
Supplementary Material for “Sharp Analysis of a Simple Model for Random Forests”

Jason M. Klusowski

In this supplement, we give proofs of Theorem 1, Theorem 4, and Theorem 5 and an auxiliary lemma used in the proof of Theorem 2.

1 PROOFS

1.1 Proof of Theorem 1

Proof. We first decompose the approximation error as follows:

$$\begin{aligned} & \mathbb{E}[(\bar{Y}(\mathbf{X}) - f(\mathbf{X}))^2] \\ &= \mathbb{E}\left[\left(\sum_{i=1}^n \mathbb{E}_\Theta[W_i(f(\mathbf{X}_i) - f(\mathbf{X}))] - \mathbf{1}(\mathcal{E}^c)f(\mathbf{X})\right)^2\right] \end{aligned} \tag{S.1}$$

$$= \mathbb{E}\left[\left(\sum_{i=1}^n \mathbb{E}_\Theta[W_i(f(\mathbf{X}_i) - f(\mathbf{X}))]\right)^2\right] + \mathbb{E}[\mathbf{1}(\mathcal{E}^c)|f(\mathbf{X})|^2] \tag{S.2}$$

$$\leq \mathbb{E}\left[\left(\sum_{i=1}^n \mathbb{E}_\Theta[W_i(f(\mathbf{X}_i) - f(\mathbf{X}))]\right)^2\right] + B^2\mathbb{P}(\mathcal{E}^c). \tag{S.3}$$

Next, by Assumption 2 in the main text, we have that $|f(\mathbf{X}_i) - f(\mathbf{X})| \leq \sum_{j=1}^d \|\partial_j f\|_\infty |\mathbf{X}_i^{(j)} - \mathbf{X}^{(j)}|$, and thus, $W_i|f(\mathbf{X}_i) - f(\mathbf{X})| \leq W_i \sum_{j=1}^d \|\partial_j f\|_\infty (b_j(\mathbf{X}) - a_j(\mathbf{X}))$. This shows that

$$\begin{aligned} \sum_{i=1}^n W_i|f(\mathbf{X}_i) - f(\mathbf{X})| &\leq \sum_{i=1}^n W_i \sum_{j=1}^d \|\partial_j f\|_\infty (b_j(\mathbf{X}) - a_j(\mathbf{X})) \\ &\leq \sum_{j=1}^d \|\partial_j f\|_\infty (b_j(\mathbf{X}) - a_j(\mathbf{X})). \end{aligned}$$

Taking expectations with respect to Θ of both sides of this inequality, we may bound the first term in (S.3) by

$$\mathbb{E}\left[\left(\sum_{j=1}^d \|\partial_j f\|_\infty \mathbb{E}_\Theta[b_j(\mathbf{X}) - a_j(\mathbf{X})]\right)^2\right].$$

Jensen’s inequality for the square function then yields a further upper bound of $d \sum_{j=1}^d \|\partial_j f\|_\infty^2 \mathbb{E}[(\mathbb{E}_\Theta[b_j(\mathbf{X}) - a_j(\mathbf{X})])^2]$. \square

1.2 Proof of Theorem 4

Proof. Using (S.2) from the proof of Theorem 1, Jensen’s inequality for the square function, and exchangeability of the data, we obtain the following lower bound on the approximation error:

$$\begin{aligned} & \mathbb{E} \left[\left(\sum_{i=1}^n \mathbb{E}_\Theta [W_i(f(\mathbf{X}_i) - f(\mathbf{X}))] \right)^2 \right] \\ & \geq \mathbb{E}_\mathbf{X} \left[\left(\sum_{i=1}^n \mathbb{E}_{\mathbf{X}_1, \dots, \mathbf{X}_n, \Theta} [W_i(f(\mathbf{X}_i) - f(\mathbf{X}))] \right)^2 \right] \\ & = n^2 \mathbb{E}_\mathbf{X} [(\mathbb{E}_{\mathbf{X}_1, \dots, \mathbf{X}_n, \Theta} [W_1(f(\mathbf{X}_1) - f(\mathbf{X}))])^2]. \end{aligned}$$

Recall the form of the weights

$$W_1 = \frac{\mathbf{1}(\mathbf{X}_1 \in \mathbf{t})}{\sum_{i=1}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t})} \mathbf{1}(\mathcal{E}) = \frac{\mathbf{1}(\mathbf{X}_1 \in \mathbf{t})}{1 + \sum_{i \geq 2} \mathbf{1}(\mathbf{X}_i \in \mathbf{t})}.$$

Define $T = \sum_{i \geq 2} \mathbf{1}(\mathbf{X}_i \in \mathbf{t})$ and $\Delta_1 = f(\mathbf{X}_1) - f(\mathbf{X})$. By a conditioning argument, we write

$$\begin{aligned} & \mathbb{E}_\mathbf{X} [(\mathbb{E}_{\mathbf{X}_1, \dots, \mathbf{X}_n, \Theta} [W_1(f(\mathbf{X}_1) - f(\mathbf{X}))])^2] \\ & = \mathbb{E}_\mathbf{X} \left[\left(\mathbb{E}_{\mathbf{X}_1, \dots, \mathbf{X}_n, \Theta} \left[\frac{\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) \Delta_1}{1 + T} \right] \right)^2 \right] \\ & = \mathbb{E}_\mathbf{X} \left[\left(\mathbb{E}_\Theta \left[\mathbb{E}_{\mathbf{X}_2, \dots, \mathbf{X}_n} \left[\frac{1}{1 + T} \right] \mathbb{E}_{\mathbf{X}_1} [\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) \Delta_1] \right] \right)^2 \right] \\ & = \mathbb{E}_\mathbf{X} \left[\left(\mathbb{E}_{\mathbf{X}_2, \dots, \mathbf{X}_n} \left[\frac{1}{1 + T} \right] \right)^2 \left(\mathbb{E}_{\mathbf{X}_1, \Theta} [\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) \Delta_1] \right)^2 \right], \end{aligned}$$

where the last line follows from the fact that $\mathbb{E}_{\mathbf{X}_2, \dots, \mathbf{X}_n} [\frac{1}{1+T}]$ is independent of Θ , a consequence of T being conditionally distributed $\text{Bin}(n-1, 2^{-\lceil \log_2 k_n \rceil})$ given \mathbf{X} and Θ . Next, we can use Jensen’s inequality on the convex function $x \mapsto 1/(1+x)$ to lower bound

$$\begin{aligned} \mathbb{E}_{\mathbf{X}_2, \dots, \mathbf{X}_n} \left[\frac{1}{1 + T} \right] & \geq \frac{1}{1 + \mathbb{E}_{\mathbf{X}_2, \dots, \mathbf{X}_n} [T]} \\ & = \frac{1}{1 + (n-1)2^{-\lceil \log_2 k_n \rceil}}. \end{aligned}$$

Hence, we obtain that $n^2 \mathbb{E}_\mathbf{X} [(\mathbb{E}_{\mathbf{X}_1, \dots, \mathbf{X}_n, \Theta} [W_1(f(\mathbf{X}_1) - f(\mathbf{X}))])^2]$ is at least

$$\left(\frac{n}{1 + (n-1)2^{-\lceil \log_2 k_n \rceil}} \right)^2 \mathbb{E}_\mathbf{X} [(\mathbb{E}_{\mathbf{X}_1, \Theta} [\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) \Delta_1])^2]. \quad (\text{S.4})$$

Next, in giving a lower bound on $\mathbb{E}_\mathbf{X} [(\mathbb{E}_{\mathbf{X}_1, \Theta} [\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) \Delta_1])^2]$, we will show that

$$\mathbb{E}_{\mathbf{X}_1, \Theta} [\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) \langle \boldsymbol{\beta}, \mathbf{X}_1 - \mathbf{X} \rangle] \quad (\text{S.5})$$

can be written as a weighted sum of d independent Uniform(0, 1) variables minus their mean, 1/2. Consequently, the squared expectation of (S.5) with respect to \mathbf{X} is the sum of the respective variances. Using this, we will show that

$$\begin{aligned} & \mathbb{E}_\mathbf{X} [(\mathbb{E}_{\mathbf{X}_1, \Theta} [\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) \langle \boldsymbol{\beta}, \mathbf{X}_1 - \mathbf{X} \rangle])^2] \\ & = \frac{2^{-2\lceil \log_2 k_n \rceil} \sum_{j=1}^d |\boldsymbol{\beta}^{(j)}| (1 - p_j/2)^{2\lceil \log_2 k_n \rceil}}{12}. \end{aligned} \quad (\text{S.6})$$

To prove (S.6), observe that

$$\begin{aligned} & \mathbb{E}_{\mathbf{X}_1} [\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) \langle \boldsymbol{\beta}, \mathbf{X}_1 - \mathbf{X} \rangle] \\ & = \sum_{j=1}^d \mathbb{E}_{\mathbf{X}_1} [\mathbf{1}(\mathbf{X}_1 \in \mathbf{t}) (\boldsymbol{\beta}^{(j)} (\mathbf{X}_1^{(j)} - \mathbf{X}^{(j)}))] \\ & = \sum_{j=1}^d \boldsymbol{\beta}^{(j)} \prod_{j' \neq j} \lambda([a_{j'}, b_{j'}]) \mathbb{E}_{\mathbf{X}_1^{(j)}} [\mathbf{1}(\mathbf{X}_1^{(j)} \in [a_j(\mathbf{X}), b_j(\mathbf{X})]) (\mathbf{X}_1^{(j)} - \mathbf{X}^{(j)})]. \end{aligned} \quad (\text{S.7})$$

Next, note that because $\mathbf{X}^{(j)} \sim \text{Uniform}(0, 1)$, we have

$$\begin{aligned} \mathbb{E}_{\mathbf{X}_1^{(j)}}[\mathbf{1}(\mathbf{X}_1^{(j)} \in [a_j(\mathbf{X}), b_j(\mathbf{X})])(\mathbf{X}_1^{(j)} - \mathbf{X}^{(j)})] \\ = (b_j(\mathbf{X}) - a_j(\mathbf{X}))\left(\frac{a_j(\mathbf{X}) + b_j(\mathbf{X})}{2} - \mathbf{X}^{(j)}\right). \end{aligned}$$

Since $b_j(\mathbf{X}) - a_j(\mathbf{X}) = 2^{-K_j}$, we have

$$\begin{aligned} \mathbb{E}_{\mathbf{X}_1^{(j)}}[\mathbf{1}(\mathbf{X}_1^{(j)} \in [a_j(\mathbf{X}), b_j(\mathbf{X})])(\mathbf{X}_1^{(j)} - \mathbf{X}^{(j)})] \\ = 2^{-K_j}\left(\frac{a_j(\mathbf{X}) + b_j(\mathbf{X})}{2} - \mathbf{X}^{(j)}\right). \end{aligned}$$

Combining this with (S.7) and $\prod_{j=1}^d 2^{-K_j} = 2^{-\lceil \log_2 k_n \rceil}$ yields

$$\begin{aligned} \mathbb{E}_{\mathbf{X}_1}[\mathbf{1}(\mathbf{X}_1 \in \mathbf{t})\langle \boldsymbol{\beta}, \mathbf{X}_1 - \mathbf{X} \rangle] \\ = 2^{-\lceil \log_2 k_n \rceil} \sum_{j=1}^d \boldsymbol{\beta}^{(j)}\left(\frac{a_j(\mathbf{X}) + b_j(\mathbf{X})}{2} - \mathbf{X}^{(j)}\right). \end{aligned}$$

Now, by (4) from the main text, which expresses the endpoints of the interval along the j^{th} feature as randomly stopped binary expansions of $\mathbf{X}^{(j)}$, we have

$$\begin{aligned} \frac{a_j(\mathbf{X}) + b_j(\mathbf{X})}{2} - \mathbf{X}^{(j)} &\stackrel{d}{=} 2^{-K_j-1} - \sum_{k \geq K_j+1} B_k 2^{-k} \\ &\stackrel{d}{=} 2^{-K_j}(1/2 - \sum_{k \geq 1} B_{k+K_j} 2^{-k}) \\ &\stackrel{d}{=} 2^{-K_j}(1/2 - \tilde{\mathbf{X}}^{(j)}), \end{aligned}$$

where $\tilde{\mathbf{X}}$ is uniformly distributed on $[0, 1]^d$. Taking expectations with respect to Θ , we have that

$$\begin{aligned} \mathbb{E}_{\mathbf{X}_1, \Theta}[\mathbf{1}(\mathbf{X}_1 \in \mathbf{t})\langle \boldsymbol{\beta}, \mathbf{X}_1 - \mathbf{X} \rangle] \\ \stackrel{d}{=} 2^{-\lceil \log_2 k_n \rceil} \sum_{j=1}^d \boldsymbol{\beta}^{(j)}(1 - p_j/2)^{\lceil \log_2 k_n \rceil}(1/2 - \tilde{\mathbf{X}}^{(j)}). \end{aligned} \tag{S.8}$$

Observe that (S.8) is a sum of mean zero independent random variables, and hence, its squared expectation is equal to the sum of the individual variances, viz.,

$$\begin{aligned} \mathbb{E}_{\mathbf{X}}[(\mathbb{E}_{\mathbf{X}_1, \Theta}[\mathbf{1}(\mathbf{X}_1 \in \mathbf{t})\langle \boldsymbol{\beta}, \mathbf{X}_1 - \mathbf{X} \rangle])^2] \\ = 2^{-2\lceil \log_2 k_n \rceil} \sum_{j=1}^d |\boldsymbol{\beta}^{(j)}|^2 (1 - p_j/2)^{2\lceil \log_2 k_n \rceil} \text{Var}(\tilde{\mathbf{X}}^{(j)}) \\ = \frac{2^{-2\lceil \log_2 k_n \rceil} \sum_{j=1}^d |\boldsymbol{\beta}^{(j)}|^2 (1 - p_j/2)^{2\lceil \log_2 k_n \rceil}}{12}. \end{aligned} \tag{S.9}$$

Thus, combining (S.4) and (S.9), we have shown that

$$\begin{aligned} \mathbb{E}[(\bar{Y}(\mathbf{X}) - f(\mathbf{X}))^2] \\ \geq \left(\frac{n2^{-\lceil \log_2 k_n \rceil}}{1 + (n-1)2^{-\lceil \log_2 k_n \rceil}}\right)^2 \frac{\sum_{j=1}^d |\boldsymbol{\beta}^{(j)}|^2 (1 - p_j/2)^{2\lceil \log_2 k_n \rceil}}{12} \\ \geq \frac{\sum_{j=1}^d |\boldsymbol{\beta}^{(j)}|^2 k_n^{2\log_2(1-p_j/2)}}{96}. \end{aligned}$$

□

1.3 Proof of Theorem 5

Proof. First, note that by (Biau, 2012, Section 5.2, p. 1083-1084),

$$\begin{aligned}
 & \mathbb{E}[(\hat{Y}(\mathbf{X}) - \bar{Y}(\mathbf{X}))^2] \\
 &= n\sigma^2 \mathbb{E}[(\mathbb{E}_{\Theta}[W_1])^2] \\
 &= n\sigma^2 \mathbb{E}[\mathbb{E}_{\Theta}[W_1]\mathbb{E}_{\Theta'}[W_1]] \\
 &= \mathbb{E}\left[\frac{n\sigma^2 \mathbf{1}(\mathbf{X}_1 \in \mathbf{t} \cap \mathbf{t}')}{(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}))(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}'))}\right] \\
 &= \mathbb{E}\left[\frac{n\sigma^2 \lambda(\mathbf{t} \cap \mathbf{t}')}{(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}))(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}'))}\right],
 \end{aligned}$$

where Θ' is an independent copy of Θ . We first lower bound

$$\mathbb{E}_{\mathbf{X}_2, \dots, \mathbf{X}_n} \left[\frac{1}{(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}))(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}'))} \right].$$

via Jensen’s inequality, which yields

$$\frac{1}{\mathbb{E}_{\mathbf{X}_2, \dots, \mathbf{X}_n} \left[(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}))(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}')) \right]}.$$

Next, we use linearity of expectation to write

$$\begin{aligned}
 & \mathbb{E}_{\mathbf{X}_2, \dots, \mathbf{X}_n} \left[\left(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}) \right) \left(1 + \sum_{i=2}^n \mathbf{1}(\mathbf{X}_i \in \mathbf{t}') \right) \right] \\
 &= 1 + 2(n-1)2^{-\lceil \log_2 k_n \rceil} + (n-1)(n-2)2^{-2\lceil \log_2 k_n \rceil} + (n-1)\lambda(\mathbf{t} \cap \mathbf{t}') \\
 &\leq 5n^2/k_n^2,
 \end{aligned}$$

where the last inequality follows from $n \geq 2^{\lceil \log_2 k_n \rceil}$ and $\lambda(\mathbf{t} \cap \mathbf{t}') \leq 2^{-\lceil \log_2 k_n \rceil}$. Hence, the estimation error $\mathbb{E}[(\hat{Y}(\mathbf{X}) - \bar{Y}(\mathbf{X}))^2]$ can be lower bounded by

$$\frac{\sigma^2 k_n^2}{5n} \mathbb{E}_{\Theta, \Theta'} [\lambda(\mathbf{t} \cap \mathbf{t}')], \tag{S.10}$$

where Θ' is an independent copy of Θ . Thus by (S.10) and (12) from the main text, we are done if we can show that $\mathbb{E}_{\Theta, \Theta'} [2^{-\frac{1}{2} \sum_{j=1}^d |K_j - K'_j|}]$ has a lower bound similar in form to the upper bound in (13) from the main text. But this follows directly from Lemma S.1, since

$$\begin{aligned}
 \mathbb{E}_{\Theta, \Theta'} [2^{-\frac{1}{2} \sum_{j=1}^d |K_j - K'_j|}] &= \mathbb{E}_{\Theta, \Theta'} [2^{-\frac{1}{2} \sum_{j \in \mathcal{P}} |K_j - K'_j|}] \\
 &\geq \frac{(47)^{-d_0}}{\prod_{j \in \mathcal{P}} p_j \times (\lceil \log_2 k_n \rceil)^{d_0-1}},
 \end{aligned}$$

provided $\lceil \log_2 k_n \rceil p_j \geq 1$. □

1.4 Auxiliary lemma

Lemma S.1. *Let $\mathbf{M} = (M_1, \dots, M_k)$ be distributed according to a multinomial distribution with m trials and class probabilities (p_1, \dots, p_k) , each of which is nonzero. Let $\mathbf{M}' = (M'_1, \dots, M'_k)$ be an independent copy. Then,*

$$\mathbb{E}[2^{-\frac{1}{2} \sum_{j=1}^k |M_j - M'_j|}] \leq \frac{8^k}{\sqrt{m^{k-1} p_1 \cdots p_k}}. \tag{S.11}$$

Furthermore, if $mp_j \geq 1$ for all j , then

$$\mathbb{E}[2^{-\frac{1}{2} \sum_{j=1}^k |M_j - M'_j|}] \geq \frac{(47)^{-k}}{m^{k-1} p_1 \cdots p_k}.$$

Proof. The proof requires only elementary facts about the multinomial distribution and Stirling's approximation. First, note that

$$\begin{aligned}
 & \mathbb{E}[2^{-\frac{1}{2} \sum_{j=1}^k |M_j - M'_j|}] \\
 &= \sum_{w_1, \dots, w_k} \mathbb{P}\left(\bigcap_{j=1}^k \{|M_j - M'_j| = w_j\}\right) 2^{-\frac{1}{2} \sum_{j=1}^k w_j} \\
 &\leq \sum_{w_1, \dots, w_{k-1}} \sum_{\tau \in \{-1, +1\}^{k-1}} \mathbb{P}\left(\bigcap_{j=1}^{k-1} \{M_j - M'_j = \tau_j w_j\}\right) 2^{-\frac{1}{2} \sum_{j=1}^{k-1} w_j}. \tag{S.12}
 \end{aligned}$$

Next, let $p(\mathbf{m}) = \binom{m}{m_1, \dots, m_k} p_1^{m_1} \cdots p_k^{m_k}$ denote the multinomial mass function and let \mathbf{m}^* be ones of its modes. Then, we can bound each probability in (S.12) by

$$\begin{aligned}
 \mathbb{P}\left(\bigcap_{j=1}^{k-1} \{M_j - M'_j = \tau_j w_j\}\right) &= \sum_{\mathbf{m}} p(\mathbf{m}) p(\mathbf{m} + \tau \mathbf{w}) \\
 &\leq p(\mathbf{m}^*).
 \end{aligned}$$

Combining these two inequalities, we have

$$\begin{aligned}
 & \mathbb{E}[2^{-\frac{1}{2} \sum_{j=1}^k |M_j - M'_j|}] \\
 &\leq \sum_{w_1, \dots, w_{k-1}} \sum_{\tau \in \{-1, +1\}^{k-1}} p(\mathbf{m}^*) 2^{-\frac{1}{2} \sum_{j=1}^{k-1} w_j} \\
 &\leq (4 + 2\sqrt{2})^{k-1} p(\mathbf{m}^*). \tag{S.13}
 \end{aligned}$$

Next, using a refinement of Stirling's approximation (see for example (Robbins, 1955)), we have $m! \leq e\sqrt{2\pi m}(m/e)^m$ and $m_j! \geq \sqrt{2\pi m_j}(m_j/e)^{m_j} \geq e^{-1}\sqrt{2\pi(m_j+1)}((m_j+1)/e)^{m_j}$. Using these inequalities, we upper bound the multinomial coefficient $\binom{m}{m_1, \dots, m_k}$, which in turn yields an upper bound on $p(\mathbf{m}^*)$, namely,

$$p(\mathbf{m}^*) \leq \frac{e^{k+1}}{(\sqrt{2\pi})^{k-1}} \sqrt{\frac{m}{(m_1^* + 1) \cdots (m_k^* + 1)}} (mp_1/(m_1^* + 1))^{m_1^*} \cdots (mp_k/(m_k^* + 1))^{m_k^*}. \tag{S.14}$$

Finally, (Feller, 1968, page 171, Exercise 28, Equation 10.1) states that any mode \mathbf{m}^* of the multinomial distribution satisfies $m_j^* > mp_j - 1$ and hence from (S.14),

$$p(\mathbf{m}^*) \leq \frac{e^{k+1}}{(\sqrt{2\pi})^{k-1}} \frac{1}{\sqrt{m^{k-1} p_1 \cdots p_k}}. \tag{S.15}$$

Putting everything together from (S.13) and (S.15), we have

$$\begin{aligned}
 \mathbb{E}[2^{-\frac{1}{2} \sum_{j=1}^k |M_j - M'_j|}] &\leq (4 + 2\sqrt{2})^{k-1} \frac{e^{k+1}}{(\sqrt{2\pi})^{k-1}} \frac{1}{\sqrt{m^{k-1} p_1 \cdots p_k}} \\
 &< \frac{8^k}{\sqrt{m^{k-1} p_1 \cdots p_k}}.
 \end{aligned}$$

For the other direction, we first remark that

$$\begin{aligned}
 \mathbb{E}[2^{-\frac{1}{2} \sum_{j=1}^k |M_j - M'_j|}] &\geq \mathbb{P}(\mathbf{M} = \mathbf{M}'') \\
 &= \sum_{\mathbf{m}} (p(\mathbf{m}))^2 \\
 &\geq (p(\mathbf{m}'))^2, \tag{S.16}
 \end{aligned}$$

where $m'_j = \lfloor mp_j \rfloor$. Following the same strategy as before for the binomial coefficient $\binom{m}{m_1, \dots, m_k}$, i.e., $m_j! \leq e\sqrt{2\pi m_j}(m_j/e)^{m_j}$ and $m! \geq \sqrt{2\pi m}(m/e)^m$, we have

$$\begin{aligned} p(\mathbf{m}') &\geq \frac{e^{-k}}{(\sqrt{2\pi})^{k-1}} \sqrt{\frac{m}{m'_1 \cdots m'_k}} (mp_1/m'_1)^{m'_1} \cdots (mp_k/m'_k)^{m'_k} \\ &\geq \frac{e^{-k}}{(\sqrt{2\pi})^{k-1}} \frac{1}{\sqrt{m^{k-1}p_1 \cdots p_k}}, \end{aligned}$$

provided $mp_j \geq 1$. Applying this inequality to (S.16) yields

$$\begin{aligned} \mathbb{E}[2^{-\frac{1}{2}\sum_{j=1}^k |M_j - M'_j|}] &\geq \left(\frac{(e\sqrt{2\pi})^{-k}}{\sqrt{m^{k-1}p_1 \cdots p_k}} \right)^2 \\ &\geq \frac{(47)^{-k}}{m^{k-1}p_1 \cdots p_k}. \end{aligned} \quad \square$$

References

Biau, G. (2012). Analysis of a random forests model. *Journal of Machine Learning Research*, 13(Apr):1063–1095.

Feller, W. (1968). *An Introduction to Probability Theory and Its Applications: Volume I*, volume 1. John Wiley & Sons.

Robbins, H. (1955). A remark on Stirling’s formula. *The American Mathematical Monthly*, 62(1):26–29.