Supplementary Material:
Tight Differential Privacy for Discrete-Valued Mechanisms and
for the Subsampled Gaussian Mechanism Using FFT

1 Proofs for the Results of Section 3

1.1 Integral Representation for Exact DP-Guarantees

Throughout this section we denote for neighbouring datasets X and Y the density function of M (X) with fx (t)
and the density function of M(Y) with fy (¢). The definition of approximate differential privacy is equivalently
given as follows.

Definition 1. A randomised algorithm M with an output of one dimensional distributions satisfies (¢,0)-DP if
for every set S C R and every neighbouring datasets X and'Y

fx@®)dt<e® [ fy(t)dt+6 and fy () dt <es [ fx(t) dt+é.
[rouse] [rowse]

We call M tightly (e,8)-DP, if there does not exist &' < § such that M is (¢,46")-DP.

The auxiliary lemma 2 is needed for Lemma 3. For discrete valued distributions, it is given in [2, Lemma 1] and
another version of this result using so called f-divergences is given in [1]. We prove it here for for completeness,
using our formalism. In the proof, if fx and fy are discrete valued distributions and if

fx(t) —eSfy(t) = Z ¢i - 0, (1)

for some coefficients ¢;, t; € R, then max{fx(t) — e®fy(t),0} denotes

max{ fx(t) —e®fy(¢),0} = Zmax{ci, 0} - 04, (1),

and the set S denotes
S = {t eER: fy(t) > eEfX(t)} = R\{t7 e < 0}

Lemma 2. M is tightly (e,8)-DP with

i) = max { /max{fx(t) —e®fy(t),0} dt,/max{fy(t) —e®fx(t),0} dt}. (1.1)
R R
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Proof. Assume M is tightly (¢,6)-DP. Then, for every set S C R and for all X ~ Y
/fx(t) —efy(t)dt < /max{fx(t) —efy(t),0}dt < /max{fx(t) —e®fy(t),0} dt.
s 5 R
We get an analogous bound for [q fy (t) — e fx (t) dt. Since M is tightly (e, d)-DP, by Definition 1,
0 < max { /max{fX(t) —e®fy(t),0} dt,/max{fy(t) —e®fx(t),0} dt}.
R R

To show that the above inequality is tight, consider the set

S={teR: fx(t) > e“fr(t)}.

Then,
[ 50 =gt dt = [ max{px(@) - (0,0} a
5 s (1.2)
= /max{fx(t) —e®fy(t),0} dt.
R
Next, consider the set S ={t € R : fy(t) > e®fx(t)}. Similarly,
[ vty ety de = [max{py ) - (0,0 a. 13)
5 R
From (1.2) and (1.3) it follows that there exists a set S C R such that either
/ Fx () dt = ef/ Fr(®) dt+6 or / Fy(t) dt = ef/ Felt)dt +0
S S s s
for § given by (1.1). This shows that § given by (1.1) is tight. O

Recall from the main text that if fx and fy are of the form (3.1), then the PLD distribution function is given
by

wx/y(s) = Z ax,i-0s,(s), s =log (%) : (1.4)

tx,i=ty,;

The following lemma gives an integral representation for the tight §(¢)-bound involving the distribution function
of the PLD. For discrete valued distributions, it is originally given in [3, Lemma 5].

Lemma 3. Let M be defined as above. M is tightly (¢,6)-DP for
d(e) = max max{dx/y(€),0y/x(€)},

where
o

5x/y(€) = 5x/y(00) + /(1 - egis)wx/y(s) dS,

&€
oo

(Sy/X(E) = (5y/X(OO) + /(]. — EE_S)OJY/X(S) dS7

€

dx/y(00) = Z aX,i
{ti :P(M(X)=t:)>0,P(M(Y)=t;)=0}
5y/X(OO) = Z ay’i.

{t: : P(M(Y)=t:)>0, B((M(X)=t,)=0}



Proof. We directly find from the definition of fx and fy and from the definition (1.4) that

max{ fx(t) —e®fy(t),0} = Z ax,i- 0y, (t) + Z max{ax; — e ay,;,0} - d¢y (1)
{t: : P(M(X)=t;)>0, P(M(Y)=t;)=0} tx.i=ty,;
— > axi- O, () + Y axgmax{(l—e7%),0} - (1),
{ti :PM(X)=t;)>0, B(M(Y)=t;)=0} tx,i=ty,;

and therefore

tx,i=ty,;

/max{fx(t)—esfy(t),O}dt:(SX/y(oo)—F Z ax;max{(l —e %), 0}
R

= 6X/y(OO) + /(1 — esiS)wX/y(S) ds.

Analogously, we see that

/max{fy(t) — e fx(t),0} dt = (Sy/X(OO) + /(1 — esis)wY/X(S) ds.
R €

The claim follows then from Lemma 2. O

1.2 Privacy Loss Distribution of Compositions

The following theorem shows that the PLD distribution of discrete non-adaptive compositions is obtain using a
discrete convolution. We first recall the definition of convolution of two generalised functions as defined in the
main text. Suppose the distributions fx and fy are of the form

fX (t) = Zi ax.,- 6tX,i(t)’
fY(t) = Zi Ay, 5tY,i(t)7

where tx;,ty,; € R and ax ;,ay; > 0. We define the convolution fx * fy as

(fX * fy)(t) = Z ax,iay,j:- 5tX,i+tY,j (t) (15)
2%
The result of the following theorem is originally given in [3, Thm. 1]. For completeness we give a proof using our

notation with generalised probability density functions.
Theorem 4. Let fx(t), fy(t), fx/(t) and fy:(t) denote the density functions of M(X), M(Y), M'(X) and
M'(Y), respectively. Denote by wx,y the PLD distribution of M(X) over M(Y) and by wx:/y+ the PLD
distribution of M'(X) over M'(Y)). Denote by wx/y the PLD of the non-adaptive composition M o M' =
(M, M'"). The density function of Gx y is given by
O~Jx/y = wX/Y * WX’/Y"
Moreover, N
dx/y(00) 1 =P((MoM')(X)>0,(MoM)(Y)=0)
=1— (1= dxy(00)) (1 = dx/y (),
where
dx/y(00) = P(M(X) > 0, M(Y) = 0), S(/Y(oo) =PWM'(X) >0, M (Y)=0).

Proof. By definition of the privacy loss distribution,
Oxyv(s)= D> P((MoM)(X)=(tt]) - d5(s),

(b6,)=(t;.t))
5 = log [ M MIX) = (1) )
' (Mo M)(Y) = (t;,)

Jr %y
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Due to the independence of M and M/,

P(M(X) =t;, M'(X) =t;) =P(M(X) =t;) P(M'(X) = t;), (1.6)

PM(Y) =t;, M'(Y) =t}) = P(M(Y) = t;) P(M'(Y) = 1)) '
Therefore,

P(M(X) =t;, M'(X) =1}) P(M(X) =t;) P(M'(X) = t})
1°g (P(M V)=t M) = t;>> o (P(M V)= >> o ( (M) = t;>>
and
WX/Y(S) = P(M(X) = tz) P(MI(X) = t;) 65i+s§ (s), (1.7)
(tasth)=(t;,t})

where

We see from (1.7) that Wx/y = wx/y * wx//y’ With convolution defined in (1.5). The expression for gx/y(OO)
follows directly from its definition and from the independence of the mechanisms (1.6).

Theorem 4 directly gives the following representation for tight §(¢) of compositions.

Corollary 5. Consider k consecutive applications of a mechanism M. Let € > 0. The composition is tightly
(€,0)-DP for ¢ given by
6(6) = g(nNa})g maX{éx/y(E), 6y/X(E)},

where
oo

Sx v (e) = 1— (1— by y(00)) + / (1— o) (wx/y #F wxyy) (5) ds,

where (Wx/y *’%JX/Y)(S) denotes the density function obtained by convolving wx vy by itself k times (an analogous
formula holds for 0y, x(€)).

2 Proofs for the Results of Section 4

2.1 Grid Approximation

Recall from Section 4 of the main text: we place the PLD distribution on a grid X,, = {z¢,...,zpn_1}, n € ZT,
where

x; = —L+iAx, Ax=2L/n. (2.1)
Suppose the distribution w of the PLD is of the form

n—1
w(s) = Z a; - ds,(8), (2.2)
i=0

where a; > 0and —L <s; <L — Az, 0 <i<n—1. We define the grid approximations

n—1
wh(s) = Z a; - 0,1 (s), st =sup{r € X, : s; >},

=0

- (2.3)
Wwi(s) = Z a;-0r(s), si=inf{zeX, :s <a}.

i=0

Lemma 6. Let §(c) be given by the integral formula of Lemma 3 and let §%(¢) and 6% () be defined analogously
by w and w®. Then for all ¢ > 0 we have

68 (e) < 6(e) < R(e). (2.4)



Proof. The claim follows from the definition (2.3) and from the fact that (1 —e€~*) is a monotonously increasing

function of s.

Corollary 7. Lemma 6 directly generalises to convolutions. Namely, if
(w ** w) Zal s (
for some coefficients a; > 0, s; € R, then from the definition (1.5) it follows that
(wh *F W Za, L

for some s- such that s& <'s; for all i. And similarly, then

(Wl +* W) (s Zal der(s

O

for some s® such that s > s; for all i. And since (1 —e*~%) is a monotonously increasing function of s for

s > ¢, the mequalzty (2. 4) holds also in case §(g), 6(g) and 6% (¢) is determined by w**w, Wt ** W and w

respectively.

The following bounds for the moment generating functions will be used in the error analysis.

Lemma 8. Let w, w® and w® be defined as in (2.2) and (2.3) and let 0 < A\ < (Azx)~L. Then

E[e)\wL] S ]E[e)\wL E[ef)\wL] S 1_)1\A$E[ef)\w]
and
R VL _
E[e?] < 17)1\AmE[e/\“’], E[e "] < E[e ™).

Proof. The condition E[eML] < E[e**] follows directly from the definition (2.3):

n—1 n—1

L L .

|= g a;e™ < E aie™t = R[],
i=0 =0

since s < s; for all 0 < i < n — 1. The proof for the condition E[e*MR] < Ele =] goes similarly.

Using the Lipschitz continuity of the exponential function, we see that

n—1
E[e)‘wR] _ E[e)\w] _ ; (e)\s§ _ e/\si)
i=0
n—1
< }s? — sz| e
i=0
n—1
< )\AxZa'e i =Mz E[e*]
i=0

Thus
(1= AAz)E[e*"] < E[e*]

from which the condition Ele A“R] < l—iAm E[e**] follows. The proof for the condition E[e _A“’L] <
goes similarly.

RkR

1 E[e—)\w]

— 1-AAz
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2.2 FFT Evaluation for Truncated Convolutions of Periodic Distributions

We next prove the lemma showing that the truncated convolutions of periodic distributions can be evaluated
using FFT. Suppose w is defined on X,, such that

n—1
=3 ai6.,(5), (2.7)
i=0
where a; > 0 and s; = i{Az. The convolutions can then be written as
(w*w) Zazaj sﬁsj _Z(Z%al J) - 05, (5).

We define w to be a 2L-periodic extension of w such that

= > ) aibsmar(s).

meZ i

In case the distribution w is defined on an equidistant grid, FFT can be used to evaluate the approximation
w® w:

Lemma 9. Let w be of the form (2.7), such that n is even and s; = —L +iAx, 0 <i<n—1. Define

a= [ao an_l]T and D = [10/2 I””} e R,
Then,
& B)(s) = S 0,9
i=0
where

bf = [DF H(F(Da)™)],,

and ©% denotes the elementwise power of vectors.

Proof. Assume n is even and s; = —L+iAz, 0 < i <n—1. From the the truncation and periodisation it follows
that @ ® w is of the form

3n/2—-1
(w®w) Z b - ds, b; = Z a; a;—; (indices modulo n). (2.8)

j=n/2

Denoting a = Da, we see that the coefficients b; in (2.8) are given by the expression

n—1

bitn/2 = Z a; a;—; (indices modulo n),

§=0

to which we can apply DFT and the convolution theorem [4]. T.e., when 0 < i <mn —1,
bitnsz = [F ' (F(@a)© F(a))], = [F ' (F(Da) ® F(Da))],, (indices modulo n) (2.9)

where © denotes the elementwise product of vectors. From (2.9) we find that

b; = [DF ' (F(Da)® ]-'(Da))]i , (indices modulo n).

By induction this generalises to k-fold compositions and we arrive at the claim. 0



3 Proof of Theorem 10

We next prove step by step the main theorem, i.e., Theorem 10 of the main text. We start by splitting the error
induced by Algorithm 1 into three terms.

Lemma 10. Let w be a generalised distribution and denote by 5~(6) the result of Algorithm 1. Total error of the
approximation can be split as follows:

/(1 — ot (wF w)(s) ds — 8(e)| < I(L) + (L) + Is(L),

€

where

L(L) = /(w «F W) (s) ds,

I(L) = /(w s w—w ek w)(s) ds,

L
I5(L) :/\(UJ@%—@@’“ 5)(s)| ds,

where, for a generalised density function of the form ). a; - ds,(s), the absolute value denotes

S ai b (s)] = 3 fail 8., (9)

Proof. By adding and subtracting terms and using the triangle inequality, we get

9] [e%9) L

/(1 — %) (w #* w)(s) ds — 8(e) = /(1 — e %) (wF w)(s) ds — /(1 — e %) (wHF w)(s) ds

>4 >4 . >4 . (31)
+/(1_e€—5)(w W) (s) ds—/u—ef—S)(a@ka)(s) ds.

Since 0 < (1 —e® %) < 1 for all s > ¢, we have for the first term on the right hand side of (3.1):

S L [es)
0< /(1 — e ) (w*F w)(s) ds — /(1 — e ) (wHF w)(s) ds < /(w «* W) (s) ds. (3.2)
€ € L
L

Similarly, adding and subtracting [(1 —e®~*)(w ®" w)(s) ds the second term on the right hand side of (3.1), we
find that )

L L
/(1 — e ) (w*F w)(s) ds — /(1 — e (@ ®" X)(s) ds| < Ir(L) + I3(L)
which shows the claim. 0

We next consider separately each of the three terms stated in Theorem 10. Each of them are bounded using the
Chernoff bound [5]
E[e)\X]

PIX > #] = Ple™* > ] < =
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which holds for any random variable X and for all A > 0. If w is of the form

n—1
:Zai.ési(s), = log (aXl),
=0

ayq

where ax ;,ay,; > 0, s; € R, 0 < i <n —1, the moment generating function is given by

00 n n A
E[e?x/v] = / eMw(s) ds = Ze’\s" cax, = Z (aX"Z) ax,i- (3.3)
=1

a
i=1 \ i

3.1 Tail Bound for the Convolved PLDs

Denote Sy := Zle wi, where w; denotes the PLD random variable of the ith mechanism. Since w;’s are
independent, E[e**] = Hf:1 E[e*¢i] and the Chernoff bound shows that for any A > 0

o) k
/ (w+* w)(s) ds = B[Sy, > I] < [[ E[e*]e .
L i=1
If w;’s are i.i.d. and distributed as w, and if a()\) = log(E[e**]), then
/w* w)(s) ds < ekaNe=AL, (3.4)
L

3.2 Error Arising from the Periodisation

We define at()\) and o~ ()\) via the moment generating function of the PLD as
at(\) =log(E[e*]) and a~()\) = log(E[e ~**]). (3.5)

Using the Chernoff bound, the required error bounds can be obtained using at(\) and a™ (\).
Lemma 11. Let w be defined as above and suppose s; € [—L, L] for all 0 < i <n—1. Then,

7L)\

- ot e o

Proof. Let w and its 2L-periodic continuation @(s) be of the form
= Zai 0s,(s) and @(s) = Zai -0, (8)

for some a;,a; > 0, s; = iAx. By definition of the truncated convolution ® (see the main text),

@eFR)(s) = D @ > e Y 5jk7125i—j1—..‘—jk71'5si(5)

—L<s; <L  —L<s;,<L —L<s;,_, <L

= E : aj, E Ajg - - - E Ajp_y E Ai—ji—...—jfr—1 ° 551(5)
—L<s; <L  —L<s;,<L ~L<s;, <L i

= E :ajl E :aja' E Ajp E :at Ji—emr1 " 0s;(8),
J1 J2 Jk—1

since a; = a; for all ¢ such that —L < s; < L. Furthermore,

wew(s)= D> ay Y, @ Y ajkflzai—jl—...—jkq’5Si(5)

—L<sj <L  —L<s;,<L —L<sj,_, <L

ZE :ajl E :ajz' § :a]lc 1§ Ai—j1—...—jfr—1 '531(3)
Ji J2

Jk—1



Thus

(a ®k w—w ®k w)(s) = Zah Zajz e Z Ajg,—y Zaz Ji——Jk—1" Os, (8)’ (36)
J1 J2

Jk—1
where
o 0, if —L<s <L,
ai:ai—ai:{ ! = ¢ (37)
Gimodn, e€lse.

From (3.6) we see that

/}(w@gkw—a@ka)(s)y dsg/’(w(@kw—&@kﬁ)(s)‘ ds

:/Zaﬁ Zajz' Za]k 1201 —ji——jr1 " 0s;(8) ds (3:8)
R 1 J2

Jk—1
:E :a’jl E :ajz" E Ay E :az Ji—e—Jk—1"
J1 J2 Jk—1

From (3.7) we see that

Z%Z%-- Zaﬂk 12“1 S = Z P((Qn—l)ng*kw<(2n+1)L)
J1 J2

Jk—1 neZ\{0}

Z P((2n — 1)L <w**w < (2n+1)L)

neL—
+ Y P(@n-DL<wsw< (2n+1)L)
nezt
<Y Plww<@nt+1)L)+ > Plwsw> (2n-1)L).
nez- nezt
(3.9)
We also see that
Z Plw+*w < (2n+1)L) = Z P((—w) ** (—w) > (2n — 1)L).
neL- nezt
Using the bounds (3.8), (3.9) and the Chernoft bound (3.4), we find that for all A > 0
ds < koﬁ(,\) —2LX ko™ (X) g —CLA _ kat(X) ka™(\) e !
’w*w w@w ‘ S Ze +e ( +e )m
=1
O

3.3 Error Arising from the Truncation of the Convolution Integrals

Next, assume that the generalised distribution w of the PLD is of the form
s) = Zai - ds,(8)

where a; > 0 and s; = iAx.

L
The following lemma gives a bound for the truncation error [ |(w ** w — w ®* w)(s)| ds in terms of the moment
g
generating function of w. Notice that this result applies also for the case where the support of the PLD distribution
are outside of the interval [—L, L].
Lemma 12. Let w be defined as above. For all A > 0,

L ekat (V) _ gat(y)

A L q ea_()\) 7eka_()\) o
12(L)*/(W* w—w® w)(s)ds < ( eat(N) _ 1 + 1 —ea= (N )e :
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Proof. By adding and subtracting (w ** w) ® w , we may write

k

wrbw—wefw= (w1

Wrw— (Wl ewt+ (W lw-—we tw ®w. (3.10)

Let £ € Z". Let w be of the form w(s) = ", a; - 05, (s) and let the convolution w ¢ w be of the form (w*‘w)(s) =
> Ci - 0g,(s) for some a;,¢; > 0, s; = iAx. From the definition of the operators * and ® it follows that

(W w)*w— (' w) ®w)(s Z(ZCJG’ J)- s ( )—Z( Z cjai,j)ﬁsi(s)

—L<s;<L

Therefore

/((w wtw)xw— (wH w) ®w) (s ds—/z cjai,j) - 0s,(8) ds
R

ds

I
M
“\
-
S

(3.11)
sj<—L,s;>L
:P(w xfw < fL) +P<w xfw > L)
< e@a‘*‘()\)efL)\ + ela”(N)g—LX
for all A > 0. The last inequality follows from the Chernoff bound. Similarly, let w *‘ w — w ®° w be of the form

(' w—we w)(s) = Y8 du(s)
for some ¢; > 0, s; = iAz. Then

/((w* w—w® w) ®w)(s ds_/z Z iai_ ]). 3. (s) ds

2 —L<s;<L
.S /Z 5.,(5) ds
—L<s;<L (312)
< Z ¢
—L<s;<L
S/(w ¥ w—w e w)(s)ds.
R
Using (3.10), (3.11) and (3.12), we see that for all A > 0,
L
/(w*kwfw@)kw)(s) ds < /(w*kwfw(@kw)(s) ds
€ R (313)
< e(kfl)a'*'()\)efL)\ +eh=1a” (Mg —LA | /(w =l — @kt w)(s) ds.
R

Using (3.13) recursively, we see that for all A > 0,
L

k—1 k—1
/(w o w ek w)(s)ds < 3 et We—EA 4 37 efa” (gL

2 =1 =1

(eka+(>\) _ ea+(>\) eka™ (V) _ ea(,\)) i
€ .

T 1 e m_1



3.4 Proof of Theorem 10 (Total Error)

Proof of Theorem 10. Let a™()\) and o~ (\) be defined as in (3.5). Combining the bound (3.4) and the
bounds given by Lemmas 11 and 12, we find that

_ —LA\ kat(\) _ nat () ka=(\) _ a” (M)
. kat(A), —AL kat()) ka~(A\))__© e e e e I
‘5(5) 5(6)’§e e M+ (e +e )1—e—U+< T T e 1 e
—LX —LX
kat(n)_© kat (A ka=(\))__©
b s 4 ("W et V) ——5

(em+(,\) _ ea*(x) eka” (V) _ ea()\)) e~ LA

T 1 e m_1 JI_om

e 1 B ey

9e(k+1)at () _ gka™ (V) _ gat(N)  gk+Da(N) _ ga™ (V) e—LA
- 1—e BN

4 Theorem 11: Tight Bound for Multidimensional Mechanisms via One
Dimensional Distributions

The following results shows that the tight (e,0)-bound for a multidimensional mechanism M can be obtained
by analysis of one dimensional distributions, in case the neighbouring datasets X and Y leading to the maximal
d(e) are known.

Theorem 13. Consider a function f : XN — R? and a randomised mechanism M of the form M(X) =
f(X)+ Z, where Z;’s are independent random variables. Suppose the data sets X and Y lead to the 6(e)-upper
bound, and denote A = f(X) — f(Y). Then, the tight (¢,6)-bound for M is given by the tight (,d)-bound for
the non-adaptive compositions of one-dimensional random variables

Proof. The claim can be shown simply by observing that the privacy loss distribution generated by M(X) and
M(Y) and the privacy loss distribution generated by compositions (A; + Z1,...,Aq+ Z4) and (Z4, ..., Z4) are
the same. O

5 Experiments of Section 6.2

We next show how to use the Fourier accountant for obtaining the (e,d)-bound of Figure 4. Essentially, we
show how to obtain the PLD for a subsampled multivariate mechanism, where the neighbouring distributions
are known and fixed (i.e., A = f(X) — f(Y) is fixed and f(X) is sampled with probability ¢ and f(Y) with
probability 1 — q).

Now denote the density functions for one-dimensional mechanisms M (X) and M(Y") by
fX (t) = Z CLX,Z‘ . 6tX,i(t) and fy(t) = Z ay)i . (Sty,i(t),
i i

respectively.
Then, for the d-fold compositions
(M(X),...,M(X)) and (M(Y),...,.M(Y)),
the density functions are given by the convolutions
Fx®) = 3" axa axi, i, by, () and fy()= D aye @y, Ou, 4oy, (1),
(i1,eerid) (i1,e-s0a)

respectively.
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By definition, the PLD generated by the distributions
¢ fx+(1—q) fy and fy,

is of the form

B = Y (q Caxa -ty + (1= 0) - aya, ay> 55, (5), (5.1)

where
Ay, AYig
Ax i - Qx s
=1Og(q-M+(1—q)>
Ay, * Ay iy
= log (q-exp (si1 —&—szd) +(1 —q)),
where

and
(“)2(8) = Z aY,i1 e aY,id : §5i1+‘~~5id (S)u (53)

(31,-++58a)

we can form the PLD w by the change of variable
s—log(q-s+(1—q))

and summing the coefficients as in (5.1). On the other hand, we can obtain w; and ws by using the Fourier
accountant to the d-fold convolutions of the distributions

Z ax,-0s;(s) and Z ay,; - 0s,;(s).
Also, the §(o0)-probabilities can be evaluated straightforwardly for ¢ - fx + (1—gq)- fy and fy-.

6 Section 6.3: The Subsampled Gaussian Mechanism

In this Section we give an error analysis for the approximations given in Section 6.3. Recall first the form of the
PLD for the subsampled Gaussian mechanism. For a subsampling ratio 0 < ¢ < 1 and noise level o > 0, the
continuous PLD distribution is given by

_ ) f(g(s)g'(s), if s> log(1l —q),
w(s) = {O, otherwise, (6.1)
where . a ) )
—(t—1)2 42 9 e’ — —q
f®) = o [ge T207 4+ (1 —q)e ™ 27|, g(s) = o“log (q) + 3 (6.2)

In order to carry out an error analysis for the approximations given in Section 6.3, we define the infinite extending
grid approximations of wyin and wmax. Let L > 0, n € ZT, Az = 2L/n and let the grid X,, be defined as in
(2.1). Define

Wmin () = Z c; 05, (s), Wmax(8) = Z C;r +05,(8),



where s; = iAx and

¢ =Ax- min w(s), ¢ =Azr- max w(s).
g SE[8i,8i4+1] ( ) ¢ sE[si,isi] ( ) (63)
Define
+
mm Z C . Si ’ max Z C; 651 (64)
iE€EZ €L

where ¢; and ¢; are as defined in (6.3). We find that w as defined in (6.1) has one stationary point which we
determine numerically. Using this, the numerical values of ¢; and cf are obtained.

We obtain approzimations for the lower and upper bounds dmin () and dmax(g) of Section 6.3 by running Algorithm
1 for ws, and wek,. using some prescribed parameter values n and L. This is equivalent to running Algorithm 1
for the truncated distributions wmin and wmax. However, to obtain the bounds of Theorem 10 (and subsequently

strict lower and upper bounds for 6(g)), the error analysis has to be carried out for the distributions w%, and
wi . To this end, we need bounds for the moment generating functions of —woy,, WS, —wi and way, .

However, we first show that wS% and wg, indeed give lower and upper bounds for J(e).

Lemma 14. Let 6(¢) be given by the integral formula of Lemma 3 for some privacy loss distribution w and for
some 0(00) > 0. Let 623, (g) and 052, (€) be defined analogously by wSs, and wie ... Then for all € > 0 we have

Ormin(€) < 6(e) < dmax(e)-

Proof. From the definition (6.4) and from the fact that (1 — e®~*) is a monotonously increasing function of s
it follows that the discrete sums 625 (¢) and 62, (¢) are the lower and upper Riemann sums for the continuous

max

integral d(¢) on the partition {iAx : i € Z}. This shows the claim. O

Lemma 14 directly generalises to convolutions:

Corollary 15. Consider a single composition, i.e., suppose the PLD is given by w*w for a distribution w of the
form (6.1). Let w,, be defined as in (6.4). We have that

o0 o0 oo

Ju-ewram ds= [a-e) [ wtyuts -0 deds

€ — 00

oo

w(t)/(l e w(s — 1) ds di

g

—3 é\g !

< | w(t) /(1 —e* T wr (s—1t)dsdt
— 00 €
:/ ()/1—e Zc O, 4¢(s) ds dt
— 0o e 1€EZ
(oo}
- /w(t) S (1— et o dt (6.5)
oo si+t>e
< [uman X a-e et ar
oo s;+t>e
= Z (1— ety bt
sit+s;>€
[ee]
/ (1—e° Zc Js, +s] )ds

= [ o) e r i) (9) do,

S
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Showing that

7(1 —e ") (wxw)(s) = 7(1 —e"7%) (Winin * winin) (s) ds

goes analogously. Inductively, bounding as in (6.5), we also see that

oo

/(1 — e %) (wxPw)(s)ds < Z (1 —es~GatFsidyg, . .a
e Sip+...tsq, >e

oo

_ / (1—e5) (Wi #* wiS)(s) ds

o
min

and similarly for the lower bound determined by the convolutions of w

To evaluate a™(\) and o~ () in the upper bound of Theorem 10 of the main text, we need the moment generating
functions of —wS , w, —wse and w . We first state the following auxiliary lemma needed to bound these

min’ *min> max"*
2 _(?s40)?
w(s) <oy/—e” 22 |
™

moment generating functions.
Lemma 16. Foralls>1 and0< g < %:

where C = o> log(ﬁ) -3

Proof. When s > 1,

and subsequently

s (1- 1
g(s):gzlog<e ( q)>+22025+0’

where C' = o2 log(i) + 3. We see that when 0 < ¢ < 3, we have g(s) > . From (6.2) we see that

2,8
/ o-e 2
g'(s) = <20
e* —(1—q)
Thus, when s > 1,
2 _(e%s+0)?
w(s) <oyf—e” 20z |
7r
_ 2 1 1
where €' = 0% log(3;) — 3 O

Using Lemma 16, we can bound the moment generating function of w3 . as follows. We note that E[e*“max] can
be evaluated numerically.

Lemma 17. Let 0 < A < L and assume o > 1 and Ax < c¢-L, 0 < ¢ < 1. The moment generating function of

o0
we . can be bounded as

E[e)\w:ax} S E[ekwmax] -+ err()\7 L,U)7

where
_A(20=))

2 1-— 2r, _
err(\, L,o) = oL 2 o= arfe (( c)o’L+C )\> |
VT V2o

Here wmax 18 the restriction of w,. to the interval [—L, L] (i.e., as defined in equation (14) of the main text)

max

and the constant C' is as defined in Lemma 16.

(6.7)



Proof. Assuming L > |log1 — ¢| (i.e., w(s) = 0 for all s < —L), the moment generating function of wge, . is given
by

L o0
Bt = [ M) dst [ M) ds

%) L
L o
= / eMw (s)ds +/ eMw® (s)ds (6.8)
L L
IEI[e’\‘”“‘ax 1+ Z Az - eNAT . et
i>n

From Lemma 16 it follows that

n 2 (6%si_140)2
¢ = max w(s) <oy/—e 202 ,
s€[si—1,si] ™

where C = o2 log(ﬁ) — 1, s; = iAz. Thus

2 e)\zAm . c;‘r _ e)\Aa: E e)\si,l . C;‘—

i>n i>n
(o ‘51 1+C>2
)\Am \/>ZA As;_ le
T-e
i>n
—(025;_14+C—=2N)2=A(2C—)) (6'9)
ZAQE e 202
z>n
A x(zc ) (0287‘,_1+C*%>2
= e Zo’ 202 Z Al‘ e 202 .
i>n
Assuming o0 > 1 and A < L, Ax < ¢- L, we further see that
o0
_Aeo-n _(0%siy+0-N)? 2 A(2C A@2C—2) (o2 s+C (o2s+C—0)2
e’\Azm/ 202 ZAw e 202 < )‘A“"a\/7 / e ds
i>n T L—Ax
o0
2 A(ZC A _ (o2s+Cc-0)2 5+C’ 22
< ec’\Law —e / e ds
T
AT (6.10)
ean |2 -2@eon V2 ((10)02L+C/\)
=e“" o/ —e —erfc
T o \/50
2 _aeo-yn 1—c)o’L+C — )
=eM "¢ 202 erfe <( ) .
VT V20
O

Using a reasoning similar to the proof of Lemma 17, we get the following. We note that E[e ~?“max] [E[e*@min]
and E[e ~*%min] can be evaluated numerically.

Corollary 18. The moment generating functions of —w,, wew, and —wos can be bounded as

E[e_)‘“fw] < E[e_)“"m“"] +err(\, L, 0),

Ele?min] < E[e?min] + err(\, L, 0),

E[e A“min] < E[e “min] + err(\, L, o),

where err(A\, L, o) is defined as in (6.7).
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Proof. Assuming L > |logl — g| (i.e., w(s) = 0 for all s < —L), the moment generating function of —wS°  is

given by

2
= /e*’\swfrfax(s) ds+/e*’\5w§l°ax(s) ds (6.11)

After bounding the term || EO e*w® (s)ds as in the proof of Lemma 17, the first claim follows. Bounding

E[e?“min] and E[e ~*“min] can be carried out analogously to (6.11). O

Remark 19. In the experiments, the effect of the error term err(\, L,o) was found to be negligible (less than
1079 in the experiments of Figure 3).

7 Description of Learning Rate Cooling Used for Experiments of Figure 2b.

When running the feedforward network experiment of Figure 2b, we set the initial learning rate n = 0.02. When
n = 2400 and |B| = 500, starting from epoch 13, and when n = 3000 and |B| = 300, starting from epoch 5, the
learning rate 7 is linearly decreased after each epoch such that it is zero at the end of the training.
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