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Abstract

We propose a numerical accountant for eval-
uating the tight (ε, δ)-privacy loss for algo-
rithms with discrete one dimensional output.
The method is based on the privacy loss dis-
tribution formalism and it uses the recently
introduced fast Fourier transform based ac-
counting technique. We carry out an error
analysis of the method in terms of moment
bounds of the privacy loss distribution which
leads to rigorous lower and upper bounds
for the true (ε, δ)-values. As an applica-
tion, we present a novel approach to accurate
privacy accounting of the subsampled Gaus-
sian mechanism. This completes the previ-
ously proposed analysis by giving strict lower
and upper bounds for the privacy parame-
ters. We demonstrate the performance of
the accountant on the binomial mechanism
and show that our approach allows decreas-
ing noise variance up to 75 percent at equal
privacy compared to existing bounds in the
literature. We also illustrate how to compute
tight bounds for the exponential mechanism
applied to counting queries.

1 Introduction

Differential privacy (DP) (Dwork et al., 2006) has
been established as the standard approach for privacy-
preserving machine learning. As DP algorithms have
grown increasingly complex, accurately bounding the
compound privacy loss has become more challenging
as well. The moments accountant (Abadi et al., 2016)
represented a major breakthrough in the accuracy of
bounding the privacy loss in compositions of subsam-
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pled Gaussian mechanisms that are commonly used in
DP stochastic gradient descent (DP-SGD). This has
further been refined through the general development
of Rényi differential privacy (RDP) (Mironov, 2017)
as well as tighter RDP bounds for subsampled mech-
anisms (Balle et al., 2018; Wang et al., 2019; Zhu and
Wang, 2019; Mironov et al., 2019). RDP enables tight
analysis for compositions of Gaussian mechanisms, but
this may be difficult for other mechanisms. Moreover,
conversion of RDP guarantees back to more commonly
used (ε, δ)-guarantees is lossy.

In this work, we focus on an alternative approach
based on the privacy loss distribution (PLD) for-
malism introduced by Sommer et al. (2019). This
work directly extends the recent Fourier accountant
by Koskela et al. (2020) to discrete mechanisms. We
provide a rigorous error analysis which leads to strict
(ε, δ)-bounds. This analysis is further used to obtain
strict bounds for the subsampled Gaussian mechanism.

The need to consider discrete mechanisms for rigorous
DP on finite-precision computers was first pointed out
by Mironov (2012). Agarwal et al. (2018) implement
a communication efficient binomial mechanism cpSGD
for neural network training which however cannot han-
dle compositions. Agarwal et al. (2018) and Kairouz
et al. (2019) note the need for a privacy accountant for
the binomial mechanism as an important open prob-
lem, which we solve in this paper for the case where
gradients are replaced with a sign approximation.

The outline of the paper is as follows. In Sections 2
and 3 we give the basic definitions and describe the
PLD formalism used for our accountant. In Section
4 we describe the algorithm based on the fast Fourier
transform (FFT) and in Section 5 we provide an error
analysis. Section 6 concludes with experiments illus-
trating the efficiency and accuracy of the method.

Implementation of the methods is available in Github1.

Our Contribution. We extend the work by Koskela
et al. (2020) which considered an FFT based method

1https://github.com/DPBayes/PLD-Accountant/
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for approximating the tight (ε, δ)-DP guarantees of
the subsampled Gaussian mechanism, however with-
out strict lower and upper bounds. The main contri-
butions of this work are:

• A framework for computing tight (ε, δ)-DP guar-
antees of discrete-valued mechanisms.

• An error analysis of the proposed method using
moment bounds of the mechanism at hand, which
leads to strict lower and (ε, δ)-upper bounds.

• Accurate lower and upper bounds for (ε, δ)-DP of
the subsampled Gaussian mechanism.

2 Differential Privacy

We first recall some basic definitions of DP (Dwork
et al., 2006). We use the following notation. An input
data set containing N data points is denoted as X =
(x1, . . . , xN ) ∈ XN , where xi ∈ X , 1 ≤ i ≤ N .

Definition 1. We say two data sets X and Y are
neighbours in remove/add relation if we get one by re-
moving/adding an element from/to the other and de-
note this with ∼R. We say X and Y are neighbours
in substitute relation if we get one by substituting one
element in the other. We denote this with ∼S.

Definition 2. Let ε > 0 and δ ∈ [0, 1]. Let ∼ define
a neighbouring relation. Mechanism M : XN → R is
(ε, δ,∼)-DP if for every X ∼ Y and every measurable
set E ⊂ R we have that

Pr(M(X) ∈ E) ≤ eεPr(M(Y ) ∈ E) + δ.

When the relation is clear from context or irrelevant,
we will abbreviate it as (ε, δ)-DP. We call M tightly
(ε, δ,∼)-DP, if there does not exist δ′ < δ such thatM
is (ε, δ′,∼)-DP.

3 Privacy Loss Distribution

We first introduce the basic tool for obtaining tight
privacy bounds: the privacy loss distribution (PLD).
The results in Subsection 3.1 are reformulations of
the results given by Meiser and Mohammadi (2018)
and Sommer et al. (2019). Proofs of the results of this
section are given in the supplementary material.

3.1 Privacy Loss Distribution

We consider discrete-valued one-dimensional mecha-
nisms M which can be seen as mappings from XN
to the set of discrete-valued random variables. The
generalised probability density functions ofM(X) and

M(Y ), denoted fX(t) and fY (t), respectively, are
given by

fX(t) =
∑

i
aX,i · δtX,i(t),

fY (t) =
∑

i
aY,i · δtY,i(t),

(1)

where δt(·), t ∈ R, denotes the Dirac delta function
centered at t, and tX,i, tY,i ∈ R and aX,i, aY,i ≥ 0.
Equivalently, (1) means that for all i,

P(M(X) = tX,i) = aX,i,

P(M(Y ) = tY,i) = aY,i.

Thus, we have that
∫ ∞

−∞
fX(t) dt =

∑
i
aX,i = 1,

∫ ∞

−∞
fY (t) dt =

∑
i
aY,i = 1.

If g is a function such that g(X) determines a random
variable, then

Es∼X [g(s)] =

∫ ∞

−∞
g(t)fX(t) dt

=
∑

i
aX,i · g(tX,i).

(2)

More generally, we define integrals over generalised
probability density functions as in (2). We prefer using
the integral notation as it simplifies the analysis.

We define the privacy loss distribution as follows.

Definition 3. Let M : XN → R, R ⊂ R, be a
discrete-valued randomised mechanism and let fX(t)
and fY (t) be probability density functions of the form
(1). We define the privacy loss distribution ωX/Y as

ωX/Y (s) =
∑

tX,i=tY,j
aX,i · δsi(s), (3)

where si = log
(
aX,i
aY,j

)
.

Notice that this definition differs slightly from the one
given by Sommer et al. (2019, Def. 4.2): we do not in-
clude the symbol ∞ in ω. Thus, if fX(t) and fY (t) do
not have equal supports, we have

∫
R ωX/Y (s) ds < 1.

This situation is included in our Lemma 4 and Theo-
rem 5, and the analysis of Section 5 also applies then.
We remark that Def. 3 is related to the KL divergence,
as KL(fX ||fY ) = E[ωX/Y ] =

∫∞
−∞ s · ωX/Y (s) ds in

case fX and fY have equal supports.

Evaluating (ε, δ)-bounds using the PLD formalism
is essentially based on a result (Supplements) which
states that the mechanismM is tightly (ε, δ)-DP with

δ(ε) = max
X∼Y

{∫

R
max{fX(t)− eεfY (t), 0} dt,

∫

R
max{fY (t)− eεfX(t), 0} dt

}
.

(4)
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This relation holds for both continuous and discrete
output mechanisms, and a more general version of this
result using so called f -divergences is given by Barthe
and Olmedo (2013). In case fX and fY are generalised
probability density functions of the form (1), i.e.,

fX(t)− eεfY (t) =
∑

i
ci · δti(t)

for some coefficients ci, ti ∈ R, then in (4) we denote

max{fX(t)− eεfY (t), 0} =
∑

i
max{ci, 0} · δti(t).

For the discrete-valued mechanisms, the relation (4)
was originally given by Sommer et al. (2019, Lemmas
5 and 10). Assuming the PLD distribution is of the
form (3), the relation (4) directly gives the following
representation for δ(ε).

Lemma 4. M is tightly (ε, δ)-DP for

δ(ε) = max
X∼Y

{δX/Y (ε), δY/X(ε)},

where

δX/Y (ε) = δX/Y (∞) +

∫ ∞

ε

(1− eε−s)ωX/Y (s) ds,

δX/Y (∞) =
∑
{ti : P(M(X)=ti)>0, P(M(Y )=ti)=0}

P(M(X) = ti),

(5)
and similarly for δY/X(ε).

We remark that finding the outputsM(X) andM(Y )
that give the maximum δ(ε) is application specific and
has to be carried out individually for each case, simi-
larly as, e.g., in the case of RDP (Mironov, 2017).

3.2 Example: The Randomised Response

To illustrate the formalism described above, consider
the randomised response mechanism (Warner, 1965)
which is described as follows. Suppose F is a function
F : X → {0, 1}. Define the randomised mechanism
M for input X ∈ X by

M(X) =

{
F (X), with probability p

1− F (X), with probability 1− p,

where 0 < p < 1. The mechanism is ε-DP for ε =
log p

1−p (Dwork and Roth, 2014). Let X ∼ Y and

let F (X) = 1 and F (Y ) = 0. As these are the only
possible outputs, X and Y represent the worst case
in Lemma 4 and give the tight δ(ε). We see that the
density functions of M(X) and M(Y ) are given by

fX(t) = p · δ1(t) + (1− p) · δ0(t),

fY (t) = (1− p) · δ1(t) + p · δ0(t).

From (3) we see that

ωX/Y (s) = p · δcp(s) + (1− p) · δ−cp(s),

ωY/X(s) = p · δ−cp(s) + (1− p) · δcp(s),

where cp = log p
1−p . Assume 1

2 < p < 1. Then by
Lemma 4 we see that

δ(ε) =

{
p (1− eε−cp), if ε ≤ cp
0, else.

As ε→− cp, we see that δ → 0 as expected.

3.3 Tight (ε, δ)-Bounds for Compositions

Let X and Y be random variables described by gener-
alised probability density functions fX and fY of the
form (1). We define the convolution fX ∗ fY as

(fX ∗ fY )(t) =
∑

i,j
aX,i aY,j · δtX,i+tY,j (t).

Notice that fX ∗ fY describes the probability density
of the random variable X +Y . The following theorem
shows that the tight (ε, δ)-bounds for compositions of
non-adaptive mechanisms are obtained using convolu-
tions of PLDs (see also Sommer et al., 2019, Thm. 1).

Theorem 5. Consider a k-fold non-adaptive compo-
sition of a mechanism M. The composition is tightly
(ε, δ)-DP for δ(ε) given by

δ(ε) = max{δX/Y (ε), δY/X(ε)},

where

δX/Y (ε) = 1−
(
1− δX/Y (∞)

)k
+

∫ ∞

ε

(1− eε−s)
(
ωX/Y ∗k ωX/Y

)
(s) ds,

where δX/Y (∞) is as defined in (5) and ωX/Y ∗k ωX/Y
denotes the k-fold convolution of the density function
ωX/Y (an analogous expression holds for δY/X(ε)).

We remark that our approach also allows computing
tight privacy bounds for a composite mechanismM1 ◦
. . .◦Mk, where the PLDs of the mechanismsMi vary
(see the supplementary material).

3.4 Subsampling Amplification

The subsampling amplification can be analysed sim-
ilarly as by Koskela et al. (2020) in the case of the
Gaussian mechanism. For example, considering the
∼R-neighbouring relation and using the Poisson sub-
sampling with subsampling ratio 0 < q < 1 leads to
considering the pair of density functions

q · fX + (1− q) · fY and fY ,
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where the density function fX corresponds to a sub-
sample including the additional data element. Sub-
sampling without and with replacement using ∼S-
neighbouring relation can be analysed with mixture
distributions analogously (Koskela et al., 2020).

4 Fourier Accountant for
Discrete-Valued Mechanisms

We next describe the numerical method for comput-
ing tight DP guarantees for discrete one-dimensional
distributions using the PLD formalism. We will apply
the fast Fourier transform to numerically evaluate the
PLD convolutions of Theorem 5.

4.1 Fast Fourier Transform

Let

x =
[
x0, . . . , xn−1

]T
, w =

[
w0, . . . , wn−1

]T ∈ Rn.

The discrete Fourier transform F and its inverse F−1

are defined as (Stoer and Bulirsch, 2013)

(Fx)k =
∑n−1

j=0
xje
−i 2πkj/n,

(F−1w)k =
1

n

∑n−1

j=0
wje

i 2πkj/n,

where i =
√
−1. Evaluating Fx and F−1w

naively takes O(n2) operations, however evaluation us-
ing the Fast Fourier Transform (FFT) (Cooley and
Tukey, 1965) reduces the running time complexity to
O(n log n).

For our purposes FFT will be useful as it enables eval-
uating the discrete convolutions efficiently. The so-
called convolution theorem (Stockham Jr, 1966) states
that for periodic discrete convolutions it holds that

∑n−1

i=0
viwk−i = F−1(Fv �Fw), (6)

where � denotes the elementwise product and the
summation indices are modulo n. Using (6), repeated
convolutions are evaluated efficiently.

4.2 Grid Approximation

In order to harness the FFT, we place the PLD on a
grid

Xn = {x0, . . . , xn−1}, n ∈ Z+, (7)

where
xi = −L+ i∆x, ∆x = 2L/n.

Suppose the distribution ω of the PLD is of the form

ω(s) =
∑n−1

i=0
ai · δsi(s),

where ai ≥ 0 and −L ≤ si ≤ L −∆x, 0 ≤ i ≤ n − 1.
We define the grid approximations

ωL(s) :=
∑n−1

i=0
ai · δsLi (s),

ωR(s) :=
∑n−1

i=0
ai · δsRi (s),

(8)

where
sL
i = max{x ∈ Xn : x ≤ si},
sR
i = min{x ∈ Xn : x ≥ si},

i.e., sLi and sRi refer to the closest left and right grid
approximation points to si. We note that as si’s cor-
respond to the log ratios of probabilities of individual
events, often a moderate L is sufficient for the condi-
tion −L ≤ si ≤ L −∆x to hold for all i. In the Sup-
plements we provide analysis also for the case where
this assumption does not hold. From (8) we have:

Lemma 6. Let δ(ε) be given by the integral formula
of Lemma 4 and let δL(ε) and δR(ε) be determined
analogously by ωL and ωR. Then for all ε > 0 :

δL(ε) ≤ δ(ε) ≤ δR(ε).

Lemma 6 directly generalises to convolutions. The fol-
lowing bounds for the moment generating functions
will be used in the error analysis.

Lemma 7. Let ω, ωR and ωL also denote the random
variables determined by the density functions defined
above, and let 0 < λ < (∆x)−1. Then

E[eλω
L

] ≤ E[eλω], E[e−λω
L

] ≤ 1
1−λ∆xE[e−λω]

and

E[e−λω
R

] ≤ E[e−λω], E[eλω
R

] ≤ 1
1−λ∆xE[eλω].

4.3 Truncation of Convolutions and
Periodisation

The FFT assumes that inputs are periodic over a fi-
nite range. We describe truncation of convolutions and
periodisation of distribution functions to meet this as-
sumption. Suppose ω is defined such that

ω(s) =
∑

i
ai · δsi(s), (9)

where ai ≥ 0 and si = i∆x. The convolutions can
then be written as

(ω ∗ ω)(s) =
∑

i,j
aiaj · δsi+sj (s)

=
∑

i

(∑
j
ajai−j

)
· δsi(s).

Let L > 0. We truncate these convolutions to the
interval [−L,L] such that

(ω ∗ ω)(s) ≈
∑

i

(∑
−L≤sj<L

ajai−j

)
· δsi(s)

=: (ω ~ ω)(s).
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We define ω̃ to be a 2L-periodic extension of ω, i.e., ω̃
is of the form

ω̃(s) =
∑

m∈Z

∑
i
ai · δsi+m·2L(s).

We further approximate

(ω ~ ω) ≈ (ω̃ ~ ω̃).

In case the distribution ω is defined on an equidistant
grid, FFT can be used to evaluate ω̃ ~ ω̃ as follows:

Lemma 8. Let ω be of the form (9), such that n is
even, L > 0, ∆x = 2L/n and si = −L+ i∆x, 0 ≤ i ≤
n− 1. Define

a =
[
a0 . . . an−1

]T
and D =

[
0 In/2

In/2 0

]
∈ Rn×n.

Then,

(ω̃ ~k ω̃)(s) =
∑n−1

i=0
bki · δsi(s),

where
bki =

[
DF−1

(
F(Da)�k

)]
i
,

and �k denotes the elementwise power of vectors.

4.4 Approximation of the δ(ε)-Integral

Finally, using the truncated and periodised convolu-
tions we approximate the integral formula in Lemma 4
for the tight δ-value as

∫ ∞

ε

(1− eε−s)(ω ∗k ω)(s) ds

≈
∫ L

ε

(1− eε−s)(ω̃ ~k ω̃)(s) ds

=
∑n−1

`=`ε

(
1− eε−(−L+`∆x)

)
bk` ,

(10)

where `ε = min{` ∈ Z : −L+`∆x > ε} and the vector
bk ∈ Rn is given by Lemma 8. We describe the method
in the pseudocode of Algorithm 1. In the following
section we give an error bound for the approximation
with respect to the parameter L.

Remark 9. To evaluate ε as a function of δ, Newton’s
method can be used (Koskela et al., 2020). Suppose
ω is continuous and δ(ε) given by the integral (10).
Then, δ′(ε) = −

∫∞
ε

eε−s(ω ∗k ω)(s) ds and Newton’s
method applied to the function δ(ε)− δ̄ gives the iter-
ation

ε`+1 = ε` −
δ(ε`)− δ̄
δ′(ε`)

. (11)

Similarly to (10) this naturally translates to the case of
discrete distributions. We use as a stopping criterion∣∣δ(ε`)− δ̄

∣∣ ≤ τ for some prescribed tolerance param-
eter τ and an initial value ε0 = 0. In experiments,
for an equal stopping criterion τ , the iteration (11)
gave more than twice as fast convergence as the binary
search algorithm.

Algorithm 1 Fourier Accountant Algorithm for
Discrete-Valued Mechanisms

Input: distribution ω of the form (9), such that n is
even and si = −L+ i∆x, 0 ≤ i ≤ n−1, ∆x = 2L/n,
number of compositions k.

Set

a =
[
a0 . . . an−1

]T
, D =

[
0 In/2

In/2 0

]
.

Evaluate the convolutions using Lemma 8 and FFT:

bk =
[
DF−1

(
F(Da)�k

)]
,

Determine the starting point of the integral interval:

`ε = min{` ∈ N : −L+ `∆x > ε},

Approximate δ(ε) using Lemma 4:

δ(ε) ≈ 1− (1− δX/Y (∞))k

+
∑n−1

`=`ε

(
1− eε−(−L+`∆x)

)
bk` .

5 Error Analysis

We next give a bound for the error induced by Algo-
rithm 1 which is determined by the parameter L. The
total error consists of (see the supplementary material)

1. The tail integral
∫∞
L

(ω ∗k ω)(s) ds.

2. The error arising from periodisation of ω and
truncation of the convolutions.

We obtain bounds for these two error sources using the
Chernoff bound (Wainwright, 2019)

P[X ≥ t] ≤ E[eλX ]

eλt

which holds for any random variable X and all λ > 0.
Suppose ωX/Y is of the form

ωX/Y (s) =
∑n−1

i=0
aX,i · δsi(s), (12)

where si = log
(
aX,i
aY,i

)
and aX,i, aY,i > 0. Then, the

moment generating function of ωX/Y is given by

E[eλωX/Y ] =

∫ ∞

−∞
eλsω(s) ds

=
∑n−1

i=0
eλsi · aX,i

=
∑n−1

i=0

(
aX,i
aY,i

)λ
aX,i.

(13)
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5.1 Connection to RDP

Suppose fX(t) =
∑
i aX,i ·δti(t), fY (t) =

∑
i aY,i ·δti(t)

for some coefficients aX,i, aY,i, and suppose ωX/Y is of
the form (12). Then, we have that

E[eλωX/Y ] = λ ·Dλ+1(fX , fY ),

where Dα denotes the Rényi divergence of order
α (Mironov, 2017). Further, defining

α(λ) := log(E[eλωX/Y ]),

we see that α(λ) is exactly the logarithm of the mo-
ment generating function of the privacy loss function
as defined, e.g., by Abadi et al. (2016) and Mironov
et al. (2019). Thus existing Rényi differential privacy
estimates for α(λ) could be used to bound the moment
generating function of ωX/Y .

5.2 Tail Bound

Denote Sk :=
∑k
i=1 ωi, where ωi denotes the PLD ran-

dom variable of the ith mechanism. If ωi’s are inde-
pendent, we have that

E[eλSk ] =
∏k

i=1
E[eλωi ].

Then, if ωi’s are i.i.d. and distributed as ω, the Cher-
noff bound shows that for any λ > 0

∫ ∞

L

(ω ∗k ω)(s) ds = P[Sk ≥ L]

≤
∏k

i=1
E[eλωi ] e−λL

≤ ekα(λ)e−λL,

(14)

where α(λ) = log(E[eλω]).

5.3 Total Error

We define α+(λ) and α−(λ) via the moment generating
function of the PLD as

α+(λ) = log
(
E[eλω]

)
, α−(λ) = log

(
E[e−λω]

)
.

Using the analysis given in the supplementary mate-
rial, we bound the errors arising from the periodisation
of the distribution and truncation of the convolutions.
As a result, combining with (14), we obtain the follow-
ing bound for the total error incurred by Algorithm 1.

Theorem 10. Let ω be defined on the grid Xn as
described above, let δ(ε) give the tight (ε, δ)-bound for

ω and let δ̃(ε) be the result of Algorithm 1. Then, for
all λ > 0

∣∣∣δ(ε)− δ̃(ε)
∣∣∣ ≤
(

2e (k+1)α+(λ) − ekα
+(λ) − eα

+(λ)

eα+(λ) − 1

+
e (k+1)α−(λ) − eα

−(λ)

eα−(λ) − 1

)
e−Lλ

1− e−Lλ
.

Given a discrete-valued PLD distribution ω, we get
strict lower and upper δ(ε)-DP bounds as follows. Us-
ing parameter values L > 0 and n ∈ Z+, we form a grid
Xn as defined in (7) and place ω on Xn to obtain ωL

and ωR as defined in (8). We then approximate δL(ε)
and δR(ε) using Algorithm 1. We estimate the error
incurred by the approximation using Thm. 10 and the
expressions given by Lemma 7. By subtracting this
error from the approximation of δL(ε) and adding it
to the approximation of δR(ε) and using Lemma 6, we
obtain strict lower and upper bounds for δ(ε).

To obtain α+(λ) and α−(λ), we evaluate the moment
generating functions E[eλω] and E[e−λω] using the fi-
nite sum (13). We use λ = L/2 in all experiments.

We emphasise that the error analysis is given in terms
of the parameter L. The parameter n can be increased
in case the resulting lower and upper bounds for δ(ε)
are too far from each other.

6 Examples

6.1 The Exponential Mechanism

Consider the exponential mechanism M with quality
score u : Xn × Y → R and parameter ε̃, i.e., an out-
come y is sampled with probability

P(M(X) = y) =
e ε̃u(X,y)

∑
y e ε̃u(X,y)

.

Consider the neighbouring relation ∼R. Let u be a
counting query, i.e.,

u(X, y) =
∑

x∈X
1(x = y),

and let Y = {0, 1}. Denote by m the number of ele-
ments in X which equal 0. Let Y ∈ Xn−1, X ∼ Y , be
such that m− 1 elements equal 0. Then, the logarith-
mic ratio at y = 0 is given by

s0 := log

(
P(M(X) = 0)

P(M(Y ) = 0)

)

= log

(
e ε̃m

e ε̃(m−1)

e ε̃(m−1) + e ε̃(n−m)

e ε̃m + e ε̃(n−m)

)

and similarly s1 = log
(

P(M(X)=1)
P(M(Y )=1)

)
. Using the values

of P(M(X) = i) and si, i = 0, 1, we obtain the PLD.
We set ε̃ = 0.05 and m = 50. Figure 1 shows the δ(ε)-
values for ε = 1.0, when computed using Algorithm 1
for M(X) and M(Y ) and the optimal bound (Dong
et al., 2020, Thm. 2). The corresponding compute
times are shown in Figure 2. The evaluation of the
expression in (Dong et al., 2020, Thm. 2) is optimised
using the logarithmic gamma function.
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Figure 1: Exponential mechanism with a counting
query quality score and parameter value ε = 1.0.
We compute δ(ε) using Algorithm 1 and the optimal
bound given by Dong et al. (2020, Thm. 2), for ε̃ = 0.1.
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Figure 2: Compute times for different number of com-
positions k, using Algorithm 1 and the expression
of Dong et al. (2020, Thm. 2) δ(ε). The evaluation
of the expression by Dong et al. (2020, Thm. 2) is op-
timised using the logarithmic gamma function.

6.2 The Binomial Mechanism

The binomial mechanism by Agarwal et al. (2018) adds
binomially distributed noise Z with parameters n ∈ N
and 0 < p < 1 to the output of a query f with output
space Zd as

M(X) = f(X) + (Z − np) · s,

where s = 1/j for some j ∈ N and where for each
coordinate i, Zi ∼ Bin(n, p) and Zi’s are independent.

As described in the proof of Thm. 1 of Agarwal et al.

(2018), for the privacy analysis of the binomial mecha-
nism it is sufficient to consider the neighbouring bino-
mial distributions centred at 0 and ∆. If, for example,
d = 1, it is sufficient to consider the neighbouring bi-
nomial distributions

fX(t) =
∑n

i=0

(
n

i

)
pi(1− p)n−iδi+∆(t),

fY (t) =
∑n

i=0

(
n

i

)
pi(1− p)n−iδi(t).

Then, the privacy loss distribution ωX/Y is of the form

ωX/Y (s) =
∑n−∆

i=∆
ai · δsi(s),

ai =

(
n

i

)
pi−∆(1− p)n−i+∆,

si = log

(
(ni)

( n
i−∆)

(
1−p
p

)∆
)
.

Moreover,

ωX/Y (∞) =
∑n

i=n−∆+1

(
n

i

)
pi(1− p)n−i,

and determining the privacy loss distribution ωY/X can
be done analogously.

The (ε, δ)-analysis of the multivariate binomial mech-
anism can be carried out via one-dimensional distribu-
tions using the following observation.

Theorem 11. Consider a function f : XN → Rd
and a randomised mechanismM of the formM(X) =
f(X) + Z, where Zi’s are independent random vari-
ables. Suppose the data sets X and Y lead to the
δ(ε)-upper bound, and denote ∆ = f(X) − f(Y ).
Then, the tight (ε, δ)-bound forM is given by the tight
(ε, δ)-bound for the non-adaptive compositions of one-
dimensional random variables

∆i + Zi and Zi, 1 ≤ i ≤ d.

Figure 3 illustrates how Algorithm 1 gives tighter
bounds than the bound of Agarwal et al. (2018,
Thm. 1), and also how the (ε, δ)-bound given by Al-
gorithm 1 is close to the tight bound of the Gaussian
mechanism for the corresponding variance (Analytical
Gaussian mechanism by Balle and Wang, 2018). We
use an example analogous to Agarwal et al. (2018, Fig.

1): we set ∆ =
[

1
10 , . . . ,

1
10

]T ∈ R100, p = 0.5 and vary
the parameters n and s. Using Thm. 11, we obtain
tight (ε, δ)-bounds by considering a 100-fold composi-
tions of one-dimensional mechanisms

M(X) = 1
10 + (Z − np) · s, M(Y ) = (Z − np),

and thus we can use Algorithm 1 to obtain tight (ε, δ)-
bounds for a single call of M(X).
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Figure 3: Comparison of the cpSGD bound (Agarwal
et al., 2018, Thm. 1) and the upper bound given by
Algorithm 1 (δ = 10−4, p = 0.5). The bound given by
Algorithm 1 is close to that of the Analytical Gaussian
mechanism (Balle and Wang, 2018).

Figure 4 shows results for an MNIST classification
task, where we use a three-layer feedforward network
with ReLUs and a hidden layer of width 60. DP-SGD
approximation of the gradients is carried out such that
for each per example gradient we use a sign approx-
imation: the 200 largest elements (by magnitude) of
the input layer are approximated by their sign and the
rest are set to zero and similarly the 20 largest of the
hidden layer and the largest one of the output layer.
Elementwise zero centred binomial noise with param-
eters n and p = 0.5 is then added to the averaged
gradients. By Thm. 11 and subsampling amplification
(Sec. 3.4), the (ε, δ)-bound can be obtained by running
Algorithm 1 for the PLD determined by the distribu-
tions

q · fX + (1− q) · fY , and fY ,

where fX and fY are the density functions of the ran-
dom variables

X ∼ 1 + (Z − np) and Y ∼ (Z − np),

where 1 =
[
1, . . . , 1

]T ∈ R221 and for each i, Zi ∼
Bin(n, p) and Zi’s are independent. Here q denotes
the subsampling ratio, i.e., q = |B| /M , where |B| is
the minibatch size and M the total size of the training
data. We obtain tight (ε, δ)-bounds for the training
of the network as follows (details in the Supplements).
We obtain the PLD ω determined by the distributions
q · fX + (1− q) · fY and fY from the PLD determined
by fX and fY (that is obtained using Thm. 11 and
Alg. 1, as in the example of Figure 3). We then apply
Algorithm 1 to ω, for a given number of compositions.

The results of Figure 4 are averages of 5 runs. We set
the initial learning rate η = 0.02. We linearly decrease
the learning rate η after each epoch such that it is
zero at the end of the training (when |B| = 500 start-
ing from epoch 13, and when |B| = 300 starting from
epoch 5). We compare this method to cpSGD (Agar-
wal et al., 2018) applied to Infinite MNIST data set
which has the same test data set as MNIST. The re-
sults for cpSGD are extracted from Agarwal et al.
(2018, Fig. 2). For ε = 2.0 we extract the result
where each element of the gradient requires 8 bits and
for ε = 4.0 the one requiring 16 bits. We note that
when n = 3000 our method requires 12 bits per ele-
ment.
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Figure 4: A small feedforward model run on MNIST
(M = 6·104) using Algorithm 1 and on Infinite MNIST
(M = 2.5 · 108) using cpSGD (Agarwal et al., 2018).
Algorithm 1 takes into account the subsampling am-
plification (Sec. 3.4).

6.3 The Subsampled Gaussian Mechanism

We next show how to compute rigorous DP bounds
for the subsampled Gaussian mechanism using the
method presented here. We consider the Poisson sub-
sampling and ∼R-neighbouring relation. For a sub-
sampling ratio q and noise level σ, the continuous PLD
is given by Koskela et al. (2020)

ω(s) =

{
f(g(s))g′(s), if s > log(1− q),
0, otherwise,

(15)

where

f(t) =
1√

2πσ2
[qe

−(t−1)2

2σ2 + (1− q)e− t2

2σ2 ]

and

g(s) = σ2 log

(
es − (1− q)

q

)
+

1

2
.
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Let L > 0, n ∈ Z+, ∆x = 2L/n and si = −L + i∆x
for all i ∈ Z. We define

ωmin(s) =
∑n−1

i=0
c−i · δsi(s),

ωmax(s) =
∑n−1

i=0
c+i · δsi(s),

(16)

where
c−i = ∆x ·mins∈[si,si+1] ω(s),

c+i = ∆x ·maxs∈[si−1,si] ω(s).

Furthermore, we define

ω∞min(s) =
∑

i∈Z
c−i · δsi(s),

ω∞max(s) =
∑

i∈Z
c+i · δsi(s).

(17)

We find that ω as defined in (15) has one stationary
point which we determine numerically. Using this fact,
the numerical values of c−i and c+i can be straightfor-
wardly computed.

We obtain approximations for the lower and upper
bounds δmin(ε) and δmax(ε) by running Algorithm 1
for ω∞min and ω∞max using some prescribed parameter
values n and L:

Lemma 12. Let δ(ε) be given by the integral formula
of Thm. 5 for some privacy loss distribution ω. Let
δ∞min(ε) and δ∞max(ε) be defined analogously by ω∞min and
ω∞max. Then for all ε > 0 we have

δ∞min(ε) ≤ δ(ε) ≤ δ∞max(ε).

Proof. Supplements.

Running Alg. 1 for ω∞min and ω∞max is equivalent to run-
ning it for the truncated distributions ωmin and ωmax.
However, to obtain the bounds of Thm. 5 (and subse-
quently strict bounds for δ(ε)), the analysis has to be
carried out for ω∞min and ω∞max. To this end, we need
bounds for the moment generating functions of −ω∞min,
ω∞min −ω∞max and ω∞max (where −ω(s) :=

∑
i ai · δ−si(s)

if ω(s) =
∑
i ai · δsi(s)). We can bound the moment

generating function of ω∞max as follows. We note that
E[eλωmax ] can be evaluated numerically.

Lemma 13. Let 0 < λ ≤ L and assume σ ≥ 1 and
∆x ≤ c · L, 0 < c < 1. Let ωmax and ω∞max be defined
as in (16) and (17). The moment generating function
of ω∞max can be bounded as

E[eλω
∞
max ] ≤ E[eλωmax ] + err(λ, L, σ),

where

err(λ, L, σ) =

ecλL
2√
π

e−
λ(2C−λ)

2σ2 erfc

(
(1− c)σ2L+ C − λ√

2σ

)

and C = σ2 log( 1
2q )− 1

2 .

Proof. Supplements.

An analogous bound holds for the moment generating
functions of −ω∞min, ω∞min and −ω∞max (see the Supple-
ments). In the experiments, the effect of the error term
err(λ, L, σ) was found to be negligible.

Figure 5 illustrates the convergence of the bound given
by Lemma 12 as n grows and L is fixed. For com-
parison, we also show the numerical values given by
Tensorflow moments accountant (Abadi et al., 2016).
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Figure 5: The subsampled Gaussian mechanism and
bounds for δ(ε) computed using Algorithm 1, when
ε = 1.0, q = 0.02, σ = 2.0 and L = 8.0. Here n
denotes the number of discretisation points. Compute
times are for each curve.

7 Conclusions

We have presented a novel approach for computing
privacy bounds for discrete-valued mechanisms. The
method provides tools for moments-accountant-like
techniques for evaluating privacy bounds for discrete
output DP-SGD algorithms. More specifically, we
have shown how to accurately bound the δ(ε)-DP for
the subsampled binomial mechanism, when the gradi-
ents are replaced with a sign approximation. More-
over, as the example of Section 6.3 shows, accurate
(ε, δ)-bounds for continuous mechanisms can also be
obtained using the proposed method. Due to the rigor-
ous error analysis the reported (ε, δ)-bounds are strict
lower and upper privacy bounds.
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