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In this supplement, we give proofs of Theorem 1, Theorem 4, and Theorem 5 and an auxiliary lemma used in
the proof of Theorem 2.

1 PROOFS

1.1 Proof of Theorem 1

Proof. We first decompose the approximation error as follows:

E[(Y (X)− f(X))2] (S.1)

= E
[( n∑

i=1

EΘ[Wi(f(Xi)− f(X))]− 1(Ec)f(X)
)2]

= E
[( n∑

i=1

EΘ[Wi(f(Xi)− f(X))]
)2]

+ E[1(Ec)|f(X)|2] (S.2)

≤ E
[( n∑

i=1

EΘ[Wi(f(Xi)− f(X))]
)2]

+B2P(Ec). (S.3)

Next, by Assumption 2 in the main text, we have that |f(Xi)− f(X)| ≤
∑d

j=1 ‖∂jf‖∞|X
(j)
i −X(j)|, and thus,

Wi|f(Xi)− f(X)| ≤Wi

∑d
j=1 ‖∂jf‖∞(bj(X)− aj(X)). This shows that

n∑
i=1

Wi|f(Xi)− f(X)| ≤
n∑

i=1

Wi

d∑
j=1

‖∂jf‖∞(bj(X)− aj(X))

≤
d∑

j=1

‖∂jf‖∞(bj(X)− aj(X)).

Taking expectations with respect to Θ of both sides of this inequality, we may bound the first term in (S.3) by

E
[( d∑

j=1

‖∂jf‖∞EΘ[bj(X)− aj(X)]
)2]

.

Jensen’s inequality for the square function then yields a further upper bound of d
∑d

j=1 ‖∂jf‖2∞E[(EΘ[bj(X) −
aj(X)])2].
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1.2 Proof of Theorem 4

Proof. Using (S.2) from the proof of Theorem 1, Jensen’s inequality for the square function, and exchangeability
of the data, we obtain the following lower bound on the approximation error:

E
[( n∑

i=1

EΘ[Wi(f(Xi)− f(X))]
)2]

≥ EX

[( n∑
i=1

EX1,...,Xn,Θ[Wi(f(Xi)− f(X))]
)2]

= n2EX[(EX1,...,Xn,Θ[W1(f(X1)− f(X))])2].

Recall the form of the weights

W1 =
1(X1 ∈ t)∑n
i=1 1(Xi ∈ t)

1(E) =
1(X1 ∈ t)

1 +
∑

i≥2 1(Xi ∈ t)
.

Define T =
∑

i≥2 1(Xi ∈ t) and ∆1 = f(X1)− f(X). By a conditioning argument, we write

EX[(EX1,...,Xn,Θ[W1(f(X1)− f(X))])2]

= EX

[(
EX1,...,Xn,Θ

[1(X1 ∈ t)∆1

1 + T

])2]
= EX

[(
EΘ

[
EX2,...,Xn

[ 1

1 + T

]
EX1

[
1(X1 ∈ t)∆1

]])2]
= EX

[(
EX2,...,Xn

[ 1

1 + T

])2(
EX1,Θ[1(X1 ∈ t)∆1]

)2]
,

where the last line follows from the fact that EX2,...,Xn
[ 1
1+T ] is independent of Θ, a consequence of T being

conditionally distributed Bin(n − 1, 2−dlog2 kne) given X and Θ. Next, we can use Jensen’s inequality on the
convex function x 7→ 1/(1 + x) to lower bound

EX2,...,Xn

[ 1

1 + T

]
≥ 1

1 + EX2,...,Xn
[T ]

=
1

1 + (n− 1)2−dlog2 kne
.

Hence, we obtain that n2EX[(EX1,...,Xn,Θ[W1(f(X1)− f(X))])2] is at least( n

1 + (n− 1)2−dlog2 kne

)2

EX[(EX1,Θ[1(X1 ∈ t)∆1])2]. (S.4)

Next, in giving a lower bound on EX[(EX1,Θ[1(X1 ∈ t)∆1])2], we will show that

EX1,Θ[1(X1 ∈ t)〈β,X1 −X〉] (S.5)

can be written as a weighted sum of d independent Uniform(0, 1) variables minus their mean, 1/2. Consequently,
the squared expectation of (S.5) with respect to X is the sum of the respective variances. Using this, we will
show that

EX[(EX1,Θ[1(X1 ∈ t)〈β,X1 −X〉])2]

=
2−2dlog2 kne

∑d
j=1 |β

(j)|(1− pj/2)2dlog2 kne

12
.

(S.6)

To prove (S.6), observe that

EX1
[1(X1 ∈ t)〈β,X1 −X〉]

=

d∑
j=1

EX1
[1(X1 ∈ t)(β(j)(X

(j)
1 −X(j)))]

=

d∑
j=1

β(j)
∏
j′ 6=j

λ([aj′ , bj′ ])EX
(j)
1

[1(X
(j)
1 ∈ [aj(X), bj(X)])(X

(j)
1 −X(j))]. (S.7)
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Next, note that because X(j) ∼ Uniform(0, 1), we have

E
X

(j)
1

[1(X
(j)
1 ∈ [aj(X), bj(X)])(X

(j)
1 −X(j))]

= (bj(X)− aj(X))
(aj(X) + bj(X)

2
−X(j)

)
.

Since bj(X)− aj(X) = 2−Kj , we have

E
X

(j)
1

[1(X
(j)
1 ∈ [aj(X), bj(X)])(X

(j)
1 −X(j))]

= 2−Kj

(aj(X) + bj(X)

2
−X(j)

)
.

Combining this with (S.7) and
∏d

j=1 2−Kj = 2−dlog2 kne yields

EX1
[1(X1 ∈ t)〈β,X1 −X〉]

= 2−dlog2 kne
d∑

j=1

β(j)
(aj(X) + bj(X)

2
−X(j)

)
.

Now, by (4) from the main text, which expresses the endpoints of the interval along the jth feature as randomly
stopped binary expansions of X(j), we have

aj(X) + bj(X)

2
−X(j) d

= 2−Kj−1 −
∑

k≥Kj+1

Bk2−k

d
= 2−Kj (1/2−

∑
k≥1

Bk+Kj
2−k)

d
= 2−Kj (1/2− X̃(j)),

where X̃ is uniformly distributed on [0, 1]d. Taking expectations with respect to Θ, we have that

EX1,Θ[1(X1 ∈ t)〈β,X1 −X〉]

d
= 2−dlog2 kne

d∑
j=1

β(j)(1− pj/2)dlog2 kne(1/2− X̃(j)). (S.8)

Observe that (S.8) is a sum of mean zero independent random variables, and hence, its squared expectation is
equal to the sum of the individual variances, viz.,

EX[(EX1,Θ[1(X1 ∈ t)〈β,X1 −X〉])2]

= 2−2dlog2 kne
d∑

j=1

|β(j)|2(1− pj/2)2dlog2 kneVar(X̃(j))

=
2−2dlog2 kne

∑d
j=1 |β

(j)|2(1− pj/2)2dlog2 kne

12
. (S.9)

Thus, combining (S.4) and (S.9), we have shown that

E[(Y (X)− f(X))2]

≥
( n2−dlog2 kne

1 + (n− 1)2−dlog2 kne

)2
∑d

j=1 |β
(j)|2(1− pj/2)2dlog2 kne

12

≥
∑d

j=1 |β
(j)|2k2 log2(1−pj/2)

n

96
.
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1.3 Proof of Theorem 5

Proof. First, note that by (Biau, 2012, Section 5.2, p. 1083-1084),

E[(Ŷ (X)− Y (X))2]

= nσ2E[(EΘ[W1])2]

= nσ2E[EΘ[W1]EΘ′ [W1]]

= E
[ nσ21(X1 ∈ t ∩ t′)

(1 +
∑n

i=2 1(Xi ∈ t))(1 +
∑n

i=2 1(Xi ∈ t′))

]
= E

[ nσ2λ(t ∩ t′)

(1 +
∑n

i=2 1(Xi ∈ t))(1 +
∑n

i=2 1(Xi ∈ t′))

]
,

where Θ′ is an independent copy of Θ. We first lower bound

EX2,...,Xn

[ 1

(1 +
∑n

i=2 1(Xi ∈ t))(1 +
∑n

i=2 1(Xi ∈ t′))

]
.

via Jensen’s inequality, which yields

1

EX2,...,Xn

[(
1 +

∑n
i=2 1(Xi ∈ t)

)(
1 +

∑n
i=2 1(Xi ∈ t′)

)] .
Next, we use linearity of expectation to write

EX2,...,Xn

[(
1 +

n∑
i=2

1(Xi ∈ t)
)(

1 +

n∑
i=2

1(Xi ∈ t′)
)]

= 1 + 2(n− 1)2−dlog2 kne + (n− 1)(n− 2)2−2dlog2 kne + (n− 1)λ(t ∩ t′)

≤ 5n2/k2
n,

where the last inequality follows from n ≥ 2dlog2 kne and λ(t ∩ t′) ≤ 2−dlog2 kne. Hence, the estimation error

E[(Ŷ (X)− Y (X))2] can be lower bounded by

σ2k2
n

5n
EΘ,Θ′ [λ(t ∩ t′)], (S.10)

where Θ′ is an independent copy of Θ. Thus by (S.10) and (12) from the main text, we are done if we can show

that EΘ,Θ′ [2
− 1

2

∑d
j=1 |Kj−K′j |] has a lower bound similar in form to the upper bound in (13) from the main text.

But this follows directly from Lemma S.1, since

EΘ,Θ′ [2
− 1

2

∑d
j=1 |Kj−K′j |] = EΘ,Θ′ [2

− 1
2

∑
j∈P |Kj−K′j |]

≥ (47)−d0∏
j∈P pj × (dlog2 kne)d0−1

,

provided dlog2 knepj ≥ 1.

1.4 Auxiliary lemma

Lemma S.1. Let M = (M1, . . . ,Mk) be distributed according to a multinomial distribution with m trials and
class probabilities (p1, . . . , pk), each of which is nonzero. Let M′ = (M ′1, . . . ,M

′
k) be an independent copy. Then,

E[2−
1
2

∑k
j=1 |Mj−M ′j |] ≤ 8k√

mk−1p1 · · · pk
. (S.11)

Furthermore, if mpj ≥ 1 for all j, then

E[2−
1
2

∑k
j=1 |Mj−M ′j |] ≥ (47)−k

mk−1p1 · · · pk
.
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Proof. The proof requires only elementary facts about the multinomial distribution and Stirling’s approximation.
First, note that

E[2−
1
2

∑k
j=1 |Mj−M ′j |]

=
∑

w1,...,wk

P
( k⋂

j=1

{|Mj −M ′j | = wj}
)

2−
1
2

∑k
j=1 wj

≤
∑

w1,...,wk−1

∑
τ∈{−1,+1}k−1

P
( k−1⋂

j=1

{Mj −M ′j = τjwj}
)

2−
1
2

∑k−1
j=1 wj . (S.12)

Next, let p(m) =
(

m
m1,...,mk

)
pm1

1 · · · pmk

k denote the multinomial mass function and let m∗ be ones of its modes.

Then, we can bound each probability in (S.12) by

P
( k−1⋂

j=1

{Mj −M ′j = τjwj}
)

=
∑
m

p(m)p(m + τw)

≤ p(m∗).

Combining these two inequalities, we have

E[2−
1
2

∑k
j=1 |Mj−M ′j |]

≤
∑

w1,...,wk−1

∑
τ∈{−1,+1}k−1

p(m∗)2−
1
2

∑k−1
j=1 wj

≤ (4 + 2
√

2)k−1p(m∗). (S.13)

Next, using a refinement of Stirling’s approximation (see for example (Robbins, 1955)), we have m! ≤
e
√

2πm(m/e)m and mj ! ≥
√

2πmj(mj/e)
mj ≥ e−1

√
2π(mj + 1)((mj + 1)/e)mj . Using these inequalities, we

upper bound the multinomial coefficient
(

m
m1,...,mk

)
, which in turn yields an upper bound on p(m∗), namely,

p(m∗) ≤ ek+1

(
√

2π)k−1

√
m

(m∗1 + 1) · · · (m∗k + 1)
(mp1/(m

∗
1 + 1))m

∗
1 · · · (mpk/(m∗k + 1))m

∗
k . (S.14)

Finally, (Feller, 1968, page 171, Exercise 28, Equation 10.1) states that any mode m∗ of the multinomial distri-
bution satisfies m∗j > mpj − 1 and hence from (S.14),

p(m∗) ≤ ek+1

(
√

2π)k−1

1√
mk−1p1 · · · pk

. (S.15)

Putting everything together from (S.13) and (S.15), we have

E[2−
1
2

∑k
j=1 |Mj−M ′j |] ≤ (4 + 2

√
2)k−1 ek+1

(
√

2π)k−1

1√
mk−1p1 · · · pk

<
8k√

mk−1p1 · · · pk
.

For the other direction, we first remark that

E[2−
1
2

∑k
j=1 |Mj−M ′j |] ≥ P(M = M′)

=
∑
m

(p(m))2

≥ (p(m′))2, (S.16)
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where m′j = bmpjc. Following the same strategy as before for the binomial coefficient
(

m
m1,...,mk

)
, i.e., mj ! ≤

e
√

2πmj(mj/e)
mj and m! ≥

√
2πm(m/e)m, we have

p(m′) ≥ e−k

(
√

2π)k−1

√
m

m′1 · · ·m′k
(mp1/m

′
1)m

′
1 · · · (mpk/m′k)m

′
k

≥ e−k

(
√

2π)k−1

1√
mk−1p1 · · · pk

,

provided mpj ≥ 1. Applying this inequality to (S.16) yields

E[2−
1
2

∑k
j=1 |Mj−M ′j |] ≥

( (e
√

2π)−k√
mk−1p1 · · · pk

)2

≥ (47)−k

mk−1p1 · · · pk
.
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