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Figure 4: Normalized L2 distance between two bivari-
ate distributions with standard normal marginals, one
with Gaussian copula and the other with maximum-
entropy copula under Spearman correlation con-
straints, for various Spearman correlation values ρs.

A Further Details

A.1 Additional Experiment

It can be shown that the highest R2 and the lowest
RMSE achievable by a regression model using x to
predict y read respectively

R̄2 (Px,y) = 1− e−2I(y;x)

and
¯RMSE

(
Px, y

)
= e−I(y;x)

√
Var (y).

We use MIND to estimate the highest performance
achievable in the Kaggle competition ‘House Prices:
Advanced Regression Techniques’. The aim is to pre-
dict the price at which houses were sold from var-
ious continuous and categorical variables. The re-
sults are summarized in Table 3, when all variables
are used, when the 10 explanatory variables Over-
allQual, GrLivArea, YearBuilt, TotalBsmtSF, Over-
allCond, LotArea, BsmtFinSF1, BldgType, Kitchen-
Qual, MSZoning are used, and when the first 5 of the
foregoing list are used.

A.2 Further Details on Handling Categorical
Data

Categorical and non-ordinal variables should be ordi-
narily encoded as customary, and ordinal data should
be treated as continuous variables. The only practical
requirements for the validity of this approach are i) to
use a ranking function that assigns different ranks to
all inputs including ties (e.g. scipy’s ‘rankdata’ func-
tion with method ‘ordinal’, or leveraging PyTorch’s
or Tensorflow’s ‘argsort’.), and ii) to avoid encoding

methods that may result in linearly dependent coordi-
nates (e.g. one-hot-encoding on a binary non-ordinal
categorical variable). When a suitable ranking func-
tion is not available a small random jitter may be
added to ordinal variables to remove ties.

This approach is mathematically valid thanks to the
quantization characterization of the mutual informa-
tion (Cover (1999), Definition 8.54). In effect, if we
denote P (resp. Q) a partition of the domain X (resp.
Y) of x (resp. y), and [x]P ∈ N (resp. [y]Q ∈ N) a
discrete random variable indicating which element of
P (resp. Q) x (resp. y) belongs to, then we have

I (y;x) = sup
P,Q

I ([y]Q; [x]P) , (12)

where the rightmost mutual information is between
discrete random variables.

This characterization implies that the mutual informa-
tion is always invariant by 1-to-1 transformations, of
which ordinal encoding is one, whether coordinates are
all continuous, all categorical, or a mix.5 It can also be
seen that adding a negligible random jitter to an or-
dinal random variable will not materially change the
mutual information,6 but will turn the ordinal vari-
able into a continuous one so that results developed
for continuous variables may apply. Strictly speaking,
by the data processing inequality (Cover (1999), The-
orem 2.8.1), adding a random jitter to ordinal vari-
ables increases the mutual information but, as the
jitter standard deviation goes to zero, the difference
becomes negligible, even though we still enjoy the
benefits of working with continuous variables, with-
out downside. Considering that MIND only depends
on variables through their ranks, we may do without
adding a jitter, so long as the ranking algorithm does
not attribute the same rank to ties.

Another approach for handling categorical variables
would be to use Table 2, and to use the entropy decom-
position formula (Equation (1)) to estimate differen-
tial entropies and conditional entropies. However, this
approach can be far less data-efficient as it requires
splitting the dataset into as many subsets as the num-
ber of distinct tuples of categorical variable values, so
as to evaluate conditional differential entropies.

5Indeed, for any 1-to-1 transformation f and partition
P of X , we may always find a partition P ′ of the image
space f (X ) such that [x]P = [f (x)]P′ .

6If we denote g the operation consisting of adding a
negligible random jitter to an ordinal variable xi, then by
reducing the jitter’s standard deviation, for any partition
P of the domain of xi, we may always find a partition P ′

of the image space such that P ([xi]P = [g (xi)]P′) = 1− e
for e arbitrarily small.
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y is continuous y is categorical

x is continuous I(y;x) = h(y) + h(x)− h(y;x) I(y;x) = h(x)−
∑
i∈Y

h(x|y = i)Py(i)

x is categorical I(y;x) = h(y)−
∑
i∈X

h(y|x = i)Px(i) I(y;x) = H(y) +H(x)−H(y;x)

x has continous coordinates xc
and categorical coordinates xd

I(y;x) = h(y) +
∑
i∈Xd

[h(xc|xd = i)− h (y,xc|xd = i)]Pxd(i) I(y;x) = I(y;xd) +
∑
i∈Xd

Pxd(i)h(xc|xd = i)−
∑
j∈Y

h (xc|xd = i, y = j)Pxd, y(i, j)

Table 2: Expression of the mutual information I(y;x) as a function of the Shannon entropy H(.), and/or
the differential entropy h(.), depending on whether y and/or x has continuous and/or categorical coordinates.
Expressions of the type h(x|y = i) are to be understood as the differential entropy of the continuous conditional
distribution x|y = i.

I(y;x) R̄2 ¯RMSE d n
1.50 0.95 18,531 80 1460
0.76 0.78 36,979 10 1460
0.65 0.73 41,007 5 1460

Table 3: Mutual information and highest perfor-
mances achievable in the ‘House Prices: Advanced Re-
gression Techniques’ Kaggle challenge using all, 10 or
5 explanatory variables.

B Proofs

B.1 Proof of Proposition 2.1

Any continuous 1-to-1 univariate transformation gi is
either increasing or decreasing. Increasing transfor-
mations leave copulas invariant. Moreover, any con-
tinuous decreasing function gi on R can be written
as f(−x) where f is a continuous increasing func-
tion, so that we may focus on proving the statement
for the transformation gi : z → −z. Let us denote
z̄ = (z1, . . . ,−zi, . . . , zd), c̄ its copula density, and c
the copula density of z = (z1, . . . , zd). We have

c̄ (u1, . . . , ud) = c (u1, . . . , 1− ui, . . . , ud) .

A simple change of variables shows that h (uz) =
h (uz̄).

B.2 Proof of Theorem 3.1

Let P be a d-dimensional copula distribution, and
U the uniform distribution on [0, 1]d. We note that
h(P ) = −KL(P ||U). Thus the optimization problem
(MIND) is equivalent to looking for the I-projection
of U on the space E of copula distributions satisfying
the linear constraint EP [φm(u)] = αm, as defined in
Csiszár (1975).

Existence and uniqueness: If there exists a copula
distribution P satisfying the constraints and admit-
ting an entropy, then E is not empty. E is convex as
every convex combination of copulas satisfying the lin-
ear constraint EP [φm(u)] = αm is itself a copula that
satisfies said constraint.

We say that a space of continuous distributions sup-
ported on [0, 1]d is variation closed when it is closed
in the topology of the variation distance |P − Q| =∫
|p − q|dU , where p and q are the Radon-Nikodym

derivatives of P and Q with respect to U (i.e. their
pdfs).

Lemma B.1. E is variation-closed.

Proof. Let Pn ∈ E be a sequence converging in vari-
ation to a distribution P . We need to show that P
also satisfies the linear constraints and has uniform
marginals. Convergence in variation implies that for
every test function f∫

[0,1]d
f(u)pn(u)du→

∫
[0,1]d

f(u)p(u)du. (13)

Taking f = φm proves that the limit distribution P
satisfies the linear constraints. We now need to prove
that it has uniform marginals.

Let us consider u−i = (. . . , ui−1, ui+1, . . . ) the vec-
tor u without its i-th coordinate, and let us choose a
test function f that only depends on ui. By Fubini’s
theorem we have∫

[0,1]d
f(u)pn(u)du =

∫
f(ui)

(∫
pn(u)du−i

)
︸ ︷︷ ︸

=1

dui

=

∫
[0,1]

f(ui)dui

=

∫
[0,1]d

f(ui)p(u)du

where the last equality is due to the Equation (13).
Putting the last two equality together, we get∫

f(ui)

(
1−

∫
p(u)du−i

)
dui = 0

for every univariate test function f , which implies that
every marginal of P is uniform.

E being convex, non-empty, and variation closed, U
admits a unique I-projection on E (see Theorem 2.1
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in Csiszár (1975)), or equivalently, (MIND) admits a
unique solution.

Functional form of the pdf : Let us denote F the
space of distributions supported on [0, 1]d that satisfy
the linear constraint EP [φm(u)] = αm. Clearly, E ⊂
F as the only difference between the two sets is that
E only contains elements of F with uniform marginals
(i.e. copula distributions). The I-projection PAM of
U on F , which exists because F is convex, non-empty,
and variation cloosed, is the minimizer of the problem
(A-MIND).

By Theorem 2.3 in Csiszár (1975), PM is the I-
projection of PAM on E .

Applying Theorem 3.1 (Case A) in Csiszár (1975), we
get that PAM has density with respect to U , which is

also its pdf, of the form pAM = eθ
Tφm(u). Moreover,

any distribution in F with density with respect to U
of this form is the I-projection of U on F .

Applying Theorem 3.1 (Case B) in Csiszár (1975),
we get that PM has density with respect to PAM of
the form

∏d
i=1 fi (ui), where fi are non-negative and

log-integrable. Moreover, any distribution in E with
density with respect to PAM of this form is the I-
projection of PAM on E .

Hence, PM has density with respect to U , which is also
its pdf,

pM = eθ
Tφm(u)

d∏
i=1

fi (ui) ,

and any distribution on [0, 1]d whose pdf of this form
is the minimizer of (MIND).

Pythagoras’ Identity: Theorem 3.1 in Csiszár
(1975) guarantees that identity (3.1) in Csiszár (1975)
holds and

−h(P ) = −h (PAM) +KL (P ||PAM) (14)

for any P ∈ F and

KL(Q||PAM) =KL(PM||PAM) +KL (Q||PM) (15)

for any Q ∈ E ⊂ F .

As Q ∈ F ,

KL(Q||PAM) = h (PAM)− h(Q).

Thus,

h (PAM)− h(Q) =KL(PM||PAM) +KL (Q||PM)

and

−h(Q) =− h (PAM) +KL(PM||PAM) +KL (Q||PM) .

As PM ∈ F ,

−h (PM) =− h (PAM) +KL(PM||PAM),

and we get

−h(Q) = −h(PM) +KL (Q||PM) .

B.3 Proof of Theorem 3.2

To prove Theorem 3.1 we had to prove Theorem 3.2.
See Section B.2.

B.4 Proof of Theorem 3.3

Let

g (u;φm,αm) :=

q∏
i=1

pM (w,vi; ηi,βi) .

We want to prove that

g (u;φm,αm) = pM (u;φm,αm) .

We know from Theorem 3.1 that pM (u;φm,αm) is the
only copula density of the form

eθ
Tφm(u) = e

∑q
i=1 θ

T
i ηi(w,vi) =

q∏
i=1

eθ
T
i ηi(w,vi)

that satisfies the constraints EP [ψm (u)] = βm.

First we note that g is a copula entropy. Indeed, in-
tegrating g with respect to every variable but a co-
ordinate of vi is always 1 by virtue of the fact that
pM (w,vi; ηi,βi) are copula densities. To see why, note
that we may first integrate with respect to vj for all
j 6= i, and then with respect to ω and all other coordi-
nates of vi. Additionally, if we integrate with respect
to all variables but ω, we get∫

g (u;φm,αm) dv1 . . . dvq

=

∫
pM (w,vq; ηq,βq)× · · ·×∫ pM (w,v1; η1,β1) dv1︸ ︷︷ ︸

=1

 dv2 . . . dvq

= 1.

Second, g clearly has the form
∏q
i=1 e

θT
i ηi(w,vi).

Finally, g satisfies the constraints EP [ψm (u)] = βm
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as ∫
ηi (w,vi) g (u;φm,αm) du

=

∫
ηi (w,vi) pM (w,vi; ηi,βi)

×


∫ ∏

j 6=i

pM (w,vj ; ηj ,βj) dvj︸ ︷︷ ︸
=1

 dωdvi

=

∫
ηi (w,vi) pM (w,vi; ηi,βi) dωdvi

=βi,

where we’ve used the fact that each pM (w,vj ; ηj ,βj)
has uniform marginals, and satisfies the constraint

EP [ηj (ω,vj)] = βj .

B.5 Proof of Theorem 3.4

The essence of the proof is in the transitivity property
of I-projections. Indeed, if P ⊂ Q are linear sets of
probability distributions supported on [0, 1]d, Q the I-
projection of the standard uniform U on Q, and P the
I-projection of U on P, then P is also the I-projection
of Q on P (Theorem 2.3 Csiszár (1975)).

In the case of Theorem 3.4, Q is the set of proba-
bility distributions satisfying all constraints, and Q
is the set of probability distributions satisfying all
but the between-blocks constraints. If we denote,
q (u;ψm,βm) :=

∏q
i=1 pAM (vi; ηi,βi), a direct appli-

cation of Theorem 4.1 shows that q is the density of
the I-projection Q of U on Q. The maximizer of the
full (A-MIND) problem is therefore the I-projection
of Q on P, and we know from Theorem 3.1 in Csiszár
(1975) that it has Radon-Nikodym derivative with re-

spect to Q of the form dP
dQ = eθ

Tφk
m(u). Putting every-

thing together, we get that the maximizer P of the full
(A-MIND) problem has pdf of the form

pAM (u;φm,βm) = eθ
Tφk

m(u)

q∏
i=1

pAM (vi; ηi,βi) .

The unicity of this representation is a direct conse-
quence of Theorem 4.1. Taking the negative log of
this expression and then the expectation, we get

hAM

(
u;φkm,βm

)
= −θTαkm

−
q∑
i=1

E
pAM

(
vi;φ

k
m,βm

) [log pAM (vi; ηi,βi)] .

The final result stems from the identity

Ep (− log q) = Ep (− log p)−KL [p||q] .

The fact that

−θTαkm ≤
q∑
i=1

KL
[
pAM

(
vi;φ

k
m,βm

)
||pAM (vi; ηi,βi)

]
is a direct consequence of P ⊂ Q, which implies that
the entropy of P cannot be greater than that of Q, and
the fact that

∑q
i=1 hAM (vi; ηi,βi) is the entropy of Q.

The two entropies are the same if and only if P = Q
or, equivalently, θ = 0. When ∀u, γ (u) is constant
and equal to 1, P = Q.

B.6 Proof of Lemma 4.1

The Hessian of the objective, namely∫
[0,1]d

(
φm (u)φm (u)

T
)
eθ

Tφm(u)du, is clearly

strictly positive-definite as coordinates of 1 are not
linearly related.

B.7 Proof of Lemma 4.2

The only critical point of the objective of (CVX-
MIND) satisfies

αm =

∫
[0,1]d

φm (u) eθ
∗Tφm(u)du.

Given that the first coordinates of φm and αm are

both 1,
∫

[0,1]d
eθ
∗Tφm(u)du = 1. By Theorem 3.2, the

distribution with pdf eθ
∗Tφm(u) maximizes (A-MIND).

B.8 Proof of Theorem 4.1

Theorem 4.1-A is a consequence of the uniqueness of
the solution to the Hausdorff moment problem.

Indeed, the uniform distribution on [0, 1] is uniquely
characterized by the sequence of moments ∀j, E(uj) =
1/(1+j) (Shohat and Tamarkin (1943)). Thus, we may
replace the uniform marginal constraints in (MIND)
with the constraints ∀i, j, E(uji ) = 1/(1+j). The only
difference between (A-MIND) and (MIND) is that the
former has k moment constraints whereas the latter
has all moment constraints. It follows that

∀m > 0, hAM

(
u;φkm,βm

)
−→
k→∞

hM (u;ψm,βm) .

Additionally, a direct application of the basic consis-
tency theorem for extremum estimators (see Newey
and McFadden (1994)) to (CVX-MIND) shows that
for any consistent estimator β̂m,n of βm,

hAM

(
u;φkm, β̂m,n

)
−→
n→∞

hAM

(
u;φkm,βm

)
.

As for Theorem 4.1-B, we simply need to prove that:

∀k > 0, hAM

(
u;φkm,βm

)
−→
m→∞

h (uz) .
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We recall that h (uz) = −KL (Puz ||U). Using the
NWJ characterization of the KL divergence (Nguyen
et al. (2010)), we get:

h (uz) = inf
T∈T

− EPuz [T (u)] +

∫
[0,1]d

eT (u)− 1du,

(16)

where T is the space of continuous functions on [0, 1]d.
Using the fact that (φm)m is dense in T (property
(P3)), we may rewrite Equation (16) as

h (uz) = lim
m→∞

min
θm

− 1− θTmEPuz [φm(u)]︸ ︷︷ ︸
:=αm

+

∫
[0,1]d

eθ
T
mφm(u)du, (17)

where θm satisfies θTmφm(u) = T (u)−1. Note that the
inner optimization problem has the same minimizer as
(CVX-MIND), and the minimum is hAM

(
u;φkm,βm

)
,

where we have used the fact that the first coordinate
of φm is 1.

Putting everything together, we get

∀k, h (uz) = lim
m→∞

hAM

(
u;φkm,βm

)
.
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