,

1yeeey M

ek+1 m * *
pm") < i [ iy ) e s D) G ) (50

Finally, (Feller, 1968, page 171, Exercise 28, Equation 10.1) states that any mode m* of the multinomial distri-
bution satisfies m} > mp; — 1 and hence from (S.14),
ehtl 1

p(m*) < .
() (V2m)k=t \/mk=1p, - py

(S.15)

Putting everything together from (S.13) and (S.15), we have

ekJrl 1

1 k ’
B[22 Xj=1 IMi=Mjl] < (4 4 24/2)F1
[ b=t ) (V2m)F=1 \/mb—1p; - py

Sk

<—F/—m.
mF=lpy - py,

For the other direction, we first remark that

E[2~ % Xi=1 M5 =Ml

Y

P(M = M)
> (p(m))?

p(m))?, (5.16)

v



Supplementary Material for “Sharp Analysis of a Simple Model for Random Forests”

where m; = |mp;]. Following the same strategy as before for the binomial coefficient (m1 " mk), ie., m;! <
ey/2mmj(m;/e)™ and m! > v/2rm(m/e)™, we have
) > — o Ty ) ()
= (Vemk-t\ ml - om), A k
ek 1
2 ;
(V2m)kF=t \/mk=1p; - py
provided mp; > 1. Applying this inequality to (S.16) yields
E[2—3 Shos M- (M)z
- mk_lp DY
1Pk
47)7F
(47) -

= mF 1y
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