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Abstract

Decentralized optimization methods enable
on-device training of machine learning mod-
els without a central coordinator. In many
scenarios communication between devices is
energy demanding and time consuming and
forms the bottleneck of the entire system.
We propose a new randomized first-order
method which tackles the communication
bottleneck by applying randomized compres-
sion operators to the communicated mes-
sages. By combining our scheme with a
new variance reduction technique that pro-
gressively throughout the iterations reduces
the adverse effect of the injected quantization
noise, we obtain a scheme that converges lin-
early on strongly convex decentralized prob-
lems while using compressed communication
only. We prove that our method can solve the
problems without any increase in the num-
ber of communications compared to the base-
line which does not perform any communi-
cation compression while still allowing for a
significant compression factor which depends
on the conditioning of the problem and the
topology of the network. We confirm our the-
oretical findings in numerical experiments.

1 Introduction

We consider large-scale convex optimization problems
of the form

f? := min
x∈Rd

1

n

n∑
i=1

[
fi(x) := Eξ∼D [fi(x, ξ)]

]
, (1)
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with private loss functions fi : Rd → R split among
n machines (workers). This problem formulation cov-
ers for instance empirical risk minimization over finite
datasets with equal loss functions but different data
samples available on each device, but more generally
also the stochastic setting where the workers have ac-
cess to unbounded number of independent samples.

We assume that the workers are connected over an ar-
bitrary network and that they can only exchange infor-
mation with their immediate neighbors in the network.
This setting covers the classical parameter-server in-
frastructures, where all devices are connected to one
central server (Dean et al., 2012), the emerging feder-
ated learning paradigm (McMahan et al., 2016, 2017;
Kairouz et al., 2019), and most generally, arbitrary de-
centralized communication topologies (Tsitsiklis, 1984;
Nedić, 2020; Xin et al., 2020).

Communication is a key bottleneck when the work-
ing devices are connected over networks (Seide and
Agarwal, 2016; Alistarh et al., 2017). Quantization
techniques enable optimization with compressed mes-
sages, hereby reducing the number of bits that have to
be exchanges between the workers in each communica-
tion round. Whilst the first schemes of this type have
been presented for centralized topologies only (Alis-
tarh et al., 2017; Wangni et al., 2018), many adap-
tations have been developed recently for optimization
over arbitrary networks (Tang et al., 2018; Koloskova
et al., 2019; Tang et al., 2019; Reisizadeh et al., 2019;
Koloskova et al., 2020a).

All these, so far mentioned, decentralized schemes
only converge sublinearly when using compressed mes-
sages, i.e. they need O

(
1/ετ
)
iterations to reach accu-

racy ε for a parameter 0 < τ < ∞ (most commonly
τ ∈ {1/2, 1, 2}). This is in sharp contrast to central-
ized approaches with parameter servers, where linear
convergence rates of the form O

(
log 1/ε

)
can be at-

tained even with communication compression, for in-
stance when the objective function is strongly con-
vex (Horváth et al., 2019). We believe that there is an
intrinsic reason for this limitation: these early schemes
for communication compression and optimization over
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arbitrary networks have been derived by adapting the
the decentralized gradient method and compressing the
gradient updates. However, decentralized gradient de-
scent cannot achieve linear convergence on strongly
convex problems, even without communication com-
pression (Shi et al., 2015; Yuan et al., 2016; Koloskova
et al., 2020b).

We develop new algorithms for quantized decentral-
ized optimization based on the primal-dual gradient
method (Chen and Rockafellar, 1997; Boyd et al.,
2011) instead. This allows to overcome limitations
of prior schemes. Most importantly, we are able to
prove linear convergence on strongly convex functions
for arbitrary unbiased randomized compressors.

Our results extend and improve the parallel work1

in (Liu et al., 2020), that also applies to arbitrary com-
pressors, and prior work (Magnússon et al., 2020) that
is tied to a specific quantization scheme. We present
a detailed comparison to these papers in Section 5.

Our main contributions can be summarized as follows:

(a) We design decentralized optimization algorithms
for problem (1). For µ-strongly convex and L-
smooth objective with condition number κ :=
L/µ, our main algorithm converges linearly and
achieves an ε accurate solution after at most

O
(

(ω + κ(ρ+ ωρ∞)) log
1

ε

)
(2)

iterations, where ρ ≥ 1 denotes the ratio between
the largest and smallest non-zero eigenvalues of
the Laplacian gossip matrix that encodes the com-
munication topology, ρ∞ ≤ ρ a new graph param-
eter we introduce later, and ω ≥ 0 quantifies the
quality of an arbitrary unbiased quantization oper-
ator. For the special case ω = 0 (no quantization)
our rates recover the linear convergence rates of
the primal-dual gradient method (Bertsekas, 1982;
Alghunaim and Sayed, 2020). We provide further
in-depth discussion of our convergence results in
Section 5, see also Tables 1–2.

(b) Most notably, equation (2) reveals that for any
compression parameter ω ≤ min

{
ρρ−1
∞ , κρ

}
the

complexity bound is O
(
κρ log 1/ε

)
—the same as

for the primal-dual method without compres-
sion. This means, that any communication sav-
ing achieved by quantization is for free, as they
do not affect the total number of communication
rounds but reduce the number of bits sent every
round. We will show that the savings in communi-
cation can reach up to a factor of O(n) on certain
problems.

1Their proposed method is identical to option B (in-
cremental primal update) our Algorithm 1.

(c) We give algorithms and convergence analysis for
four important cases: (A) a primal-dual method
for dual-friendly problems, (B) an incremental
method only using primal gradient oracles, and
especially for the machine learning context (C) a
method for stochastic gradient oracles and (D) a
variance-reduced method when the local functions
have finite-sum structure.

(d) We illustrate in numerical experiments that the
performance of our schemes matches with the the-
oretical rates and compare against prior baselines.

2 Related Work

As decentralized optimization problems are special
cases of linearly constrained (consensus constraint)
optimization problems, algorithms based on aug-
mented Lagrangian reformulations and primal dual
algorithms, such as alternating method of multiplies
(ADMM) (Glowinski and Marrocco, 1975; Gabay and
Mercier, 1976), have been developed early on (Boyd
et al., 2011). Linear convergence rates for primal-dual
methods on strongly convex problems have been de-
rived and refined over the past decades (Bertsekas,
1982; Tsitsiklis, 1984; Chen and Rockafellar, 1997; Shi
et al., 2014; Alghunaim and Sayed, 2020). A variety
of decentralized optimization schemes have been intro-
duce and studied in the control and optimization com-
munities (Duchi et al., 2012; Wei and Ozdaglar, 2012;
Iutzeler et al., 2013; Rabbat, 2015; He et al., 2018;
Lian et al., 2017; Wang and Joshi, 2018; Koloskova
et al., 2020b), see also the review articles (Sayed, 2014;
Xin et al., 2020; Nedić, 2020). Limitations of the dis-
tributed gradient method, such as for instance not at-
taining linear convergence rates, have been pointed out
for instance in (Shi et al., 2015) and techniques such as
EXTRA (Shi et al., 2015) and gradient tracking (Nedić
et al., 2017) have been developed to achieve linear
convergence on strongly convex problems with primal
methods as well. Optimal decentralized algorithms
based on accelerated gossip protocols have been pre-
sented in (Scaman et al., 2017) and (Uribe et al., 2018).

Quantization. Quantization techniques allow for
(lossy) compression of the messages that are exchanged
between the agents to reduce the number of bits that
need to be exchanged in each round. Quantization
has emerged in recent years as an important tool in
parallel and distributed machine learning (Seide et al.,
2014; Strom, 2015; Alistarh et al., 2017; Wen et al.,
2017). Whilst these early schemes have suffered from
increased variance due to the randomized compression
schemes, schemes based on error-feedback can com-
pensate these effects and attain faster convergence (Al-
istarh et al., 2018; Stich et al., 2018; Karimireddy
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Table 1: Comparison to decentralized algorithms with communication compression and baseline results without
compression. The rates show the most significant terms and indicate how many iterations are needed to reach
‖x− x?‖2 ≤ ε for all nodes. Here ρ̃ ≈ ρ, ω̃ ≥ ω and τ ≥ 1 is an algorithm and function dependent constant, cf.
the indicated references for definitions.

Algorithma & Reference linear rate quantization convergence to ε-accuracy

Decentralized Gradient Descent (Nedić+ 2009; Koloskova+ 2020b) O
(√

κρ̃2

µ · 1√
ε

)
QDGD (Reisizadeh+ 2019) 3 O

(
κ2ρ̃4L4+ω̃2

µ2 · 1
ε2

)
Choco-SGD (Koloskova+ 2019) 3 O

(√
κρ̃2(1+ω)

µ · 1√
ε

)
EXTRA (Shi+ 2015), Gradient Tracking (Qu+ 2016; Pu+ 2020) 3 O

(
(κτ ρ̃2 ) · log 1

ε

)
Primal Dual Gradient Method (Scaman+ 2017; Alghunaim+ 2020) 3 O

(
(κρ ) · log 1

ε

)
LEAD (Liu+ 2020) 3 3 O

(
(κρω ) · log 1

ε

)
this paper 3 3 O

(
(κρ+ κρ∞ω) · log 1

ε

)
aConvergence rates for the non-accelerated versions of these schemes.

et al., 2019; Stich and Karimireddy, 2019) on central-
ized network topologies.

Quantization in the context of decentralized optimiza-
tion has first been studied for the decentralized consen-
sus problem where the agents aim to collaboratively
compute the average of private data vectors. The
effects of various quantization techniques have been
studied in (Xiao et al., 2005; Nedić et al., 2008; Carli
et al., 2010b) and many different techniques have been
proposed to address quantization errors, such as de-
creasing stepsizes or adaptive coding schemes (Carli
et al., 2010a; Yuan et al., 2012; Reisizadeh et al., 2019).
Only recently, a first scheme with linear convergence
to the exact solution was presented (Koloskova et al.,
2019). However, this algorithm does not converge lin-
early on arbitrary strongly convex optimization prob-
lems that we consider here. Primal-dual methods
with quantization have been introduced in (Magnús-
son et al., 2020; Liu et al., 2020). For more general,
non-convex problems, further schemes with communi-
cation compression have been proposed by Tang et al.
(2018, 2019); Koloskova et al. (2020a).

Variance Reduction. Variance reduction for finite-
sum structured problems has been introduced
in (Johnson and Zhang, 2013; Defazio et al., 2014) and
previously been applied to the closely related saddle-
point problems (Palaniappan and Bach, 2016) and
specifically also for decentralized consensus optimiza-
tion (Mokhtari and Ribeiro, 2016; Xin et al., 2019).
Hendrikx et al. (2020) developed an optimal algorithm
for finite-sum optimization. Variance reduction and
in combination with communication compression has
previously been studied in the context of distributed
optimization with a parameter server only (Horváth
et al., 2019). This method relies on efficient (and un-

compressed) broadcast communication which we avoid
here by supporting a fully decentralized topology.

3 Setup

We now specify the problem formulation, assump-
tions, and define several key concepts that will be used
throughout the paper.

3.1 Regularity Assumptions

Assumption 1. Each cost function fi : Rd → R is
µ-strongly convex and L-smooth, for parameters 0 <
µ ≤ L and condition number κ := L/µ. That is
∀ x, y ∈ Rd, i ∈ [n]:

fi(y) ≥ fi(x) + 〈∇fi(x), y − x〉+
µ

2
‖y − x‖22 , (3)

fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉+
L

2
‖y − x‖22 . (4)

Sometimes we will also consider the stochastic setting:

fi(x) = Eξ∼D [fi(x, ξ)] , ∀i ∈ [n], (5)

where only stochastic gradients Eξ∼D [∇fi(x, ξ)] =
∇fi(x) are available. In this case we do need an addi-
tional assumption on the strength of the noise:

Assumption 2 (Bounded Variance and Smoothness).
Function fi(x, ξ) is L-smooth in expectation and the
stochastic variance at the optimum x? := arg min f(x)
is bounded. That is, for all i ∈ [n] here exist σ2

i ∈ R+,
such that

Eξ∼D
[
‖∇fi(x?, ξ)−∇fi(x?)‖22

]
≤ σ2

i , (6)
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is bounded. We define σ2 := 1
n

∑n
i=1 σ

2
i . Further,

smoothness implies the inequality

Eξ∼D
[
‖∇fi(x, ξ)−∇fi(y, ξ)‖22

]
≤ 2LBfi(x, y) , (7)

∀x, y ∈ Rd, i ∈ [n], where Bfi(x, y) is a Bregman di-
vergence Bfi(x, y) := fi(x)− fi(y)− 〈∇fi(y), x− y〉.
Remark 1. For the special case of finite-sum
structured problems on each worker, fi(x) =
1
m

∑m
j=1 fij(x), equation (7) becomes

1
m

∑m
j=1 ‖∇fij(x)−∇fij(y)‖22 ≤ 2LBfi(x, y) , (8)

∀x, y ∈ Rd, i ∈ [n].

3.2 Optimization over Networks

We model the network topology as an undirected
graph G = ([n], E) where [n] := {1, . . . , n} denotes
the index set of the agents and E ⊂ [n] × [n] a set
of pairs of communicating agents, (i, j) ∈ E if and
only if (j, i) ∈ E (symmetric). If there exists an edge
from agent i to agent j they may exchange information
along this edge. Thus, agent imay send or receive mes-
sages from all its neighbors Ni = {j ∈ [n] | (i, j) ∈ E}.
We encode the communication links in a weighted
Laplacian W ∈ Sn+:

Wij =


−wij , i 6= j, (i, j) ∈ E
0, i 6= j, (i, j) /∈ E∑
l∈Ni wil, i = j

, (9)

where wij > 0 for all (i, j) ∈ E. The mixing ma-
trix is positive semidefinite W ∈ Sn+, respects the
graph structure, Wij 6= 0 only if (i, j) ∈ E, and
kerW = span (1), where 1 = (1, . . . , 1)>. We de-
note by λ+

min(W) the smallest non-zero eigenvalue of
W and by λmax(W) its largest eigenvalue. We de-
fine ρ := λmax(W)/λ+

min(W) to be the ratio between the
largest and the smallest non-zero eigenvalue of W, and
ρ∞ := max(i,j)∈E wij/λ+

min(W) the maximum normalized
edge weight.

Remark 2. It holds ρ∞ ≤ ρ and the gap ρρ−1
∞ ≥ 1

can reach size Θ(n).

Proof. For any Laplacian, we have2 ∆ ≤ λmax(W)
for maximal weighted degree ∆ := maxi∈[n] wii. As
max(i,j)∈E wij ≤ maxi∈[n] wii = ∆, it follows ρ∞ ≤ ρ.
For the second claim, consider a k-regular graph, for
a parameter 1 ≤ k ≤ n − 1, and uniform weights,
wij = 1 for (i, j) ∈ E. Then max(i,j)∈E wij = ∆

k , and
ρρ−1
∞ ≥ k.
2Folklore; this bound can be shown by considering

Rayleigh quotients ∆ = maxi∈[n] e
>
i Wei ≤ λmax(W).

Remark 3. The consensus constraint, xi = xj can
compactly be written as W

[
x1, · · · , xn

]
= 0 in matrix

form if the graph is connected. This observation can
be utilized to derive the standard saddle point refor-
mulations of problem (1), see for instance (Lan et al.,
2018; Alghunaim et al., 2019).

3.3 Unbiased Quantization

We consider unbiased randomized quantizersQ : Rd →
Rd as for instance in (Alistarh et al., 2017; Wangni
et al., 2018; Horváth et al., 2019) with the following
assumption on their variance.
Assumption 3 (ω-quanitzation). There exists a pa-
rameter ω ≥ 0 such that for all x ∈ Rd,

E [Q(x)] = x , E
[
‖Q(x)− x‖2

]
≤ ω‖x‖2. (10)

This general notion comprises many important exam-
ples of quantization operators currently used in appli-
cations. Below we just name a few (that we later use
in the numerical experiments). However, it is impor-
tant to note that our proposed method does not rely
on a specific choice of quantization operator but can
be used in combination with any arbitrary unbiased
quantization scheme that satisfies Assumption 3.
Example 4 (rand-k and dit-k). Example compression
operators and coding length, assuming that a single
floating-point scalar is encoded with b bits with neg-
ligible loss in precision.

– no compression (ω = 0). Each message has size db
for this standard baseline.

– rand-k: random k-sparsification (ω = d
k −

1) (Suresh et al., 2017; Wangni et al., 2018; Stich
et al., 2018). Q(x) := d

kM(x), where M(x) ran-
domly selects k coordinates of x and masks the oth-
ers to zero. The sparse vectors can be encoded with
kb+ k log d bits (non-zero coordinates and their in-
dices).

– dit-k: random s-dithering (ω = min
{
d
s2 ,
√
d
s

}
)

(Goodall, 1951; Roberts, 1962; Alistarh et al.,
2017). Each coordinate of the normalized vector
x/‖x‖ is randomly rounded to one of s quanitza-
tion levels, (often s = 2k−1 − 1 for integer k, so
that the levels can be encoded with k − 1 bits, plus
one bit for the sign),

Q(x) = sign(x) · ‖x‖2 · 1
s ·
⌊
s |x|‖x‖2 + ξ

⌋
for random variable ξ ∼u.a.r. [0, 1]d. As a special
case for s = 2 one recovers Terngrad (Wen et al.,
2017). A trivial upper bound for the encoding length
is dk+b, but exploiting sparsity (encoding only non-
zero quantized values and their indices) this bound
can be improved to Õ(s(s+

√
d)+b) (Alistarh et al.,

2018).
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Algorithm 1 Four Decentralized Quantized Optimization Algorithms
1: Initialization: wij = wji > 0 for (i, j) ∈ E, z0

1 , . . . , z
0
n ∈ Rd such that

∑n
i=1 z

0
i = 0,

2: x0
1, . . . , x

0
n ∈ Rd, h0

1, . . . , h
0
n ∈ Rd, θ > 0, α > 0, η > 0

3: for k = 0, 1, 2, . . . do
4: for i = 1, . . . , n do in parallel on each node O 4 options:
5: • xk+1

i = ∇f?i (zki ) . Option A (dual update)
6: • xk+1

i = xki − η(∇fi(xki )− zki ) . Option B (incremental primal update)
7: • Sample random ξki ∼ D
8: xk+1

i = xki − η(∇fi(xki , ξki )− zki ) . Option C (stochastic primal update)
9: • Sample jki ∈ {1, . . . ,m} uniformly at random
10: gki = ∇fijki (xki )−∇fijki (wki ) +∇fi(wki )

11: wk+1
i =

{
xki , with probability 1

m

wki , with probability 1− 1
m

12: xk+1
i = xki − η(gki − zki ) . Option D (finite-sum structured problems)

13: for j ∈ Ni do
14: ∆k

ij = Q(xk+1
i − hki ) + hki . prepare quantized dual updates

15: end for
16: hk+1

i = hki + αQ(xk+1
i − hki ) (communication with neighbors)

17: end for
18: for i = 1, . . . , n do in parallel on each node O update dual variables
19: zk+1

i = zki − θ
∑
j∈Ni

wij(∆
k
ij −∆k

ji) (communication with neighbors)

20: end for
21: end for

4 Algorithm

We give the pseudocode for our proposed schemes in
Algorithm 1 above. We will give convergence rates for
four different choices of updating the variables xki (in
this notation i ∈ [n] range over the nodes, and k ≥ 0
over the iterations).

Option A is applicable only if the dual functions
f∗i : Rd → R of each fi are known and their gradients
can be evaluated efficiently.3

Option B maintains dual variables zki that are incre-
mentally updated instead (accessing primal gradient
∇f(xki ) only). Similarly to the incremental version of
the classic primal-dual gradient method, we will have
zki → z+

i := ∇fi(x?) for k → ∞, which explains the
intuition behind the zki variables.

Option C is applicable when only stochastic gradient
oracles are available.

Option D applies bias-corrected gradient updates for
finite-sum structured fi’s (analogous to the bias cor-
rected updates in SVRG (Johnson and Zhang, 2013)).
Full batch gradients are re-computed after a random
number of epochs (Hannah et al., 2018).

3The convex conjugate of f∗i : Rd → R of fi is defined
as f∗i (z) := supx∈Rd(〈x, z〉 − fi(x)).

We give the convergence rates for these variants in
Section 5 below (see also Table 2).

The updates on lines 5–12 (depending on the chosen
option) are performed in parallel on each agent. The
auxiliary vectors hki updated on line 16 are crucial
component in our scheme that are required to achieve
linear convergence: we will show in the appendix that
hki → x? for (k → ∞), so that for the quantization
on line 14 we will be able to show (by virtue of (10))
that the quantization noise reduces linearly to zero as
xki → x? for (k → ∞). This would not be possible
when quantizing the iterates xki directly.

Implementation Details. It is easy to see that
only quantized vectors need to be exchanged between
the clients (every node needs to send two quantized
vectors to each of its neighbors). To see this, assume
that the vectors hki are known to all neighbors of node
i (maintaining hki requires only quantized updates as
per line 16: hk+1

i − hki = αq, where q is a quantized
vector). The update on line 19 can be rewritten as

zki − zk+1
i = θ

∑
j∈Ni

(
hki − hkj + qi − qj

)
,

where qi, qj are quantized vectors. Further note that
the memory requirement is quite low per node: each
agent needs to store its local copies of xki , zki , hki and
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Setting Convergence Rate, Õ(·) hides logarithmic factors Reference

A, dual ∇f?i (z) available O
(
(ω + κ(ρ+ ωρ∞)) log 1

ε

) Theorem 12
B, primal ∇fi(x) available Theorem 14
C, stochastic ∇fi(x, ξ) available Õ

(
ω + (ρ+ ωρ∞)

(
κ+ σ

√
1+ω√
εµ

+ σ2(ρ+ωρ∞)
εµ2

))
Theorem 16

D, finite sum fi(x) = 1
m

∑m
j=1 fij(x) O

(
(m+ ω + κ(ρ+ ωρ∞)) log 1

ε

)
Theorem 19

Table 2: Summary of the convergence results for Algorithm 1 to reach accuracy ‖x−x?‖2 ≤ ε on all nodes. The
depicted results are for stepsizes α = 1

ω+1 , η = 1
L and θ = Θ

(
µ

λmax(W)+ωmax(i,j)∈E wij

)
for option A, B and D

and chosen as in equation (50) for option C.

h̄ki := 1
|Ni|

∑
j∈Ni h

k
j (but not each hkj individually).

This memory efficient implementation is similar as the
one explained in (Koloskova et al., 2019).

5 Convergence Analysis

We summarize the convergence results of Algorithm 1
in Theorem 5. All proofs are given in the supplemen-
tary materials, restated as Theorems 12, 14, 16, 19.

Theorem 5. Under Assumptions 1–3, for any given
ε > 0 Algorithm 1 with stepsizes α = 1

ω+1 , η = 1
L and

θ = Θ
(

µ
λmax(W)+ωmax(i,j)∈E wij

)
for option A, B and

D and chosen as in equation (50) for option C reaches
accuracy ‖x−x?‖2 ≤ ε on all nodes after the following
number of iterations T :

Options A/B: dual ∇f?i (z) / primal ∇fi(x) available

T = O
(

(ω + κ(ρ+ ωρ∞)) log
1

ε

)

Option C: stochastic ∇fi(x, ξ) available

T = Õ
(
ω + (ρ+ ωρ∞)

(
κ+

σ
√

1 + ω√
εµ

+
σ2(ρ+ ωρ∞)

εµ2

))

Option D: finite sum fi(x) = 1
m

∑m
j=1 fij(x)

T = O
(

(m+ ω + κ(ρ+ ωρ∞)) log
1

ε

)
,

where Õ(·) hides logarithmic factors.

For Option A and B we obtain the same linear con-
vergence rate. For ω = 0 the rate simplifies to Õ

(
κρ
)
,

which is the product of the condition number of f (dif-
ficulty of the optimization problem) and the spectral
gap of W (how fast information diffuses in the graph).

The dependence on these parameters can be improved
to their square roots with accelerated gradient meth-
ods cf. (Scaman et al., 2017; Uribe et al., 2018). In par-
ticular, our scheme fits the Catalyst framework (Lin

et al., 2015) that can potentially be used to derive op-
timal accelerated rates with restarts. However, indi-
rect acceleration via Catalyst might not give the best
practical scheme, and direct acceleration would be pre-
ferred (though not derived in this work).

Our result recovers the best known rates for non-
accelerated algorithms (Alghunaim and Sayed, 2020)
and in the centralized setting (ρ = 1) we recover
the rate of the standard gradient method. In con-
trast to the method proposed in (Reisizadeh et al.,
2018, 2019) we are here able to show linear conver-
gence for our scheme even with quantization, i.e., for
ω > 0. Liu et al. (2020) independently show con-
vergence rate Õ

(
κρω

)
for option B, whereas in our

result, Õ
(
κρ + κρ∞ω

)
, the dependency on ω can be

weaker. Magnússon et al. (2020) show linear conver-
gence for option A but only for ω small enough, not
an arbitrary parameter as considered here.4

The linear O(ω) term that appears in all our results is
not crucial, as sending ω-quantized vectors is typically
O(ω) times faster than sending uncompressed vectors
(consider random-k quantization as a guiding exam-
ple), thus O(ω) is proportional to the time it takes to
send one single unquantized vector between two nodes.

Compression for free. Note that for any choice of
ω for which ω + κ(ρ + ωρ∞) = O

(
κρ
)
, or in other

words,

ω ≤ min
{
ρρ−1
∞ , κρ

}
, (11)

the total number of iteration does not increase but the
number of bits send in each iteration can be decreased.

As explained in Remark 2, the ratio ρρ−1
∞ can reach

size Θ(n), in particular for k-regular graphs with uni-
form weights, ρρ−1

∞ = Θ(k). Hence ω can be chosen
as large as Θ(n) for graphs with large maximal degree
∆. As a second example, consider a star graph with a

4Their quantization framework requires the compressed
messages to have size (in bits b) at least b ≥ bc, where bc is
a critical value, discussed below Theorem 1 in (Magnússon
et al., 2020).
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central node connected to all other nodes and uniform
edge weights, λmax(W) and the the spectral gap are
both of order Ω(n), so that the choice ω = O(n) is
admissible. For well connected graphs (such as regu-
lar graphs), the second term in (11) becomes smaller,
but for difficult optimization problems with κ = Ω(∆)
we see that compression up to ω = O(∆) is possible
without affecting the convergence rate.

In option D we leverage the finite-sum structure of fi.
In each iteration only a single new gradient∇fij has to
be computed (unless a full pass over the local dataset
is triggered). Our method combines SVRG-style vari-
ance reduction (reducing the variance of the stochastic
gradients) with our new variance reduction technique
for quantized communication to achieve linear conver-
gence on decentralized networks. For ω = 0 and ρ = 1
we recover the convergence rate of SVRG and for ρ > 1
our rate improves over the Õ

(
m + κ2ρ2

)
convergence

rate of the recently proposed GT-SVRG (Xin et al.,
2019) which does not support quantization.

For option C, with stochastic updates, we observe
that our convergence rate recovers the linear rate of
option A and B, when σ2 → 0. However, when σ2 is
large, the rate is dominated by the O

(
σ2

ε

)
term, and

the algorithm only converges sublinearly.

6 Experiments

In this section we experimentally validate our theoret-
ical findings.

Setup. We use rand-k and dit-k quantization func-
tions (see Example 4). We choose two unweighted
(wij = 1 for (i, j) ∈ E) graphs on n nodes for our ex-
periments: The ring, where every node is connected to
two neighbours. As it holds ρ ≈ ρ∞ ≈ n2 we see that
this is a challenging topology, only allowing communi-
cation compression for ω = O(1) (see also Remark 2).
Further, the star graph, where (n− 1) nodes have no
direct links between them, but are all connected to
the central node. Here it holds ρ = n, ρ∞ = 1 and
compression for ω = O(n) is suggested by our theory.

As baselines we use decentralized gradient descent
algorithms with quantized communications designed
for convex cases: QDGD (Reisizadeh et al., 2019),
Choco-Gossip and Choco-SGD (Koloskova et al., 2019)
for consensus and logistic regression correspondingly.
Note that when the compression function is identity
(ω = 0), Choco-SGD recovers D-SGD (Nedić and
Ozdaglar, 2009), and our Algorithm 1 recovers Pri-
mal Dual GD (Scaman et al., 2017; Alghunaim and
Sayed, 2020). In all our experiments we tune the hy-
perparameters of these algorithms independently over
a logarithmic grid.

Average consensus. First, we illustrate the perfor-
mance of Algorithm 1 on the average consensus prob-
lem where every worker i has a vector xi ∈ Rd and
the goal is to find the average x̄ = 1

n

∑n
i=1 xi. We

generate vectors xi from normal distribution N (0, I).
This can be cast into decentralized optimization for-
mulation (1) by considering functions of the form
fi(x) = 1

2‖x− xi‖
2
2. Note that these fi’s are strongly

convex and smooth with L = µ = 1 (Assumption 1),
we set η = 1

L = 1 and tune the stepsize θ for our
algorithm. In this setup we can easily compute full
gradients. Moreover, both option A and option B
of Algorithm 1 lead to the same update.

In Figure 1 we see that for the challenging ring topol-
ogy almost any quantization level ω leads to an in-
crease in the total number of iterations. On the other
hand, as predicted by theory, for the star graph there
is a level up to which quantization does not affect the
convergence, and we can achieve communication sav-
ings for free.

In Figure 2 we compare our algorithms to the base-
lines. Even after tuning the stepsizes, QDGD con-
verges very slowly (in agreement with Table 1). On
both graphs, iteration-wise our algorithm converges
faster than Choco. However, in terms of number of
bits, Algorithm 1 converges slightly slower than Choco
on the ring graph. This is because our Algorithm 1 re-
quires twice as large messages compared to Choco for
the same quantization level. However, even with this
slight disadvantage, our algorithm performs best on
the star graph in term of bits.

Logistic regression. We further assess performance
on logistic regression with the objective function

f(x) =
1

m

m∑
j=1

log(1 + exp(−bj 〈aj , x〉)) +
1

2m
‖x‖22,

where aj ∈ Rd, bj ∈ {−1, 1}. We use the w8a dataset
(Platt, 1998) and distribute the samples between ma-
chines equally in a non-iid way, sorted by label. We
use ring topology with n = 16 nodes. We compare two
cases: either the nodes compute gradients on their full
local batch (Figure 4, top), or stochastic gradients with
respect to one single (randomly selected) local data
sample (bottom). We tune all algorithms to reach best
performance after 200 epochs in the full batch case and
for 300 epochs in stochastic case (left). To plot perfor-
mance in terms of transmitted number of bits (right),
we run the algorithms longer with found parameters.

With local gradients available, our algorithm converges
faster than the baselines. This is supported by the the-
ory, as we prove linear convergence for our option B5,

5On Figure 3 we do not see perfect linear convergence
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Figure 1: Illustrating quantization for free (right vs. left). Iterations to converge to 10−3 error for Algorithm 1
(option B) with different quantization functions. Average consensus problem on the star and ring topologies
with n = 100 nodes, d = 250 and (rand-k) and (dit-k) compression.

Figure 2: Comparison to the baselines. Average consensus problem on the star and ring topologies with n = 100
nodes, d = 250 and (rand-k) and (dit-k) compression.

while all other baselines converge only sublinearly (Ta-
ble 1). With stochastic gradients, option C as good
as the Choco baseline, while option D outperforms
all schemes (we have proven linear rate).
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A Parameters for the Numerical Experiments

In this section we give the hyperparameters we used for the for the experiments in the paper (found by grid
search).

ring-100 star-100
method θ θ

exact (no quantization) 1.26 1.58
dit-17 1.26 1.58
dit-9 1.26 1.58
dit-5 1.26 1.58
dit-4 1.26 1.58
dit-3 0.79 1.58
dit-2 0.4 1.58
dit-1 - 1.58
rand-100 0.8 1.58
rand-50 0.4 1.58
rand-30 0.25 1.58
rand-20 0.2 1.58
rand-10 0.1 1.0

Table 3: Hyperparameters found by tuning (lowest iteration number to reach target accuracy) in experiments
for Fig. 1.

ring-100 star-100
method θ θ

primal dual 1.26 1.58
option A/B, dit-5 1.26 1.58
option A/B, dit-2 0.4 1.58
method γ γ

choco, dit-5 1 1
choco, dit-2 0.25 0.2
method ε, α ε, α
qdgd, dit-5 (0.001, 1.0) (0.0001, 10000.0)
qdgd, dit-2 (0.001, 1.0) (0.0001, 10000.0)

Table 4: Hyperparameters found by tuning in experiments for Fig. 2.

batch size = 1
method γ η

D-GD - 0.1
choco, dit-3 0.316 0.1
method θ η

option C, exact 0.1 0.1
option C, dit-3 3.16 ×10−3 0.1
option D, exact 3.16 0.1
option D, dit-3 3.16 ×10−3 0.1
method ε α

qdgd, dit-3 1e-06 100

full batch
method γ η

D-GD - 21.5
choco, dit-3 0.316 4.64
method θ η

option B, exact 0.1 21.5
option B, dit-3 3.5 ×10−4 40
method ε α

qdgd, dit-3 0.01 31.6

Table 5: Hyperparameters found by tuning (lowest error after 200 epochs for full batch, and 300 epochs for batch
size 1) in experiments for Fig. 4.
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Figure 4: Logistic regression on w8a dataset. option B, exact with η = 20, γ = 0.05, option B, dit-3 with
η = 30, γ = 3× 10−4.

B Additional Plots

In this section we verify that for the same setting as for the Figure 4 (Section 6) option B of Algorithm 1
converges linearly if we take the smaller stepsizes.

C Convergence Proof

To prove the convergence of Algorithm 1, we will use matrix notation for the iterates of the algorithm:

• primal iterates

Xk =
[
xk1 , . . . , x

k
n

]
∈ Rd×n,

• and dual iterates

Zk =
[
zk1 , . . . , z

k
n

]
∈ Rd×n

and

Hk =
[
hk1 , . . . , h

k
n

]
∈ Rd×n.

Let X? = [x?, . . . , x?︸ ︷︷ ︸
n times

], Z? = [z?1 , . . . , z
?
n], where x? is a solution of (1), z?i = ∇fi(x?) for all i = 1, . . . , n.

For arbitrary matrixB ∈ Sn+, we define matrix semi-norm (norm in caseB is positive-definite) ‖·‖B : Rd×n → R+,
which is defined as follows:

‖X‖2B = 〈XB,X〉 = tr
(
XBX>

)
. (12)

Lemma 6 (Properties of W). kerW = span (1), where 1 = (1, . . . , 1)>.

Lemma 7. For arbitrary X ∈ Rd×n, the following inequalities hold:

‖X‖2W ≤ λmax(W)‖X‖2I , (13)

λ+
min(W)‖X‖2W† ≤ ‖X‖2I . (14)

Lemma 8 (hki update). Let α = 1
ω+1 . The following inequality holds:

E
[
‖Hk+1 −X?‖2I

]
≤ (1− α)‖Hk −X?‖2I + αE

[
‖Xk+1 −X?‖2I

]
. (15)
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Proof. Since hk+1
i = hki + αQ(xk+1

i − hki ), we can decompose

E
[
‖Hk+1 −X?‖2I

]
= E

[
‖Hk −X?‖2I

]
+ 2α〈Xk+1 −Hk,Hk −X?〉+ α2E

[
‖Xk+1 −Hk‖2I

]
≤ E

[
‖Hk −X?‖2I

]
+ 2α〈Xk+1 −Hk,Hk −X?〉+ α2(1 + ω)‖Xk+1 −Hk‖2I

≤ E
[
‖Hk −X?‖2I

]
+ 2α〈Xk+1 −Hk,Hk −X?〉+ α‖Xk+1 −Hk‖2I

= E
[
‖Hk −X?‖2I

]
+ α〈Xk+1 −Hk,Xk+1 + Hk − 2X?〉

= E
[
‖Hk −X?‖2I

]
+ α‖Xk+1 −X?‖2I − α‖Hk −X?‖2I

≤ (1− α)‖Hk −X?‖2I + αE
[
‖Xk+1 −X?‖2I

]
.

Lemma 9 (Dual step).

E
[
‖Zk+1 − Z?‖2W†

]
≤ ‖Zk − Z?‖2W† + E

[
−2θ〈Xk+1 −X?,Zk − Z?〉+ θ2‖Xk+1 −X?‖2W + Σk

]
, (16)

where Σk is a variance:
Σk = EQ

[
‖Zk+1 − EQ

[
Zk+1

]
‖2W†

]
. (17)

Proof. Firstly, we prove that
n∑
i=1

zki = 0 (18)

for all k = 0, 1, 2, . . . by induction. For k = 0, (18) follows trivially from initialization step of Algorithm 1. Now,
assuming that (18) holds, we have

n∑
i=1

zk+1
i =

n∑
i=1

zki − θ
∑
j∈Ni

wij(∆
k
ij −∆k

ji) = −θ
∑

(i,j)∈E

wij∆
k
ij + θ

∑
(i,j)∈E

wij∆
k
ji

= −θ
∑

(i,j)∈E

wij∆
k
ij + θ

∑
(i,j)∈E

wji∆
k
ij = θ

∑
(i,j)∈E

∆k
ij(wji − wij) = 0,

which proves (18) for all k = 0, 1, 2, . . ..

Next, we show that
(Zk − Z?)W†W = Zk − Z?, (19)

which holds, since (Zk − Z?)1 = 0, where 1 = (1, . . . ,1)> ∈ Rn, and hence rows of matrix Zk − Z? lie in range
of W.

Now, we rewrite EQ
[
‖Zk+1 − Z?‖2W†

]
:

EQ
[
‖Zk+1 − Z?‖2W†

]
= ‖Zk − Z?‖2W† + EQ

[
2〈Zk+1 − Zk, (Zk − Z?)W†〉

]
+ EQ

[
‖Zk+1 − Zk‖2W†

]
. (20)

To simplify the second term in (20), we first rewrite EQ
[
zk+1
i − zki

]
as follows:

EQ
[
zk+1
i − zki

]
= −θ

∑
j∈Ni

wijE
[
∆k
ij −∆k

ji

]
= −θ

∑
j∈Ni

wij(x
k+1
i − x?) + θ

∑
j∈Ni

wij(x
k+1
j − x?)

= −θ
n∑
j=1

Wij(x
k+1
j − x?),

which gives
EQ
[
Zk+1 − Zk

]
= −θ(Xk+1 −X?)W. (21)

Hence,

E
[
2〈Zk+1 − Zk, (Zk − Z?)W†〉

] (21)
= −2θ〈Xk+1 −X?, (Zk − Z?)W†W〉 (19)

= −2θ〈Xk+1 −X?,Zk − Z?〉. (22)
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Now, we simplify the last term in (20):

EQ
[
‖Zk+1 − Zk‖2W†

]
= ‖EQ

[
Zk+1 − Zk

]
‖2W† + EQ

[
‖Zk+1 − EQ

[
Zk+1

]
‖2W†

]
(21)
= θ2‖(Xk+1 −X?)W‖2W† + Σk = θ2‖Xk+1 −X?‖2W + Σk.

Plugging this and (22) into (20) gives

EQ
[
‖Zk+1 − Z?‖2W†

]
≤ ‖Zk − Z?‖2W† − 2θ〈Xk+1 −X?,Zk − Z?〉+ θ2‖Xk+1 −X?‖2W + Σk.

Taking full expectation concludes the proof.

Lemma 10 (Variance bound). For each k ≥ 0 we have

Σk ≤ 4θ2ω max
(i,j)∈E

wij
[
‖Xk+1 −X?‖2I + ‖Hk −X?‖2I

]
. (23)

Proof.

Σk = EQ
[
‖Zk+1 − EQ

[
Zk+1

]
‖2W†

]
= EQ

n∑
i=1

n∑
j=1

W†
ij〈z

k+1
i − EQzk+1

i , zk+1
j − EQzk+1

j 〉 (24)

=

n∑
i=1

n∑
j=1

W†
ijEQ

[
〈zk+1
i − EQzk+1

i , zk+1
j − EQzk+1

j 〉
]
, (25)

where W†
ij is number in the i-th row of j-th column of W†.

Next we observe, that
zk+1
i − EQzk+1

i = −θ
∑
j∈Ni

wij(∆̄
k
ij − ∆̄k

ji), (26)

where ∆̄k
ij := ∆k

ij − EQ∆ij = ∆k
ij − x

k+1
i .

From the construction of ∆k
ij it follows that

EQ
[
〈∆̄k

ab, ∆̄
k
cd〉
]

=

{
σka , a = c and b = d

0, otherwise
= δacδbdσ

k
a , (27)

where σki = EQ
[
‖Q(xk+1

i − hki )− (xk+1
i − hki )‖22

]
and δij is a Kronecker delta.

Now, we rewrite EQ
[
〈zk+1
i − EQzk+1

i , zk+1
j − EQzk+1

j 〉
]
:

EQ
[
〈zk+1
i − EQzk+1

i , zk+1
j − EQzk+1

j 〉
] (26)

= θ2EQ

〈∑
p∈Ni

wip(∆̄
k
ip − ∆̄k

pi),
∑
q∈Ni

wjq(∆̄
k
jq − ∆̄k

qj)

〉
= θ2EQ

〈∑
p 6=i

Wip(∆̄
k
ip − ∆̄k

pi),
∑
q 6=j

Wjq(∆̄
k
jq − ∆̄k

qj)

〉
= θ2

∑
p6=i

∑
q 6=j

WipWjqEQ
[
〈∆̄k

ip − ∆̄k
pi, ∆̄

k
jq − ∆̄k

qj〉
]

= θ2
∑
p6=i

∑
q 6=j

WipWjq

[
δijδpq(σ

k
i + σkp)− δiqδpj(σki + σkp)

]
= θ2

∑
p 6=i

Wip(σ
k
i + σkp)

∑
q 6=j

Wjq [δijδpq − δiqδpj ]

= θ2δij
∑
p 6=i

W2
ip(σ

k
i + σkp)

∑
q 6=i

δpq − θ2W2
ij(σ

k
i + σkj )

∑
p 6=i

δpj
∑
q 6=j

δiq

= θ2δij
∑
p 6=i

W2
ip(σ

k
i + σkp)− θ2(1− δij)W2

ij(σ
k
i + σkj ).
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Plugging this into (25) gives

Σk = θ2
n∑
i=1

n∑
j=1

W†
ijδij

∑
p 6=i

W2
ip(σ

k
i + σkp)− θ2

n∑
i=1

n∑
j=1

W†
ij(1− δij)W

2
ij(σ

k
i + σkj )

= θ2
n∑
i=1

W†
ii

∑
p 6=i

W2
ip(σ

k
i + σkp)− θ2

n∑
i=1

∑
j 6=i

W†
ijW

2
ij(σ

k
i + σkj )

= θ2
n∑
i=1

W†
ii

∑
j 6=i

W2
ij(σ

k
i + σkj )− θ2

n∑
i=1

∑
j 6=i

W†
ijW

2
ij(σ

k
i + σkj )

= θ2
n∑
i=1

∑
j 6=i

(W†
ii −W†

ij)W
2
ij(σ

k
i + σkj ) = θ2

n∑
i=1

∑
j 6=i

(W†
ii −W†

ij)W
2
ij(σ

k
i + σkj )

= 2θ2
n∑
i=1

∑
j 6=i

(W†
ii −W†

ij)W
2
ijσ

k
i = 2θ2

n∑
i=1

σki
∑
j 6=i

(W†
ii −W†

ij)W
2
ij

= 2θ2
n∑
i=1

σki

W†
ii

∑
j 6=i

W2
ij −

∑
j 6=i

W†
ijW

2
ij

 = 2θ2
n∑
i=1

σki

n∑
j=1

W†
ijŴij ,

where Ŵ is another Laplacian matrix:

Ŵij =

{
−W2

ij , i 6= j∑
l 6=jW

2
il, i = j

. (28)

This gives us

Σk = 2θ2
n∑
i=1

σki

n∑
j=1

W†
ijŴij = 2θ2

n∑
i=1

σki [W†Ŵ]ii = 2θ2
n∑
i=1

σki [W†/2ŴW†/2]ii

≤ 2θ2λmax(W†/2ŴW†/2)

n∑
i=1

σki .

Now, we use the definition of σki and get

Σk ≤ 2θ2λmax(W†/2ŴW†/2)

n∑
i=1

EQ
[
‖Q(xk+1

i − hki )− (xk+1
i − hki )‖22

]
(29)

≤ 2θ2ωλmax(W†/2ŴW†/2)

n∑
i=1

ω‖xk+1
i − hki ‖22 = 2θ2ωλmax(W†/2ŴW†/2)‖Xk+1 −Hk‖2I (30)

≤ 4θ2ωλmax(W†/2ŴW†/2)
[
‖Xk+1 −X?‖2I + ‖Hk −X?‖2I

]
. (31)

It remains to upper-bound λmax(W†/2ŴW†/2). We note that for all u ∈ Rn

u>Ŵu =

n∑
i=1

n∑
j=1

Ŵijuiuj =

n∑
i=1

u2
i

∑
j 6=i

W2
ij −

n∑
i=1

∑
j 6=i

uiujW
2
ij

=
1

2

n∑
i=1

∑
j 6=i

(u2
i + u2

j )W
2
ij −

n∑
i=1

∑
j 6=i

uiujW
2
ij =

1

2

n∑
i=1

∑
j 6=i

(ui − uj)2W2
ij

≤ 1

2
max

(i,j)∈E
wij

n∑
i=1

∑
j 6=i

(ui − uj)2Wij = max
(i,j)∈E

wij · u>Wu.

Hence, for all u ∈ Rn

u>W†/2ŴW†/2u ≤ max
(i,j)∈E

wij · u>W†/2WW†/2u = max
(i,j)∈E

wij · u>W†Wu ≤ max
(i,j)∈E

wij · ‖u‖22
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and thus λmax(W†/2ŴW†/2) is bounded by

λmax(W†/2ŴW†/2) ≤ max
(i,j)∈E

wij . (32)

plugging this into (31) gives (23) and concludes the proof.

C.1 Option A

Lemma 11 (Primal step, Option A). The following inequality holds:

− 2θ〈Xk+1 −X?,Zk − Z?〉 ≤ − θ
L
‖Zk − Z?‖2I − θµ‖Xk+1 −X?‖2I . (33)

Proof. From Line 5 of Algorithm 1 it follows that

−2θ〈Xk+1 −X?,Zk − Z?〉 = −2θ

n∑
i=1

〈∇f?i (zki )−∇f?i (z?i ), zki − z?i 〉

≤ − θ
L

n∑
i=1

‖zki − z?i ‖22 − θµ
n∑
i=1

‖∇f∗i (zki )−∇f∗i (z?i )‖22

= − θ
L
‖Zk − Z?‖2I − θµ‖Xk+1 −X?‖2I ,

where we used strong monotonicity and co-coercivity of ∇f∗i in the inequality.

Theorem 12 (Convergence of Algorithm 1, Option A). Let Ψk
A be a Lyapunov function which is defined as

follows:

Ψk
A = ‖Zk − Z?‖2W† +

8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I . (34)

Let ρA be defined as follows:

ρA = max

{
2(ω + 1),

L(λmax(W) + 12ωmax(i,j)∈E wij)

µλ+
min(W)

}−1

. (35)

Choosing the stepsize θ as
θ =

µ

λmax(W) + 12ωmax(i,j)∈E wij
(36)

and stepsize α = 1
ω+1 gives the following inequality:

E
[
Ψk+1
A

]
≤ (1− ρA)Ψk

A. (37)

Proof. We start with rewriting (16):

E
[
‖Zk+1 − Z?‖2W†

] (16)
≤ ‖Zk − Z?‖2W† + E

[
−2θ〈Xk+1 −X?,Zk − Z?〉+ θ2‖Xk+1 −X?‖2W + Σk

]
(33)
≤ ‖Zk − Z?‖2W† −

θ

L
‖Zk − Z?‖2I − θµ‖Xk+1 −X?‖2I + θ2‖Xk+1 −X?‖2W + E

[
Σk
]

(13),(14)
≤

(
1− θλ+

min(W)

L

)
‖Zk − Z?‖2W† − θ(µ− θλmax(W))‖Xk+1 −X?‖2I + E

[
Σk
]

(23)
≤

(
1− θλ+

min(W)

L

)
‖Zk − Z?‖2W† + 4θ2ω max

(i,j)∈E
wij‖Hk −X?‖2I

− θ

(
µ− θ

[
λmax(W) + 4ω max

(i,j)∈E
wij

])
‖Xk+1 −X?‖2I .
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Now, we combine this with (15):

E
[
Ψk+1
A

]
≤
(

1− θλ+
min(W)

L

)
‖Zk − Z?‖2W† + 4θ2ω max

(i,j)∈E
wij‖Hk −X?‖2I

− θ
(
µ− θ

[
λmax(W) + 4ω max

(i,j)∈E
wij

])
‖Xk+1 −X?‖2I

+ (1− α)
8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I + 8θ2ω max

(i,j)∈E
wij‖Xk+1 −X?‖2I

=

(
1− θλ+

min(W)

L

)
‖Zk − Z?‖2W† +

(
1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I

+ θ

(
µ− θ

[
λmax(W) + 12ω max

(i,j)∈E
wij

])
‖Xk+1 −X?‖2I .

Using (36) we get

E
[
Ψk+1
A

]
≤
(

1− θλ+
min(W)

L

)
‖Zk − Z?‖2W† +

(
1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I

≤ (1− ρA)Ψk
A,

which concludes the proof.

C.2 Option B

Lemma 13 (Primal step, Option B). Let η ≤ 1
L . Then the following inequality holds:

−2θ〈Xk+1 −X?,Zk − Z?〉 ≤ −ηθ‖Zk − Z?‖2I −
θµ

2
‖Xk+1 −X?‖2I

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
‖Xk+1 −X?‖2I . (38)

Proof. From Line 6 of Algorithm 1 it follows that

‖xk+1
i − x? − η(zki − z?i )‖22 = ‖xki − x? − η(∇fi(xki )−∇fi(x?))‖22

≤ (1− ηµ)‖xki − x?i ‖22

for any stepsize η ≤ 1
L , which leads to

(1− ηµ)‖Xk −X?‖2I =

n∑
i=1

(1− ηµ)‖xki − x?i ‖22 ≥
n∑
i=1

‖xk+1
i − x? − η(zki − z?i )‖22

= ‖Xk+1 −X? − η(Zk − Z?)‖2I
= ‖Xk+1 −X?‖2I + η2‖Zk − Z?‖2I − 2η〈Xk+1 −X?,Zk − Z?〉.

After rearranging, we get

−2θ〈Xk+1 −X?,Zk − Z?〉 ≤ −ηθ‖Zk − Z?‖2I −
θµ

2
‖Xk+1 −X?‖2I

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
‖Xk+1 −X?‖2I ,

which concludes the proof.

Theorem 14 (Convergence of Algorithm 1, Option B). Let Ψk
B be a Lyapunov function defined as follows:

Ψk
B = ‖Zk − Z?‖2W† +

(1− ηµ/2)θ

η
‖Xk −X?‖2I +

8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I . (39)
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Let ρB be defined as follows:

ρB = max

{
2(ω + 1),

2L(λmax(W) + 12ωmax(i,j)∈E wij)

µλ+
min(W)

}−1

. (40)

Choosing stepsize θ

θ =
µ

2λmax(W) + 24ωmax(i,j)∈E wij
, (41)

stepsize η = 1
L and stepsize α = 1

ω+1 gives the following inequality:

E
[
Ψk+1
B

]
≤ (1− ρB)Ψk

B . (42)

Proof. We start with rewriting (16):

E
[
‖Zk+1 − Z?‖2W†

] (16)
≤ ‖Zk − Z?‖2W† + E

[
−2θ〈Xk+1 −X?,Zk − Z?〉+ θ2‖Xk+1 −X?‖2W + Σk

]
(38)
≤ ‖Zk − Z?‖2W† − ηθ‖Zk − Z?‖2I −

θµ

2
‖Xk+1 −X?‖2I + θ2‖Xk+1 −X?‖2W + E

[
Σk
]

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
‖Xk+1 −X?‖2I

(13),(14)
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† − θ
(µ

2
− θλmax(W)

)
‖Xk+1 −X?‖2I + E

[
Σk
]

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
‖Xk+1 −X?‖2I

(23)
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† + 4θ2ω max
(i,j)∈E

wij‖Hk −X?‖2I

− θ

(
µ

2
− θ

[
λmax(W) + 4ω max

(i,j)∈E
wij

])
‖Xk+1 −X?‖2I

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
‖Xk+1 −X?‖2I .

Now, we combine this with (15):

E
[
Ψk+1
B

]
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† + (1− ηµ)
θ

η
‖Xk −X?‖2I + 4θ2ω max

(i,j)∈E
wij‖Hk −X?‖2I

− θ
(
µ

2
− θ

[
λmax(W) + 4ω max

(i,j)∈E
wij

])
‖Xk+1 −X?‖2I

+ (1− α)
8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I + 8θ2ω max

(i,j)∈E
wij‖Xk+1 −X?‖2I

= (1− ηθλ+
min(W))‖Zk − Z?‖2W† + (1− ηµ)

θ

η
‖Xk −X?‖2I

+
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I

− θ
(
µ

2
− θ

[
λmax(W) + 12ω max

(i,j)∈E
wij

])
‖Xk+1 −X?‖2I .
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Using (41) we get

E
[
Ψk+1
B

]
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† +

(
1− ηµ

2− ηµ

)
(1− ηµ/2)θ

η
‖Xk −X?‖2I

+
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I

≤ (1− ηθλ+
min(W))‖Zk − Z?‖2W† +

(
1− ηµ

2

) (1− ηµ/2)θ

η
‖Xk −X?‖2I

+
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I

≤ (1− ρB)Ψk
B ,

which concludes the proof.

C.3 Option C

Lemma 15 (Primal step, Option C). Let η ≤ 1
2L . Then the following inequality holds:

−2θE
[
〈Xk+1 −X?,Zk − Z?〉

]
≤ −ηθ‖Zk − Z?‖2I −

θµ

2
E
[
‖Xk+1 −X?‖2I

]
+ 2nηθσ2 (43)

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
. (44)

Proof. From Line 8 of Algorithm 1 it follows that

E
[
‖xk+1

i − x? − η(zki − z?i )‖22
]

= E
[
‖xki − x? − η(∇fi(xki , ξki )−∇fi(x?))‖22

]
= ‖xki − x?‖22 − 2ηE

[
〈∇fi(xki , ξki )−∇fi(x?), xki − x?〉

]
+ η2E

[
‖∇fi(xki , ξki )−∇fi(x?)‖22

]
(5)
≤ ‖xki − x?‖22 − 2η〈∇fi(xki )−∇fi(x?), xki − x?〉
+ 2η2E

[
‖∇fi(xki , ξki )−∇fi(x?, ξki )‖22 + ‖∇fi(x?, ξki )−∇fi(x?)‖22

]
(3),(6),(7)
≤ (1− ηµ)‖xki − x?‖22 − 2ηBfi(x

k
i , x

?
i ) + 4Lη2Bfi(x

k
i , x

?) + 2η2σ2
i

≤ (1− ηµ)‖xki − x?i ‖22 + 2η2σ2
i ,

where we used η ≤ 1
2L in the last inequality. This leads to

(1− ηµ)‖Xk −X?‖2I =

n∑
i=1

(1− ηµ)‖xki − x?i ‖22 ≥ E

[
n∑
i=1

‖xk+1
i − x? − η(zki − z?i )‖22

]
− 2nη2σ2

= E
[
‖Xk+1 −X? − η(Zk − Z?)‖2I

]
− 2nη2σ2

= η2‖Zk − Z?‖2I + E
[
‖Xk+1 −X?‖2I − 2η〈Xk+1 −X?,Zk − Z?〉

]
− 2nη2σ2.

After rearranging, we get

−2θE
[
〈Xk+1 −X?,Zk − Z?〉

]
≤ −ηθ‖Zk − Z?‖2I −

θµ

2
E
[
‖Xk+1 −X?‖2I

]
+ 2nηθσ2

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
,

which concludes the proof.

Theorem 16 (Convergence of Algorithm 1, Option C). Let Ψk
C be a Lyapunov function defined as follows:

Ψk
C = ‖Zk − Z?‖2W† +

(1− ηµ/2)θ

η
‖Xk −X?‖2I +

8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I . (45)
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Let ρC be defined as follows:

ρC = max

{
2(ω + 1),

2(λmax(W) + 12ωmax(i,j)∈E wij)

ηµλ+
min(W)

}−1

. (46)

Choosing stepsize θ

θ =
µ

2λmax(W) + 24ωmax(i,j)∈E wij
, (47)

stepsize η ≤ 1
2L and stepsize α = 1

ω+1 gives the following inequality:

E
[
Ψk+1
C

]
≤ (1− ρC)Ψk

C + 2nηθσ2. (48)

Proof. We start with rewriting (16):

E
[
‖Zk+1 − Z?‖2W†

] (16)
≤ ‖Zk − Z?‖2W† + E

[
−2θ〈Xk+1 −X?,Zk − Z?〉+ θ2‖Xk+1 −X?‖2W + Σk

]
(44)
≤ ‖Zk − Z?‖2W† − ηθ‖Zk − Z?‖2I −

θµ

2
E
[
‖Xk+1 −X?‖2I

]
+ θ2E

[
‖Xk+1 −X?‖2W

]
+ E

[
Σk
]

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
+ 2nηθσ2

(13),(14)
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† − θ
(µ

2
− θλmax(W)

)
E
[
‖Xk+1 −X?‖2I

]
+ E

[
Σk
]

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
+ 2nηθσ2

(23)
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† + 4θ2ω max
(i,j)∈E

wij‖Hk −X?‖2I

− θ

(
µ

2
− θ

[
λmax(W) + 4ω max

(i,j)∈E
wij

])
E
[
‖Xk+1 −X?‖2I

]
+ (1− ηµ)

θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
+ 2nηθσ2

Now, we combine this with (15):

E
[
Ψk+1
C

]
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† + (1− ηµ)
θ

η
‖Xk −X?‖2I + 4θ2ω max

(i,j)∈E
wij‖Hk −X?‖2I

− θ
(
µ

2
− θ

[
λmax(W) + 4ω max

(i,j)∈E
wij

])
E
[
‖Xk+1 −X?‖2I

]
+ (1− α)

8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I + 8θ2ω max

(i,j)∈E
wijE

[
‖Xk+1 −X?‖2I

]
+ 2nηθσ2

= (1− ηθλ+
min(W))‖Zk − Z?‖2W† + (1− ηµ)

θ

η
‖Xk −X?‖2I + 2nηθσ2

+
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I

− θ
(
µ

2
− θ

[
λmax(W) + 12ω max

(i,j)∈E
wij

])
E
[
‖Xk+1 −X?‖2I

]
.
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Using (47) we get

E
[
Ψk+1
C

]
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† +

(
1− ηµ

2− ηµ

)
(1− ηµ/2)θ

η
‖Xk −X?‖2I

+
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I + 2nηθσ2

≤ (1− ηθλ+
min(W))‖Zk − Z?‖2W† +

(
1− ηµ

2

) (1− ηµ/2)θ

η
‖Xk −X?‖2I

+
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I + 2nηθσ2

≤ (1− ρC)Ψk
C + 2nηθσ2,

which concludes the proof.

Corollary 17. Let

x̂k =
1

n

n∑
i=1

xki . (49)

Then for any ε > 0, choosing stepsize

η = min

{
1

2L
,

√
ε

4σ
√
ω + 1

,
εµλ+

min(W)

16σ2(λmax(W) + 12ωmax(i,j)∈E wij)

}
(50)

and number of iterations

k ≥ max

{
2(ω + 1),

4L(λmax(W) + 12ωmax(i,j)∈E wij)

µλ+
min(W)

,

8σ
√
ω + 1(λmax(W) + 12ωmax(i,j)∈E wij)

µλ+
min(W)

√
ε

,

32σ2(λmax(W) + 12ωmax(i,j)∈E wij)
2

εµ2(λ+
min(W))2

}
log

4ηΨ0
C

nθε
(51)

gives
E
[
‖x̂k − x?‖22

]
≤ ε. (52)

Proof. Using definition of x̂k and (48) we get

E
[
‖x̂k − x?‖22

]
≤ 1

n
E
[
‖Xk −X?‖2I

]
≤ E

[
η

nθ(1− ηµ/2)
Ψk
C

]
≤ 2η

nθ
E
[
Ψk
C

]
≤ 2η

nθ

(
(1− ρC)kΨ0

C +
2nηθσ2

ρC

)
= (1− ρC)k

2η

nθ
Ψ0
C +

4η2σ2

ρC
.

From (50) and (46) it follows that 4η2σ2

ρC
≤ ε

2 and hence

E
[
‖x̂k − x?‖22

]
≤ (1− ρC)k

2η

nθ
Ψ0
C +

ε

2
.

From (51), (50) and (46) it follows that (1− ρC)k ≤ nθε
4ηΨ0

C
and hence

E
[
‖x̂k − x?‖22

]
≤ ε

2
+
ε

2
= ε.
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C.4 Option D

Lemma 18 (Primal step, Option D). Let η ≤ 1
6L . Then the following inequality holds:

−2θE
[
〈Xk+1 −X?,Zk − Z?〉

]
≤ −ηθ‖Zk − Z?‖2I −

θµ

2
E
[
‖Xk+1 −X?‖2I

]
+ (1− ηµ)

θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
+ 8mLηθ

n∑
i=1

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
. (53)

Proof. From Line 12 of Algorithm 1 it follows that

E
[
‖xk+1

i − x? − η(zki − z?i )‖22
]

= E
[
‖xki − x? − η(∇fijki (xki )−∇fijki (wki ) +∇fi(wki )−∇fi(x?))‖22

]
= ‖xki − x?‖22 − 2η〈∇fi(xki )−∇fi(x?), xki − x?〉

+ η2E
[
‖∇fijki (xki )−∇fijki (wki ) +∇fi(wki )−∇fi(x?)‖22

]
(3)
≤ (1− ηµ)‖xki − x?‖22 − 2ηBfi(x

k
i , x

?) + 2η2E
[
‖∇fijki (xki )−∇fijki (x?)‖22

]
+ 2η2E

[
‖∇fijki (x?)−∇fi(x?)−∇fijki (wki ) +∇fi(wki )‖22

]
≤ (1− ηµ)‖xki − x?‖22 − 2ηBfi(x

k
i , x

?) +
2η2

m

m∑
j=1

‖∇fij(xki )−∇fij(x?)‖22

+
2η2

m

m∑
j=1

‖∇fij(wki )−∇fij(x?)‖22

(8)
≤ (1− ηµ)‖xki − x?‖22 − 2ηBfi(x

k
i , x

?) + 4Lη2Bfi(x
k
i , x

?) + 4Lη2Bfi(w
k
i , x

?).

From Line 11 of Algorithm 1 it follows that

E
[
Bfi(w

k+1
i , x?)

]
=

(
1− 1

m

)
Bfi(w

k
i , x

?) +
1

m
Bfi(x

k
i , x

?
i ),

which gives

Bfi(w
k
i , x

?
i ) ≤ 2m

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
+ 2Bfi(x

k
i , x

?
i ),

and hence using stepsize η ≤ 1
6L we get

E
[
‖xk+1

i − x? − η(zki − z?i )‖22
]
≤ (1− ηµ)‖xki − x?‖22 − 2ηBfi(x

k
i , x

?) + 12Lη2Bfi(x
k
i , x

?)

+ 8mLη2

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
≤ (1− ηµ)‖xki − x?‖22 + 8mLη2

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
.
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This leads to

(1− ηµ)‖Xk −X?‖2I =

n∑
i=1

(1− ηµ)‖xki − x?i ‖22 ≥
n∑
i=1

E
[
‖xk+1

i − x? − η(zki − z?i )‖22
]

− 8mLη2
n∑
i=1

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
= E

[
‖Xk+1 −X? − η(Zk − Z?)‖2I

]
− 8mLη2

n∑
i=1

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
= E

[
‖Xk+1 −X?‖2I

]
+ η2‖Zk − Z?‖2I − 2ηE

[
〈Xk+1 −X?,Zk − Z?〉

]
− 8mLη2

n∑
i=1

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
.

After rearranging, we get

−2θE
[
〈Xk+1 −X?,Zk − Z?〉

]
≤ −ηθ‖Zk − Z?‖2I −

θµ

2
E
[
‖Xk+1 −X?‖2I

]
+ (1− ηµ)

θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
+ 8mLηθ

n∑
i=1

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
,

which concludes the proof.

Theorem 19 (Convergence of Algorithm 1, Option D). Let Ψk
D be a Lyapunov function which is defined as

follows:

Ψk
D = ‖Zk−Z?‖2W† +

(1− ηµ/2)θ

η
‖Xk−X?‖2I +

8θ2ωmax(i,j)∈E wij

α
‖Hk−X?‖2I +8mLηθ

n∑
i=1

Bfi(w
k
i , x

?). (54)

Let ρD be defined as follows:

ρD = max

{
2m, 2(ω + 1),

12L(λmax(W) + 12ωmax(i,j)∈E wij)

µλ+
min(W)

}−1

. (55)

Choosing stepsize θ

θ =
µ

2λmax(W) + 24ωmax(i,j)∈E wij
, (56)

stepsize η = 1
6L and stepsize α = 1

ω+1 gives the following inequality:

E
[
Ψk+1
D

]
≤ (1− ρD)Ψk

D. (57)
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Proof. We start with rewriting (16):

E
[
‖Zk+1 − Z?‖2W†

] (16)
≤ ‖Zk − Z?‖2W† + E

[
−2θ〈Xk+1 −X?,Zk − Z?〉+ θ2‖Xk+1 −X?‖2W + Σk

]
(53)
≤ ‖Zk − Z?‖2W† − ηθ‖Zk − Z?‖2I − E

[
θµ

2
‖Xk+1 −X?‖2I + θ2‖Xk+1 −X?‖2W + Σk

]
+ (1− ηµ)

θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
+ 8mLηθ

n∑
i=1

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
(13),(14)
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† − θ
(µ

2
− θλmax(W)

)
E
[
‖Xk+1 −X?‖2I

]
+ E

[
Σk
]

+ (1− ηµ)
θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
+ 8mLηθ

n∑
i=1

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
(23)
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† + 4θ2ω max
(i,j)∈E

wij‖Hk −X?‖2I

− θ

(
µ

2
− θ

[
λmax(W) + 4ω max

(i,j)∈E
wij

])
E
[
‖Xk+1 −X?‖2I

]
+ (1− ηµ)

θ

η
‖Xk −X?‖2I −

(
1− ηµ

2

) θ
η
E
[
‖Xk+1 −X?‖2I

]
+ 8mLηθ

n∑
i=1

[(
1− 1

2m

)
Bfi(w

k
i , x

?)− E
[
Bfi(w

k+1
i , x?)

]]
.

Now, we combine this with (15):

E
[
Ψk+1
D

]
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† + (1− ηµ)
θ

η
‖Xk −X?‖2I +

(
1− 1

2m

)
8mLηθ

n∑
i=1

Bfi(w
k
i , x

?)

+ 4θ2ω max
(i,j)∈E

wij‖Hk −X?‖2I − θ
(
µ

2
− θ

[
λmax(W) + 4ω max

(i,j)∈E
wij

])
‖Xk+1 −X?‖2I

+ (1− α)
8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I + 8θ2ω max

(i,j)∈E
wij‖Xk+1 −X?‖2I

= (1− ηθλ+
min(W))‖Zk − Z?‖2W† + (1− ηµ)

θ

η
‖Xk −X?‖2I

+

(
1− 1

2m

)
8mLηθ

n∑
i=1

Bfi(w
k
i , x

?) +
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I

− θ
(
µ

2
− θ

[
λmax(W) + 12ω max

(i,j)∈E
wij

])
‖Xk+1 −X?‖2I .
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Using (56) we get

E
[
Ψk+1
D

]
≤ (1− ηθλ+

min(W))‖Zk − Z?‖2W† +

(
1− ηµ

2− ηµ

)
(1− ηµ/2)θ

η
‖Xk −X?‖2I

+
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I +

(
1− 1

2m

)
8mLηθ

n∑
i=1

Bfi(w
k
i , x

?)

≤ (1− ηθλ+
min(W))‖Zk − Z?‖2W† +

(
1− ηµ

2

) (1− ηµ/2)θ

η
‖Xk −X?‖2I

+
(

1− α

2

) 8θ2ωmax(i,j)∈E wij

α
‖Hk −X?‖2I +

(
1− 1

2m

)
8mLηθ

n∑
i=1

Bfi(w
k
i , x

?)

≤ (1− ρD)Ψk
D,

which concludes the proof.
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