
Supplementary Material:
Tight Differential Privacy for Discrete-Valued Mechanisms and

for the Subsampled Gaussian Mechanism Using FFT

1 Proofs for the Results of Section 3

1.1 Integral Representation for Exact DP-Guarantees

Throughout this section we denote for neighbouring datasets X and Y the density function ofM(X) with fX(t)
and the density function of M(Y ) with fY (t). The definition of approximate differential privacy is equivalently
given as follows.

Definition 1. A randomised algorithm M with an output of one dimensional distributions satisfies (ε, δ)-DP if
for every set S ⊂ R and every neighbouring datasets X and Y∫

S

fX(t) dt ≤ eε
∫
S

fY (t) dt+ δ and

∫
S

fY (t) dt ≤ eε
∫
S

fX(t) dt+ δ.

We call M tightly (ε, δ)-DP, if there does not exist δ′ < δ such that M is (ε, δ′)-DP.

The auxiliary lemma 2 is needed for Lemma 3. For discrete valued distributions, it is given in [2, Lemma 1] and
another version of this result using so called f -divergences is given in [1]. We prove it here for for completeness,
using our formalism. In the proof, if fX and fY are discrete valued distributions and if

fX(t)− eεfY (t) =
∑
i

ci · δti(t)

for some coefficients ci, ti ∈ R, then max{fX(t)− eεfY (t), 0} denotes

max{fX(t)− eεfY (t), 0} =
∑
i

max{ci, 0} · δti(t),

and the set S denotes
S = {t ∈ R : fY (t) ≥ eεfX(t)} = R \ {ti : ci < 0}.

Lemma 2. M is tightly (ε, δ)-DP with

δ(ε) = max
X∼Y

{∫
R

max{fX(t)− eεfY (t), 0} dt,

∫
R

max{fY (t)− eεfX(t), 0} dt

}
. (1.1)
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Proof. Assume M is tightly (ε, δ)-DP. Then, for every set S ⊂ R and for all X ∼ Y :∫
S

fX(t)− eεfY (t) dt ≤
∫
S

max{fX(t)− eεfY (t), 0} dt ≤
∫
R

max{fX(t)− eεfY (t), 0} dt.

We get an analogous bound for
∫
S
fY (t)− eεfX(t) dt. Since M is tightly (ε, δ)-DP, by Definition 1,

δ ≤ max

{∫
R

max{fX(t)− eεfY (t), 0} dt,

∫
R

max{fY (t)− eεfX(t), 0} dt

}
.

To show that the above inequality is tight, consider the set

S = {t ∈ R : fX(t) ≥ eεfY (t)}.

Then, ∫
S

fX(t)− eεfY (t) dt =

∫
S

max{fX(t)− eεfY (t), 0} dt

=

∫
R

max{fX(t)− eεfY (t), 0} dt.

(1.2)

Next, consider the set S = {t ∈ R : fY (t) ≥ eεfX(t)}. Similarly,∫
S

fY (t)− eεfX(t) dt =

∫
R

max{fY (t)− eεfX(t), 0} dt. (1.3)

From (1.2) and (1.3) it follows that there exists a set S ⊂ R such that either∫
S

fX(t) dt = eε
∫
S

fY (t) dt+ δ or

∫
S

fY (t) dt = eε
∫
S

fX(t) dt+ δ

for δ given by (1.1). This shows that δ given by (1.1) is tight.

Recall from the main text that if fX and fY are of the form (3.1), then the PLD distribution function is given
by

ωX/Y (s) =
∑

tX,i=tY,j

aX,i · δsi(s), si = log
(
aX,i
aY,j

)
. (1.4)

The following lemma gives an integral representation for the tight δ(ε)-bound involving the distribution function
of the PLD. For discrete valued distributions, it is originally given in [3, Lemma 5].

Lemma 3. Let M be defined as above. M is tightly (ε, δ)-DP for

δ(ε) = max
X∼Y

max{δX/Y (ε), δY/X(ε)},

where

δX/Y (ε) = δX/Y (∞) +

∞∫
ε

(1− eε−s)ωX/Y (s) ds,

δY/X(ε) = δY/X(∞) +

∞∫
ε

(1− eε−s)ωY/X(s) ds,

δX/Y (∞) =
∑

{ti : P(M(X)=ti)>0, P(M(Y )=ti)=0}

aX,i,

δY/X(∞) =
∑

{ti : P(M(Y )=ti)>0, P(M(X)=ti)=0}

aY,i.



Proof. We directly find from the definition of fX and fY and from the definition (1.4) that

max{fX(t)− eεfY (t), 0} =
∑

{ti : P(M(X)=ti)>0, P(M(Y )=ti)=0}

aX,i · δtX,i(t) +
∑

tX,i=tY,j

max{aX,i − eεaY,j , 0} · δtX,i(t)

=
∑

{ti : P(M(X)=ti)>0, P(M(Y )=ti)=0}

aX,i · δtX,i(t) +
∑

tX,i=tY,j

aX,i max{(1− eε−si), 0} · δtX,i(t),

and therefore ∫
R

max{fX(t)− eεfY (t), 0} dt = δX/Y (∞) +
∑

tX,i=tY,j

aX,i max{(1− eε−si), 0}

= δX/Y (∞) +

∞∫
ε

(1− eε−s)ωX/Y (s) ds.

Analogously, we see that∫
R

max{fY (t)− eεfX(t), 0} dt = δY/X(∞) +

∞∫
ε

(1− eε−s)ωY/X(s) ds.

The claim follows then from Lemma 2.

1.2 Privacy Loss Distribution of Compositions

The following theorem shows that the PLD distribution of discrete non-adaptive compositions is obtain using a
discrete convolution. We first recall the definition of convolution of two generalised functions as defined in the
main text. Suppose the distributions fX and fY are of the form

fX(t) =
∑

i
aX,i · δtX,i(t),

fY (t) =
∑

i
aY,i · δtY,i(t),

where tX,i, tY,i ∈ R and aX,i, aY,i ≥ 0. We define the convolution fX ∗ fY as

(fX ∗ fY )(t) =
∑
i,j

aX,i aY,j · δtX,i+tY,j (t). (1.5)

The result of the following theorem is originally given in [3, Thm. 1]. For completeness we give a proof using our
notation with generalised probability density functions.

Theorem 4. Let fX(t), fY (t), fX′(t) and fY ′(t) denote the density functions of M(X), M(Y ), M′(X) and
M′(Y ), respectively. Denote by ωX/Y the PLD distribution of M(X) over M(Y ) and by ωX′/Y ′ the PLD
distribution of M′(X) over M′(Y ). Denote by ω̃X/Y the PLD of the non-adaptive composition M ◦M′ =
(M,M′). The density function of ω̃X/Y is given by

ω̃X/Y = ωX/Y ∗ ωX′/Y ′ .

Moreover,

δ̃X/Y (∞) : = P((M◦M′)(X) > 0, (M◦M′)(Y ) = 0)

= 1−
(
1− δX/Y (∞)

)(
1− δ′X/Y (∞)

)
,

where
δX/Y (∞) = P(M(X) > 0,M(Y ) = 0), δ′X/Y (∞) = P(M′(X) > 0,M′(Y ) = 0).

Proof. By definition of the privacy loss distribution,

ω̃X/Y (s) =
∑

(ti,t′i)=(tj ,t′j)

P
(
(M◦M′)(X) = (ti, t

′
i)
)
· δs̃i(s),

s̃i = log

(
(M◦M′)(X) = (ti, t

′
i)

(M◦M′)(Y ) = (tj , t′j)

)
.
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Due to the independence of M and M′,

P
(
M(X) = ti,M′(X) = t′i

)
= P

(
M(X) = ti

)
P
(
M′(X) = t′i

)
,

P
(
M(Y ) = tj ,M′(Y ) = t′j

)
= P

(
M(Y ) = tj

)
P
(
M′(Y ) = t′j

)
.

(1.6)

Therefore,

log

(
P
(
M(X) = ti,M′(X) = t′i

)
P
(
M(Y ) = tj ,M′(Y ) = t′j

)) = log

(
P
(
M(X) = ti

)
P
(
M(Y ) = tj

))+ log

(
P
(
M′(X) = t′i

)
P
(
M′(Y ) = t′j

)) .
and

ω̃X/Y (s) =
∑

(ti,t′i)=(tj ,t′j)

P
(
M(X) = ti

)
P
(
M′(X) = t′i

)
· δsi+s′i(s), (1.7)

where

si = log

(
P
(
M(X) = ti

)
P
(
M(Y ) = tj

)) , s′i = log

(
P
(
M′(X) = t′i

)
P
(
M′(Y ) = t′j

)) .
We see from (1.7) that ω̃X/Y = ωX/Y ∗ ωX′/Y ′ with convolution defined in (1.5). The expression for δ̃X/Y (∞)
follows directly from its definition and from the independence of the mechanisms (1.6).

Theorem 4 directly gives the following representation for tight δ(ε) of compositions.

Corollary 5. Consider k consecutive applications of a mechanism M. Let ε > 0. The composition is tightly
(ε, δ)-DP for δ given by

δ(ε) = max
X∼Y

max{δX/Y (ε), δY/X(ε)},

where

δX/Y (ε) = 1− (1− δX/Y (∞))k +

∞∫
ε

(1− eε−s)
(
ωX/Y ∗k ωX/Y

)
(s) ds,

where (ωX/Y ∗kωX/Y )(s) denotes the density function obtained by convolving ωX/Y by itself k times (an analogous
formula holds for δY/X(ε)).

2 Proofs for the Results of Section 4

2.1 Grid Approximation

Recall from Section 4 of the main text: we place the PLD distribution on a grid Xn = {x0, . . . , xn−1}, n ∈ Z+,
where

xi = −L+ i∆x, ∆x = 2L/n. (2.1)

Suppose the distribution ω of the PLD is of the form

ω(s) =

n−1∑
i=0

ai · δsi(s), (2.2)

where ai ≥ 0 and −L ≤ si ≤ L−∆x, 0 ≤ i ≤ n− 1. We define the grid approximations

ωL(s) =

n−1∑
i=0

ai · δsLi (s), sL
i = sup{x ∈ Xn : si ≥ x},

ωR(s) =

n−1∑
i=0

ai · δsRi (s), sR
i = inf{x ∈ Xn : si ≤ x}.

(2.3)

Lemma 6. Let δ(ε) be given by the integral formula of Lemma 3 and let δL(ε) and δR(ε) be defined analogously
by ωL and ωR. Then for all ε > 0 we have

δL(ε) ≤ δ(ε) ≤ δR(ε). (2.4)



Proof. The claim follows from the definition (2.3) and from the fact that (1− eε−s) is a monotonously increasing
function of s.

Corollary 7. Lemma 6 directly generalises to convolutions. Namely, if

(ω ∗k ω)(s) =
∑
i

ai · δsi(s)

for some coefficients ai ≥ 0, si ∈ R, then from the definition (1.5) it follows that

(ωL ∗k ωL)(s) =
∑
i

ai · δsLi (s)

for some sL
i such that sL

i ≤ si for all i. And similarly, then

(ωR ∗k ωR)(s) =
∑
i

ai · δsRi (s)

for some sR
i such that sR

i ≥ si for all i. And since (1 − eε−s) is a monotonously increasing function of s for
s ≥ ε, the inequality (2.4) holds also in case δ(ε), δL(ε) and δR(ε) is determined by ω∗kω, ωL∗kωL and ωR∗kωR,
respectively.

The following bounds for the moment generating functions will be used in the error analysis.

Lemma 8. Let ω, ωR and ωL be defined as in (2.2) and (2.3) and let 0 < λ < (∆x)−1. Then

E[eλω
L

] ≤ E[eλω], E[e−λω
L

] ≤ 1
1−λ∆xE[e−λω] (2.5)

and

E[eλω
R

] ≤ 1
1−λ∆xE[eλω], E[e−λω

R

] ≤ E[e−λω]. (2.6)

Proof. The condition E[eλω
L

] ≤ E[eλω] follows directly from the definition (2.3):

E[eλω
L

] =

n−1∑
i=0

aie
λsLi ≤

n−1∑
i=0

aie
λsi = E[eλω],

since sL
i ≤ si for all 0 ≤ i ≤ n− 1. The proof for the condition E[e−λω

R

] ≤ E[e−λω] goes similarly.

Using the Lipschitz continuity of the exponential function, we see that

E[eλω
R

]− E[eλω] =

n−1∑
i=0

ai
(
eλs

R
i − eλsi

)
≤
n−1∑
i=0

aiλ
∣∣sR
i − si

∣∣ eλsRi
≤ λ∆x

n−1∑
i=0

aie
λsRi = λ∆xE[eλω

R

].

Thus

(1− λ∆x)E[eλω
R

] ≤ E[eλω]

from which the condition E[eλω
R

] ≤ 1
1−λ∆x E[eλω] follows. The proof for the condition E[e−λω

L

] ≤ 1
1−λ∆x E[e−λω]

goes similarly.
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2.2 FFT Evaluation for Truncated Convolutions of Periodic Distributions

We next prove the lemma showing that the truncated convolutions of periodic distributions can be evaluated
using FFT. Suppose ω is defined on Xn such that

ω(s) =

n−1∑
i=0

ai · δsi(s), (2.7)

where ai ≥ 0 and si = i∆x. The convolutions can then be written as

(ω ∗ ω)(s) =
∑
i,j

aiaj · δsi+sj (s) =
∑
i

(∑
j

ajai−j

)
· δsi(s).

We define ω̃ to be a 2L-periodic extension of ω such that

ω̃(s) =
∑
m∈Z

∑
i

ai · δsi+m·2L(s).

In case the distribution ω is defined on an equidistant grid, FFT can be used to evaluate the approximation
ω̃ ~ ω̃:

Lemma 9. Let ω be of the form (2.7), such that n is even and si = −L+ i∆x, 0 ≤ i ≤ n− 1. Define

a =
[
a0 . . . an−1

]T
and D =

[
0 In/2

In/2 0

]
∈ Rn×n.

Then,

(ω̃ ~k ω̃)(s) =

n−1∑
i=0

bki · δsi(s),

where

bki =
[
DF−1

(
F(Da)�k

)]
i
,

and �k denotes the elementwise power of vectors.

Proof. Assume n is even and si = −L+ i∆x, 0 ≤ i ≤ n−1. From the the truncation and periodisation it follows
that ω̃ ~ ω̃ is of the form

(ω̃ ~ ω̃)(s) =

n−1∑
i=0

bi · δsi(s), bi =

3n/2−1∑
j=n/2

aj ai−j (indices modulo n). (2.8)

Denoting ã = Da, we see that the coefficients bi in (2.8) are given by the expression

bi+n/2 =

n−1∑
j=0

ãj ãi−j (indices modulo n),

to which we can apply DFT and the convolution theorem [4]. I.e., when 0 ≤ i ≤ n− 1,

bi+n/2 =
[
F−1

(
F(ã)�F(ã)

)]
i

=
[
F−1

(
F(Da)�F(Da)

)]
i
, (indices modulo n) (2.9)

where � denotes the elementwise product of vectors. From (2.9) we find that

bi =
[
DF−1

(
F(Da)�F(Da)

)]
i
, (indices modulo n).

By induction this generalises to k-fold compositions and we arrive at the claim.



3 Proof of Theorem 10

We next prove step by step the main theorem, i.e., Theorem 10 of the main text. We start by splitting the error
induced by Algorithm 1 into three terms.

Lemma 10. Let ω be a generalised distribution and denote by δ̃(ε) the result of Algorithm 1. Total error of the
approximation can be split as follows:∣∣∣∣∣∣

∞∫
ε

(1− eε−s)(ω ∗k ω)(s) ds− δ̃(ε)

∣∣∣∣∣∣ ≤ I1(L) + I2(L) + I3(L),

where

I1(L) =

∞∫
L

(ω ∗k ω)(s) ds,

I2(L) =

L∫
ε

(ω ∗k ω − ω ~k ω)(s) ds,

I3(L) =

L∫
ε

∣∣(ω ~k ω − ω̃ ~k ω̃)(s)
∣∣ ds,

where, for a generalised density function of the form
∑
i ai · δsi(s), the absolute value denotes∣∣∣∣∣∑

i

ai · δsi(s)

∣∣∣∣∣ =
∑
i

|ai| · δsi(s).

Proof. By adding and subtracting terms and using the triangle inequality, we get

∞∫
ε

(1− eε−s)(ω ∗k ω)(s) ds− δ̃(ε) =

∞∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds

+

L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds.

(3.1)

Since 0 ≤ (1− eε−s) < 1 for all s ≥ ε, we have for the first term on the right hand side of (3.1):

0 ≤
∞∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds ≤
∞∫
L

(ω ∗k ω)(s) ds. (3.2)

Similarly, adding and subtracting
L∫
ε

(1− eε−s)(ω~k ω)(s) ds the second term on the right hand side of (3.1), we

find that ∣∣∣∣∣∣
L∫
ε

(1− eε−s)(ω ∗k ω)(s) ds−
L∫
ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds

∣∣∣∣∣∣ ≤ I2(L) + I3(L)

which shows the claim.

We next consider separately each of the three terms stated in Theorem 10. Each of them are bounded using the
Chernoff bound [5]

P[X ≥ t] = P[eλX ≥ eλt] ≤ E[eλX ]

eλt
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which holds for any random variable X and for all λ > 0. If ω is of the form

ω(s) =

n−1∑
i=0

ai · δsi(s), si = log

(
aX,i
aY,i

)
,

where aX,i, aY,i ≥ 0, si ∈ R, 0 ≤ i ≤ n− 1, the moment generating function is given by

E[eλωX/Y ] =

∞∫
−∞

eλsω(s) ds =

n∑
i=1

eλsi · aX,i =

n∑
i=1

(
aX,i
aY,i

)λ
aX,i. (3.3)

3.1 Tail Bound for the Convolved PLDs

Denote Sk :=
∑k
i=1 ωi, where ωi denotes the PLD random variable of the ith mechanism. Since ωi’s are

independent, E[eλSk ] =
∏k
i=1 E[eλωi ] and the Chernoff bound shows that for any λ > 0∫ ∞

L

(ω ∗k ω)(s) ds = P[Sk ≥ L] ≤
k∏
i=1

E[eλωi ] e−λL.

If ωi’s are i.i.d. and distributed as ω, and if α(λ) = log(E[eλω]), then

I1(L) =

∞∫
L

(ω ∗k ω)(s) ds ≤ ekα(λ)e−λL. (3.4)

3.2 Error Arising from the Periodisation

We define α+(λ) and α−(λ) via the moment generating function of the PLD as

α+(λ) = log(E[eλω]) and α−(λ) = log(E[e−λω]). (3.5)

Using the Chernoff bound, the required error bounds can be obtained using α+(λ) and α−(λ).

Lemma 11. Let ω be defined as above and suppose si ∈ [−L,L] for all 0 ≤ i ≤ n− 1. Then,

I3(L) =

L∫
ε

∣∣(ω ~k ω − ω̃ ~k ω̃)(s)
∣∣ ds ≤

(
ekα

+(λ) + ekα
−(λ)

) e−Lλ

1− e−Lλ
.

Proof. Let ω and its 2L-periodic continuation ω̃(s) be of the form

ω(s) =
∑
i

ai · δsi(s) and ω̃(s) =
∑
i

ãi · δsi(s)

for some ai, ãi ≥ 0, si = i∆x. By definition of the truncated convolution ~ (see the main text),

(ω̃ ~k ω̃)(s) =
∑

−L≤sj1<L

ãj1
∑

−L≤sj2<L

ãj2 . . .
∑

−L≤sjk−1
<L

ãjk−1

∑
i

ãi−j1−...−jk−1
· δsi(s)

=
∑

−L≤sj1<L

aj1
∑

−L≤sj2<L

aj2 . . .
∑

−L≤sjk−1
<L

ajk−1

∑
i

ãi−j1−...−jk−1
· δsi(s)

=
∑
j1

aj1
∑
j2

aj2 . . .
∑
jk−1

ajk−1

∑
i

ãi−j1−...−jk−1
· δsi(s),

since ãi = ai for all i such that −L ≤ si < L. Furthermore,

(ω ~k ω)(s) =
∑

−L≤sj1<L

aj1
∑

−L≤sj2<L

aj2 . . .
∑

−L≤sjk−1
<L

ajk−1

∑
i

ai−j1−...−jk−1
· δsi(s)

=
∑
j1

aj1
∑
j2

aj2 . . .
∑
jk−1

ajk−1

∑
i

ai−j1−...−jk−1
· δsi(s).



Thus
(ω̃ ~k ω̃ − ω ~k ω)(s) =

∑
j1

aj1
∑
j2

aj2 . . .
∑
jk−1

ajk−1

∑
i

âi−j1−...−jk−1
· δsi(s), (3.6)

where

âi = ãi − ai =

{
0, if − L ≤ si < L,

aimodn, else.
(3.7)

From (3.6) we see that

L∫
ε

∣∣(ω ~k ω − ω̃ ~k ω̃)(s)
∣∣ ds ≤

∫
R

∣∣(ω ~k ω − ω̃ ~k ω̃)(s)
∣∣ ds

=

∫
R

∑
j1

aj1
∑
j2

aj2 . . .
∑
jk−1

ajk−1

∑
i

âi−j1−...−jk−1
· δsi(s) ds

=
∑
j1

aj1
∑
j2

aj2 . . .
∑
jk−1

ajk−1

∑
i

âi−j1−...−jk−1
.

(3.8)

From (3.7) we see that∑
j1

aj1
∑
j2

aj2 . . .
∑
jk−1

ajk−1

∑
i

âi−j1−...−jk−1
=

∑
n∈Z\{0}

P
(
(2n− 1)L ≤ ω ∗k ω < (2n+ 1)L

)
=
∑
n∈Z−

P
(
(2n− 1)L ≤ ω ∗k ω < (2n+ 1)L

)
+
∑
n∈Z+

P
(
(2n− 1)L ≤ ω ∗k ω < (2n+ 1)L

)
≤
∑
n∈Z−

P
(
ω ∗k ω ≤ (2n+ 1)L

)
+
∑
n∈Z+

P
(
ω ∗k ω ≥ (2n− 1)L

)
.

(3.9)
We also see that ∑

n∈Z−
P
(
ω ∗k ω ≤ (2n+ 1)L

)
=
∑
n∈Z+

P
(
(−ω) ∗k (−ω) ≥ (2n− 1)L

)
.

Using the bounds (3.8), (3.9) and the Chernoff bound (3.4), we find that for all λ > 0

L∫
ε

∣∣(ω ∗k ω − ω̃ ~k ω̃)(s)
∣∣ ds ≤

∞∑
`=1

ekα
+(λ)e−`Lλ + ekα

−(λ)e−`Lλ =
(
ekα

+(λ) + ekα
−(λ)

) e−Lλ

1− e−Lλ
.

3.3 Error Arising from the Truncation of the Convolution Integrals

Next, assume that the generalised distribution ω of the PLD is of the form

ω(s) =
∑
i

ai · δsi(s),

where ai ≥ 0 and si = i∆x.

The following lemma gives a bound for the truncation error
L∫
ε

∣∣(ω ∗k ω − ω ~k ω)(s)
∣∣ ds in terms of the moment

generating function of ω. Notice that this result applies also for the case where the support of the PLD distribution
are outside of the interval [−L,L].

Lemma 12. Let ω be defined as above. For all λ > 0,

I2(L) =

L∫
ε

(ω ∗k ω − ω ~k ω)(s) ds ≤
(

ekα
+(λ) − eα

+(λ)

eα+(λ) − 1
+

eα
−(λ) − ekα

−(λ)

1− eα−(λ)

)
e−Lλ.
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Proof. By adding and subtracting (ω ∗k ω) ~ ω , we may write

ω ∗k ω − ω ~k ω = (ω ∗k−1 ω) ∗ ω − (ω ∗k−1 ω) ~ ω + (ω ∗k−1 ω − ω ~k−1 ω) ~ ω. (3.10)

Let ` ∈ Z+. Let ω be of the form ω(s) =
∑
i ai · δsi(s) and let the convolution ω ∗` ω be of the form (ω ∗` ω)(s) =∑

i ci · δsi(s) for some ai, ci ≥ 0, si = i∆x. From the definition of the operators ∗ and ~ it follows that(
(ω ∗` ω) ∗ ω − (ω ∗` ω) ~ ω

)
(s) =

∑
i

(∑
j

cjai−j

)
· δsi(s)−

∑
i

( ∑
−L≤sj<L

cjai−j

)
· δsi(s)

=
∑
i

( ∑
sj<−L, sj≥L

cjai−j

)
· δsi(s).

Therefore ∫
R

(
(ω ∗` ω) ∗ ω − (ω ∗` ω) ~ ω

)
(s) ds =

∫
R

∑
i

( ∑
sj<−L, sj≥L

cjai−j

)
· δsi(s) ds

=
∑

sj<−L, sj≥L

cj

∫
R

∑
i

ai−j · δsi(s) ds

=
∑

sj<−L, sj≥L

cj

=P
(
ω ∗` ω < −L

)
+ P

(
ω ∗` ω ≥ L

)
≤ e`α

+(λ)e−Lλ + e`α
−(λ)e−Lλ

(3.11)

for all λ > 0. The last inequality follows from the Chernoff bound. Similarly, let ω ∗` ω − ω ~` ω be of the form

(ω ∗` ω − ω ~` ω)(s) =
∑
i

c̃i · δsi(s)

for some c̃i ≥ 0, si = i∆x. Then∫
R

(
(ω ∗` ω − ω ~` ω) ~ ω

)
(s) ds =

∫
R

∑
i

( ∑
−L≤sj<L

c̃jai−j

)
· δsi(s) ds

=
∑

−L≤sj<L

c̃j

∫
R

∑
i

ai−j · δsi(s) ds

≤
∑

−L≤sj<L

c̃j

≤
∫
R

(ω ∗` ω − ω ~` ω)(s) ds.

(3.12)

Using (3.10), (3.11) and (3.12), we see that for all λ > 0,

L∫
ε

(ω ∗k ω − ω ~k ω)(s) ds ≤
∫
R

(ω ∗k ω − ω ~k ω)(s) ds

≤ e (k−1)α+(λ)e−Lλ + e (k−1)α−(λ)e−Lλ +

∫
R

(ω ∗k−1 ω − ω ~k−1 ω)(s) ds.

(3.13)

Using (3.13) recursively, we see that for all λ > 0,

L∫
ε

(ω ∗k ω − ω ~k ω)(s) ds ≤
k−1∑
`=1

e`α
+(λ)e−Lλ +

k−1∑
`=1

e`α
−(λ)e−Lλ

=

(
ekα

+(λ) − eα
+(λ)

eα+(λ) − 1
+

ekα
−(λ) − eα

−(λ)

eα−(λ) − 1

)
e−Lλ.



3.4 Proof of Theorem 10 (Total Error)

Proof of Theorem 10. Let α+(λ) and α−(λ) be defined as in (3.5). Combining the bound (3.4) and the
bounds given by Lemmas 11 and 12, we find that∣∣∣δ(ε)− δ̃(ε)∣∣∣ ≤ ekα

+(λ)e−λL +
(
ekα

+(λ) + ekα
−(λ)

) e−Lλ

1− e−Lλ
+

(
ekα

+(λ) − eα
+(λ)

eα+(λ) − 1
+

ekα
−(λ) − eα

−(λ)

eα−(λ) − 1

)
e−Lλ

≤ ekα
+(λ) e−Lλ

1− e−Lλ
+
(
ekα

+(λ) + ekα
−(λ)

) e−Lλ

1− e−Lλ

+

(
ekα

+(λ) − eα
+(λ)

eα+(λ) − 1
+

ekα
−(λ) − eα

−(λ)

eα−(λ) − 1

)
e−Lλ

1− e−Lλ

=

(
2e (k+1)α+(λ) − ekα

+(λ) − eα
+(λ)

eα+(λ) − 1
+

e (k+1)α−(λ) − eα
−(λ)

eα−(λ) − 1

)
e−Lλ

1− e−Lλ
.

4 Theorem 11: Tight Bound for Multidimensional Mechanisms via One
Dimensional Distributions

The following results shows that the tight (ε, δ)-bound for a multidimensional mechanism M can be obtained
by analysis of one dimensional distributions, in case the neighbouring datasets X and Y leading to the maximal
δ(ε) are known.

Theorem 13. Consider a function f : XN → Rd and a randomised mechanism M of the form M(X) =
f(X) + Z, where Zi’s are independent random variables. Suppose the data sets X and Y lead to the δ(ε)-upper
bound, and denote ∆ = f(X) − f(Y ). Then, the tight (ε, δ)-bound for M is given by the tight (ε, δ)-bound for
the non-adaptive compositions of one-dimensional random variables

∆i + Zi and Zi, 1 ≤ i ≤ d.

Proof. The claim can be shown simply by observing that the privacy loss distribution generated by M(X) and
M(Y ) and the privacy loss distribution generated by compositions (∆1 +Z1, . . . ,∆d +Zd) and (Z1, . . . , Zd) are
the same.

5 Experiments of Section 6.2

We next show how to use the Fourier accountant for obtaining the (ε, δ)-bound of Figure 4. Essentially, we
show how to obtain the PLD for a subsampled multivariate mechanism, where the neighbouring distributions
are known and fixed (i.e., ∆ = f(X) − f(Y ) is fixed and f(X) is sampled with probability q and f(Y ) with
probability 1− q).

Now denote the density functions for one-dimensional mechanisms M(X) and M(Y ) by

fX(t) :=
∑
i

aX,i · δtX,i(t) and fY (t) :=
∑
i

aY,i · δtY,i(t),

respectively.

Then, for the d-fold compositions(
M(X), . . . ,M(X)

)
and

(
M(Y ), . . . ,M(Y )

)
,

the density functions are given by the convolutions

f̃X(t) =
∑

(i1,...,id)

aX,i1 · · · aX,id · δtX,i1+...+tX,id
(t) and f̃Y (t) =

∑
(i1,...,id)

aY,i1 · · · aY,id · δtY,i1+...+tY,id
(t),

respectively.
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By definition, the PLD generated by the distributions

q · f̃X + (1− q) · f̃Y and f̃Y ,

is of the form

ω̃(s) =
∑

(i1,...,id)

(
q · aX,i1 · · · aX,id + (1− q) · aY,i1 · · · aY,id

)
· δs̃i(s), (5.1)

where

s̃i = log

(
q · aX,i1 · · · aX,id + (1− q) · aY,i1 · · · aY,id

aY,i1 · · · aY,id

)
= log

(
q · aX,i1 · · · aX,id

aY,i1 · · · aY,id
+ (1− q)

)
= log

(
q · exp

(
si1 + . . . sid

)
+ (1− q)

)
,

where

si = log

(
aX,i
aY,i

)
for all i. Thus, if we have the distributions

ω1(s) =
∑

(i1,...,id)

aX,i1 · · · aX,id · δsi1+...sid
(s) (5.2)

and
ω2(s) =

∑
(i1,...,id)

aY,i1 · · · aY,id · δsi1+...sid
(s), (5.3)

we can form the PLD ω̃ by the change of variable

s→ log
(
q · s+ (1− q)

)
and summing the coefficients as in (5.1). On the other hand, we can obtain ω1 and ω2 by using the Fourier
accountant to the d-fold convolutions of the distributions∑

i

aX,i · δsi(s) and
∑
i

aY,i · δsi(s).

Also, the δ(∞)-probabilities can be evaluated straightforwardly for q · f̃X + (1− q) · f̃Y and f̃Y .

6 Section 6.3: The Subsampled Gaussian Mechanism

In this Section we give an error analysis for the approximations given in Section 6.3. Recall first the form of the
PLD for the subsampled Gaussian mechanism. For a subsampling ratio 0 < q < 1 and noise level σ > 0, the
continuous PLD distribution is given by

ω(s) =

{
f(g(s))g′(s), if s > log(1− q),
0, otherwise,

(6.1)

where

f(t) =
1√

2πσ2
[qe

−(t−1)2

2σ2 + (1− q)e−
t2

2σ2 ], g(s) = σ2 log

(
es − (1− q)

q

)
+

1

2
. (6.2)

In order to carry out an error analysis for the approximations given in Section 6.3, we define the infinite extending
grid approximations of ωmin and ωmax. Let L > 0, n ∈ Z+, ∆x = 2L/n and let the grid Xn be defined as in
(2.1). Define

ωmin(s) =

n−1∑
i=0

c−i · δsi(s), ωmax(s) =

n−1∑
i=0

c+i · δsi(s),



where si = i∆x and
c−i = ∆x · min

s∈[si,si+1]
ω(s), c+i = ∆x · max

s∈[si−1,si]
ω(s). (6.3)

Define
ω∞min(s) =

∑
i∈Z

c−i · δsi(s), ω∞max(s) =
∑
i∈Z

c+i · δsi(s), (6.4)

where c−i and c+i are as defined in (6.3). We find that ω as defined in (6.1) has one stationary point which we
determine numerically. Using this, the numerical values of c−i and c+i are obtained.

We obtain approximations for the lower and upper bounds δmin(ε) and δmax(ε) of Section 6.3 by running Algorithm
1 for ω∞min and ω∞max using some prescribed parameter values n and L. This is equivalent to running Algorithm 1
for the truncated distributions ωmin and ωmax. However, to obtain the bounds of Theorem 10 (and subsequently
strict lower and upper bounds for δ(ε)), the error analysis has to be carried out for the distributions ω∞min and
ω∞max. To this end, we need bounds for the moment generating functions of −ω∞min, ω∞min −ω∞max and ω∞max.

However, we first show that ω∞min and ω∞max indeed give lower and upper bounds for δ(ε).

Lemma 14. Let δ(ε) be given by the integral formula of Lemma 3 for some privacy loss distribution ω and for
some δ(∞) ≥ 0. Let δ∞min(ε) and δ∞max(ε) be defined analogously by ω∞min and ω∞max. Then for all ε > 0 we have

δ∞min(ε) ≤ δ(ε) ≤ δ∞max(ε).

Proof. From the definition (6.4) and from the fact that (1 − eε−s) is a monotonously increasing function of s
it follows that the discrete sums δ∞min(ε) and δ∞max(ε) are the lower and upper Riemann sums for the continuous
integral δ(ε) on the partition {i∆x : i ∈ Z}. This shows the claim.

Lemma 14 directly generalises to convolutions:

Corollary 15. Consider a single composition, i.e., suppose the PLD is given by ω ∗ω for a distribution ω of the
form (6.1). Let ω∞max be defined as in (6.4). We have that

∞∫
ε

(1− eε−s) (ω ∗ ω)(s) ds =

∞∫
ε

(1− eε−s)

∞∫
−∞

ω(t)ω(s− t) dt ds

=

∞∫
−∞

ω(t)

∞∫
ε

(1− eε−s)ω(s− t) ds dt

≤
∞∫
−∞

ω(t)

∞∫
ε

(1− eε−s)ω∞max(s− t) ds dt

=

∞∫
−∞

ω(t)

∞∫
ε

(1− eε−s)
∑
i∈Z

c+i · δsi+t(s) ds dt

=

∞∫
−∞

ω(t)
∑

si+t>ε

(1− eε−(si+t)) c+i dt

≤
∞∫
−∞

ω∞max(t)
∑

si+t>ε

(1− eε−(si+t)) c+i dt

=
∑

si+sj>ε

(1− eε−(si+sj)) c+i c
+
j

=

∞∫
ε

(1− eε−s)
∑
i,j

c+i c
+
j δsi+sj (s) ds

=

∞∫
ε

(1− eε−s) (ω∞max ∗ ω∞max)(s) ds.

(6.5)
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Showing that
∞∫
ε

(1− eε−s) (ω ∗ ω)(s) ≥
∞∫
ε

(1− eε−s) (ω∞min ∗ ω∞min)(s) ds

goes analogously. Inductively, bounding as in (6.5), we also see that

∞∫
ε

(1− eε−s) (ω ∗k ω)(s) ds ≤
∑

si1+...+sik>ε

(1− eε−(si1+...+sik )) ai1 · . . . · aik

=

∞∫
ε

(1− eε−s) (ω∞max ∗k ω∞max)(s) ds

and similarly for the lower bound determined by the convolutions of ω∞min.

To evaluate α+(λ) and α−(λ) in the upper bound of Theorem 10 of the main text, we need the moment generating
functions of −ω∞min, ω∞min, −ω∞max and ω∞max. We first state the following auxiliary lemma needed to bound these
moment generating functions.

Lemma 16. For all s ≥ 1 and 0 < q ≤ 1
2 :

ω(s) ≤ σ
√

2

π
e−

(σ2s+C)2

2σ2 ,

where C = σ2 log( 1
2q )− 1

2 .

Proof. When s ≥ 1,

es − (1− q) ≥ 1

2
es (6.6)

and subsequently

g(s) = σ2 log

(
es − (1− q)

q

)
+

1

2
≥ σ2s+ C̃,

where C̃ = σ2 log( 1
2q ) + 1

2 . We see that when 0 < q ≤ 1
2 , we have g(s) ≥ 1

2 . From (6.2) we see that

f(g(s)) ≤ 1√
2πσ2

e−
(σ2s+C̃−1)2

2σ2 ,

Furthermore, when s ≥ 1, from (6.6) it follows that

g′(s) =
σ2es

es − (1− q)
≤ 2σ2.

Thus, when s ≥ 1,

ω(s) ≤ σ
√

2

π
e−

(σ2s+C)2

2σ2 ,

where C = σ2 log( 1
2q )− 1

2 .

Using Lemma 16, we can bound the moment generating function of ω∞max as follows. We note that E[eλωmax ] can
be evaluated numerically.

Lemma 17. Let 0 < λ ≤ L and assume σ ≥ 1 and ∆x ≤ c · L, 0 < c < 1. The moment generating function of
ω∞max can be bounded as

E[eλω
∞
max ] ≤ E[eλωmax ] + err(λ, L, σ),

where

err(λ, L, σ) = ecλL
2√
π

e−
λ(2C−λ)

2σ2 erfc

(
(1− c)σ2L+ C − λ√

2σ

)
. (6.7)

Here ωmax is the restriction of ω∞max to the interval [−L,L] (i.e., as defined in equation (14) of the main text)
and the constant C is as defined in Lemma 16.



Proof. Assuming L > |log 1− q| (i.e., ω(s) = 0 for all s < −L), the moment generating function of ω∞max is given
by

E[eλω
∞
max ] =

∫ L

−∞
eλsω∞max(s) ds+

∫ ∞
L

eλsω∞max(s) ds

=

∫ L

−L
eλsω∞max(s) ds+

∫ ∞
L

eλsω∞max(s) ds

= E[eλωmax ] +
∑
i≥n

∆x · eλi∆x · c+i .

(6.8)

From Lemma 16 it follows that

c+i = max
s∈[si−1,si]

ω(s) ≤ σ
√

2

π
e−

(σ2si−1+C)2

2σ2 ,

where C = σ2 log( 1
2q )− 1

2 , si = i∆x. Thus∑
i≥n

eλi∆x · c+i = eλ∆x
∑
i≥n

eλsi−1 · c+i

≤ eλ∆xσ

√
2

π

∑
i≥n

∆x · eλsi−1e−
(σ2si−1+C)2

2σ2

= eλ∆xσ

√
2

π

∑
i≥n

∆x · e
−(σ2si−1+C−λ)2−λ(2C−λ)

2σ2

= eλ∆xσ

√
2

π
e−

λ(2C−λ)
2σ2

∑
i≥n

∆x · e−
(σ2si−1+C−λ)2

2σ2 .

(6.9)

Assuming σ ≥ 1 and λ ≤ L, ∆x ≤ c · L, we further see that

eλ∆xσ

√
2

π
e−

λ(2C−λ)
2σ2

∑
i≥n

∆x · e−
(σ2si−1+C−λ)2

2σ2 ≤ eλ∆xσ

√
2

π
e−

λ(2C−λ)
2σ2

∞∫
L−∆x

e−
(σ2s+C−λ)2

2σ2 ds

≤ ecλLσ

√
2

π
e−

λ(2C−λ)
2σ2

∞∫
(1−c)L

e−
(σ2s+C−λ)2

2σ2 ds

= ecλLσ

√
2

π
e−

λ(2C−λ)
2σ2

√
2

σ
erfc

(
(1− c)σ2L+ C − λ√

2σ

)
= ecλL

2√
π

e−
λ(2C−λ)

2σ2 erfc

(
(1− c)σ2L+ C − λ√

2σ

)
.

(6.10)

Using a reasoning similar to the proof of Lemma 17, we get the following. We note that E[e−λωmax ], E[eλωmin ]
and E[e−λωmin ] can be evaluated numerically.

Corollary 18. The moment generating functions of −ω∞max, ω∞min and −ω∞min can be bounded as

E[e−λω
∞
max ] ≤ E[e−λωmax ] + err(λ, L, σ),

E[eλω
∞
min ] ≤ E[eλωmin ] + err(λ, L, σ),

E[e−λω
∞
min ] ≤ E[e−λωmin ] + err(λ, L, σ),

where err(λ, L, σ) is defined as in (6.7).
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Proof. Assuming L > |log 1− q| (i.e., ω(s) = 0 for all s < −L), the moment generating function of −ω∞max is
given by

E[e−λω
∞
max ] =

L∫
−∞

e−λsω∞max(s) ds+

∞∫
L

e−λsω∞max(s) ds

=

L∫
−L

e−λsω∞max(s) ds+

∞∫
L

e−λsω∞max(s) ds

≤
L∫
−L

e−λsω∞max(s) ds+

∞∫
L

eλsω∞max(s) ds.

(6.11)

After bounding the term
∫∞
L

eλsω∞max(s) ds as in the proof of Lemma 17, the first claim follows. Bounding

E[eλω
∞
min ] and E[e−λω

∞
min ] can be carried out analogously to (6.11).

Remark 19. In the experiments, the effect of the error term err(λ, L, σ) was found to be negligible (less than
10−90 in the experiments of Figure 3).

7 Description of Learning Rate Cooling Used for Experiments of Figure 2b.

When running the feedforward network experiment of Figure 2b, we set the initial learning rate η = 0.02. When
n = 2400 and |B| = 500, starting from epoch 13, and when n = 3000 and |B| = 300, starting from epoch 5, the
learning rate η is linearly decreased after each epoch such that it is zero at the end of the training.
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