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Abstract

Projection-free  optimization algorithms,
which are mostly based on the classical
Frank-Wolfe method, have gained significant
interest in the machine learning community
in recent years due to their ability to handle
convex constraints that are popular in many
applications, but for which computing pro-
jections is often computationally impractical
in high-dimensional settings, and hence
prohibit the use of most standard projection-
based methods. In particular, a significant
research effort was put on projection-free
methods for online learning. In this paper
we revisit the Online Frank-Wolfe (OFW)
method suggested by Hazan and Kale (2012)
and fill a gap that has been left unnoticed
for several years: OFW achieves a faster
rate of O(T?/3) on strongly convex functions
(as opposed to the standard O(T3/*) for
convex but not strongly convex functions),
where T is the sequence length. This is
somewhat surprising since it is known that
for offline optimization, in general, strong
convexity does not lead to faster rates for
Frank-Wolfe. = We also revisit the bandit
setting under strong convexity and prove a
similar bound of O(T?/3) (instead of O(T?/*)
without strong convexity). Hence, in the
current state-of-affairs, the best projection-
free upper-bounds for the full-information
and bandit settings with strongly convex
and nonsmooth functions match up to
logarithmic factors in 7.
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1 INTRODUCTION

Computing projections onto convex sets is a funda-
mental computational primitive in most popular opti-
mization methods such as projected gradient meth-
ods which are at the heart of numerous machine
learning tasks. However, many machine learning ap-
plications involve optimization with structural con-
straints for which computing projections (e.g. Eu-
clidean projection) is impractical in high-dimensional
settings. It is for this reason that so-called projection-
free optimization methods, which replace the poten-
tially computationally-expensive projection primitive
with a different more efficient primitive, have attracted
signifiant interest within the machine learning commu-
nity in recent years. These projection-free methods
are mostly based on the classical Frank-Wolfe method
for constrained convex optimization (aka the condi-
tional gradient method) (Jaggi, 2013; Frank and Wolfe,
1956; Levitin and Polyak, 1966) which replaces the
projection operation with a linear optimization step
over the constraints. Indeed in many important cases
such as constraints arising from combinatorial struc-
ture (e.g., paths/matchings/spanning trees in combi-
natorial graphs, or matroids), or from a low-rank ma-
trix structure, linear optimization over the feasible set
can be carried out very efficiently, sometimes by or-
ders of magnitude faster than the projection operation,
see for instance discussions in Jaggi (2013); Hazan and
Kale (2012). Developing efficient projection-free meth-
ods, and in particular Frank-Wolfe-based methods for
various optimization paradigms central to machine
learning as thus become a popular research area where
efforts have been focused on traditional offline opti-
mization (Garber and Hazan, 2016; Lacoste-Julien and
Jaggi, 2015; Garber and Hazan, 2015) , stochastic opti-
mization (Hazan and Luo, 2016; Goldfarb et al., 2017;
Garber and Kaplan, 2019), online learning (Hazan and
Kale, 2012; Garber and Hazan, 2013; Chen et al., 2019;
Garber and Kretzu, 2020), and distributed computa-
tion (Bellet et al., 2015; Wang et al., 2016).

In online learning (Cesa-Bianchi and Lugosi, 2006;
Hazan, 2016), which deals with sequential prediction



Revisiting Projection-free Online Learning: the Strongly Convex Case

over a (large) number of rounds, projection-free meth-
ods are of particular interest since naturally in such
a setting, the response time of the online algorithms,
i.e., the time it takes to compute a new prediction
on each iteration, is of major importance in many
applications. Hazan and Kale (2012) introduced the
Online Frank-Wolfe method (OFW) for online con-
vex optimization and proved that it attains O(T°/%)
regret, where 7' is the number of prediction rounds,
for convex loss functions in the full-information set-
ting (i.e., after each round the loss function is fully
observable to the learner), using a single linear opti-
mization step over the feasible set per iteration. This
is contrast to the Online Gradient Descent method
(OGD) which attaines O(v/T) regret, however requires
T projection steps. For the special case in which the
feasible set is a polytope, Garber and Hazan (2013)
gave a modified Online Frank-Wolfe method with re-
gret O(v/nT), where n is the dimension. Very recently
Hazan and Minasyan (2020) presented a randomized
online algorithm that also uses only a single linear op-
timization step per iteration, however one that is not
based on the Frank-Wolfe method. Their algorithm
attains (v/nT?/?) expected regret under the additional
assumption that the loss functions are also smooth.

In the bandit setting, in which only the scalar loss
incurred by the online learner is observed after each
round and not the loss function, Chen et al. (2019)
gave the first projection-free algorithm, which com-
bines OFW and the gradient estimation idea of Flax-
man et al. (2005), to obtain an algorithm with
O(nT*/®) expected regret. This was very recently im-
proved by Garber and Kretzu (2020) by taking advan-
tage of the special structure of the gradient estimator
of Flaxman et al. (2005) and by considering a similar
algorithm to that of Chen et al. (2019) with the differ-
ence of considering the prediction round in blocks in
order to obtain higher accuracy in the computation of
the iterates, which led to a O(\/nT?/*) expected regret
bound using overall O(T') linear optimization steps in
expectation, which matches (in terms of T') the cur-
rent best upper-bound for the full-information setting
(without additional assumptions such as smoothness)
of Hazan and Kale (2012). We also note that, be-
sides the theoretical contributions, both Hazan and
Kale (2012) and Chen et al. (2019) have demonstrated
the practical appeal of online Frank-Wolfe methods via
extensive empirical studies.

While Hazan and Minasyan (2020) have managed to
obtain a faster rate (at least in T') by leveraging the
smoothness of the loss functions, a property that is
well known to allow for faster rates in offline and
even stochastic optimization but is much less useful in
online optimization, strong convexity, another prop-

erty of loss functions that is also well known to al-
low faster rates in convex optimization paradigms and
in particular in online convex optimization (Hazan
et al., 2006), has remained unexplored in the context
of projection-free methods. This is perhaps not sur-
prising, since as discussed, most projection-free algo-
rithms are based on the Frank-Wolfe method, and it
is well known that, in general, the convergence rate of
Frank-Wolfe for offline convex optimization does not
improve in the presence of strong convexity (Jaggi,
2013; Garber and Hazan, 2016)!. Nevertheless, in
this work we show, to the best of our knowledge, for
the first time, that both in the full-information and
bandit online settings, strong convexity does in fact
lead to faster rates for the OFW algorithm (Hazan
and Kale, 2012) and its bandit variant with blocks
(Garber and Kretzu, 2020). In particular we prove a
O(T?/3) regret bound for the full-information setting
and a O((nT)?/3(InT)"/3 + T?/31nT) expected regret
bound for the bandit setting.

Quite pleasingly, our results do not hinge on any new
particular technique, but mostly adapt those of Hazan
and Kale (2012) to leverage the strong convexity of the
losses. With this respect, beyond formally deriving the
improved rates, we view our contribution as mainly of
conceptual importance: observing that, as opposed to
the offline setting, in the online setting strong convex-
ity is indeed beneficial for Frank-Wolfe-based methods.

On a slightly more technical level, an intuition to why
strong convexity helps is as follows: in OFW, Frank-
Wolfe is used to iteratively approximate (using one
linear optimization step per iteration) the steps of the
regret-optimal Regularized Follow the Leader method
(RFTL), which on each iteration seeks to minimize
the aggregated loss up to the current round plus an
additional strongly convex regularization term. The
reason for the slow rate of OFW is that the RFTL ob-
jective (i.e., subproblem that needs to be solved each
iteration) drifts too much from one iteration to the
next which does not allow for a good enough approx-
imation. To control this drift one must increase the
regularization beyond the optimal level which in turn
leads to sub-optimal regret of O(T3/4). Nevertheless,
in the strongly convex case, due to the strong con-
vexity, it can be shown that the drift from one round
to the next in the RFTL objective is milder, which
in turn allows for better approximation via a single
Frank-Wolfe step. The same intuition, coupled with

!Obtaining faster rates for Frank-Wolfe variants under
strong convexity-like properties is an active research effort
in recent years, however it mostly requires focousing on
specific types of feasible sets, e.g., polytopes (Garber and
Hazan, 2016) or strongly convex sets (Garber and Hazan,
2015), etc., while here we are mainly interested in generic
methods that apply to arbitrary convex and compact sets.
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Table 1: Comparison of regret bounds for state-of-the-art linear optimization-based online algorithms.

STRONG

REFERENCE FEEDBACK | SMOOTHNESS? | NVEXITY? REGRET
Hazan and Kale (2012) Full X X T3/4
Garber and Kretzu (2020) Bandit X X /X il
Hazan and Minasyan (2020) Full v X N il
This work (Thm. 1) Full x v T2/3
This work (Thm. 2) Bandit x v (nT)?2(InT)"/3 + T?/3InT

the recent result of Garber and Kretzu (2020), also
leads to the improved rate in the bandit setting.

2 PRELIMINARIES

2.1 Online Convex Optimization

In the online convex optimization with full information
setting (Hazan, 2016), an online learner is required
to iteratively choose actions from a fixed feasible set
K C R™ which is assumed convex and compact. After
choosing his action x; € K on round ¢t € [T] (T is as-
sumed to be known beforehand), the learner observes
a loss function f;(-), which is chosen by an adversary,
and incurs the loss fi(x¢), where f; : K — R is a con-
vex.

The goal of the learner is to minimize the regret which
is given by

T T
Rr ZZth(Xt)—f(nEi%th(X)- (1)

In the bandit-information setting, instead of observ-
ing the loss function after each iteration, the learner
only observes his loss, that is the scalar value f;(x;).
In this setting, we assume the adversary is oblivious,
i.e., the loss functions fi,..., fr are chosen before-
hand and do not depend on the actions of the learner.
The bandit-feedback requires the learner to use ran-
dom exploration and therefore, the goal is to minimize
the expected regret E[R].

We also make the following standard boundness as-
sumptions, V¢t € [T] Vx € K Vg € 0fi1(x): ||filloo =
supyei |fe(x)| < M and ||g|2 < G, for some M, G > 0.
The latter implies each f;(-) is G-Lipschitz over K.

Following Flaxman et al. (2005), we also assume the
feasible set K is full dimensional, contains the origin,
and that there exist scalars r, R > 0 such that rB™ C
K C RB™, where B™ denotes the unit Euclidean ball
centered at the origin in R™.

2.2 Additional Notation And Definitions

We denote by S™ the unit sphere in R™, and we write
u ~ S” and u ~ B" to denote a random vector u
sampled uniformly from S™ and B", respectively. We
denote by ||x|| the ¢ norm of the vector x.

Finally, for a compact and convex set K C R™, which
satisfies the above assumptions (i.e., rB™ C K C RB"),
and a scalar 0 < § < r, we define the set K5 := (1 —
0/mK ={(1-4/r)x | x € K}. In particular, it holds
that s C K and for all x € Ks, x + dB™ C K.

We recall that a function f : K — R is a-strongly
convex over K if Vx,y € K: f(y) > f(x)+Vf(x)" (y—
x) + &|ly —x||*>. Let x* be the unique minimizer of f,
an a-strongly convex function over K. From the above
definition and the first order optimality condition it
follows that Vx € K:

Sl =N < ) = £, (2)

2.3 Smoothed Loss Functions

As in Flaxman et al. (2005); Chen et al. (2019); Gar-
ber and Kretzu (2020), our bandit algorithm is based
on a randomized-smoothing of the loss functions tech-
nique. We define the d-smoothing of a loss function f
by fs5(x) = Euyupn [f(x+ 6u)] . We now cite several
useful lemmas regarding smoothed functions.

Lemma 1 (Lemma 2.6 in Hazan (2016)). Let f : R® —
R be a-strongly convex and G-Lipschitz over a convex
and compact set L C R™. Then f5 is a-strongly convex
and G-Lipschitz over Kj, and Vx € Kj it holds that

|fs(x) — f(x)] < 6G.

Lemma 2 (Lemma 6.5 in Hazan (2016)). f5(x) is dif-
ferentiable and V f5(x) = Ey~sn [%f(x + du)u].

Lemma 3 (see Bertsekas (1973)). Let f : R® — R
be convex and suppose that all subgradients of f are
upper-bounded by G in f3-norm over a convex and
compact set K C R™. Then, for any x € K; it holds
that |V f5(x)]| < G.
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3 FULL-INFORMATION SETTING

In this section we present and prove our main result -
an improved O(T?/?) regret bound for Online Frank-
Wolfe (Algorithm 1 below), in case all loss functions
are a-strongly convex for some « > 0.

Algorithm 1: Online Frank-Wolfe (see also Hazan
and Kale (2012))

Data: T, o, Ty

X1 < arbitrary point in

for t=1,...,7 do

Play x; and observe f;(x;)

Set Vt «— Vft(Xt)

Define Fyq(x) := 2

CXTY A+ S - xi]?
+To 5 [Ix — x1[?
v; € argmin{V Fy1(x;) " - x}
xeK

. Line-
o= fggi?{ﬂ“(xt +o(vi—x¢))} > search
Xep1 = X¢ + 00 (Vi — %)

end

Theorem 1. Suppose all loss functions are a-
strongly convex for some o > 0. Set-
ting Ty = max{l7 2((;2271{;@)\/5} with b =

G+2Ra ) 2 8(2R)*(G+2Ra)

a ’ a

in Algorithm 1,
guarantees that the regret is upper-bounded by

max { (

2
) In (T) + 2aR?
«
(G + 2Ra)?
«

R3
+16(G + 2Ra)3 —
a3

G 2Ra)3 R3

o3

@l

348 T

)

2
+ 4G (G + Ra) T2
@
and the overall number of calls to the linear optimiza-
tion oracle is T' (one per iteration).

3.1 Proof of Theorem 1

For the regret analysis we need a well known
lemma known as the ”Follow-the-leader-Be-the-
leader” lemma, which we state here in a slightly mod-
ified version. A proof is given in the appendix for
completeness.

Lemma 4. Let K C R¢ a convex and compact set,
{gm(x)}L _; a set of convex functions, x; € R? and

¢ € RT. Denote xi = argmin { ST g (%) +ax —
xek

x1|\2} for every 7 € [1,T 4 1]. Then for every x € K

we have that
T

(9m (X5) = 9m (%)) <D (9m(x50) = G (X5p1))

+alx— x1||2.

For the purpose of the analysis of Algorithm 1,
we define the auxiliary sequence {x}}._, as x} =
arg miny e Fy(x), where Fy(-) is as defined in Algo-
rithm 1. Note xj is simply the point played by
the well-known (exact) Regularized Follow the Leader
(RFTL) method (Hazan, 2016).

The following lemma upper-bounds the regret of Algo-
rithm 1 in terms of how well does the iterate x;, which
is obtained by applying a single Frank-Wolfe step to
the RFTL objective Fi(-), approximates the optimal
value of the RFTL objective, whose minimizer is the
RFTL iterate xj. We recall this sequence of approxi-
mation errors is captured by the sequence {e;}>1.
Lemma 5. Let {¢;}7_, > 0 and Ty > 1. Suppose that
throughout the run of Algorithm 1, for all time steps
t=1,...,T it holds that F;(x;) — Fi(x}) < ¢;. Then,
the regret of Algorithm 1 is upper-bounded by

Rr <

2 2Ra)?
wu +1n (T)) + 20R>Ty,

_|_GZT: L
P Oz(t—].—f'To)'

Proof. Using the definition of the regret, Eq.(1), and
the a-strongly convexity of each fi(x), we have that

T
* « *
R < 3V (e = x) = Sllxe = x|
t=1
r o
=YV G- x = x) = Sl - X (3)

t=1

Using Cauchy-Schwarz inequality, || V|| < G, the fact
that Fi(x) is (t—1+Tp)a-strongly convex, Eq.(2), and
the assumption that Fy(x:) — Fi(x}) < €, we have

T T
S Vi —x) <G> |lxe — x|
t=1 t=1

L 2(F(x) — F(x)))
<G;\/ O{(t—1+T0)
L 2615

o~
Il
—

Now, we need to obtain an upper bound on
Vi (xp —x*) — $llx; — x*[|2. We will start with a
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few preliminary steps.
For all x,y,z € K, the following holds

z|* < x+y -2z |x—y]
< 4R[x —yl. (5)

I —z)* = lly -

Define g;(x) = x'V; 4+ ¢[x — x||?, using Cauchy-
Schwarz inequality and Eq.(5), we have for all x,y €
K,

9:(%) = g:(y) < (G +2Ra) [[x —yl|. (6)

Since for every t, Fi11(x) is (t+ Tp)a-strongly convex,
using Eq. (2), we have that

(t + T())Oé

5 Ix; =i 117 < Figa(x)) — Frgn(%741)
= Fi(x;) — Fe(xty1) + ge(x5) — ge(xi41)
< ge(x7) — 9¢(Xi41)-

The last inequality is since fot every t, Fi(x;) <
Fy(x{,1). From the two last equations, we obtain

2(G' + 2Ra)

(t+ To)a @

lIxi = xpall <

From Eq. (6) and Eq. (7), we have that

T 2
2 (G + 2Ra)

E ge(x}) = ge(xp0) <Y S
t t t\At41 pat (t+T0)a

2(G 4 2Ra)?

< b m ). )

The last inequality is since ZZ;I ﬁ < 14 In(T).

Using Lemma 4, for all x € I, we have that

T T
th(xz) - th <th (x7) — ge(x741)
t=1 t=1
T
G
By definition of g;(x), we have
T
DoVIGG —x") = S lxe - x|F <
t=1
d a
<D Vix+ Sk = xil* = Vix" *||X* = x||?

Thus, applying Eq.(9) and Eq.(8), we obtain that

t=1
T
T()O[ *
Z — ge(x{1q) + B | _XlH2
t=1
2
< WQ +1In(T)) + 2aRT).

Plugging-in the above bound together with Eq.(4) in
Eq.(3), we obtain the result of the lemma:

2(G + 2Ra)’
«

+GZ

Rr <

(1+1n(T)) + 2aR*Ty

t71+TO)
O

In order to complement Lemma 5, the following lemma
sets an upper-bound on the sequence of approximation
errors {€; }4>1 which can be guaranteed throughout the
run of Algorithm 1 using a single Frank-Wolfe step on
each iteration (i.e., single call to the linear optimiza-
tion oracle per iteration).

Lemma 6. Let {et = ba(t + T0)1/3}
t=1"
when T, = max {17 %} and b =

Then,

for all time
Ft (X:) S €¢.

max {2 (G+2Ra) (64(6‘+2Rw)R2

throughout the run of Algorithm 1,
steps t = 1,...,T it holds that Fi(x;) —

Proof. We will prove this lemma by induction. We will
first start with a few preliminary steps.

Since the step-size o, € [0, 1] is chosen via line-search
in Algorithm 1 , we have that

Ft+1(Xt+1) = Ft+1(xt + Ut(Vt - Xt)) < Ft+1(xt)~

Also, from the convexity of Fy(-) and the choice of vy,
it follows that

Frpr(xi) = Fopa(x741) < VF(xe) T (ke — X7y g)

< VFi(xe) " (x¢ — vi).

Then, from the last two observations, we obtain

Frin(xi41) < VFa(xe) T (%0 = ve)
(10)

Fii1(X¢41) —
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Since for every t, Fy(x) is a(t—1+Tp)-strongly convex,

using Eq.(2), we have that for any x € K,

2 (Fi(x) — Fi(x7))
Ck(t — ]. + To)

I — x;[|* <

(11)

Now we start the proof using induction.
Induction base: for 7 = 1, we have

* « *
Fl(xl) — Fl(xl) = O—TO§||X1 —X1H2 S 0 S €1.

Induction assumption: for 7 =t it holds that

Ft(Xt) - Ft(X:) S €t.

Induction step: Let 7 = t 4+ 1 and we need to show
that Fyy1(xi11) — Frp1(x711) < e41. We start by
bounding the initial gap, Fyy1(x;) — Fyy1(xj, ;) and
then by bounding the improvement step Fyyq(x;y1) —
Fi11(x¢). Finally, we will combine them.

Since Fy(x}, ) > Fy(x}), using Eq.(6), we have

Fip1(xt) = Fipa(xp4q) =
= Fy(x¢) — Fe(xi 1) + ge(xt) — ge(X341)
< Fy(xt) — Fi(x7) + (G + 2Ra) [|x¢ — x744]-

Using the induction assumption and the Cauchy-
Schwarz inequality, we have

Fop1(x¢) — Fiya(xpyy) <
<&+ (G +2Ra)[[x; — x; || + (G + 2Ra) [|x; —xp 44l

(G +2Ra)v2¢;,  2(G + 2Ra)?
Set alt—1+1Tp) (t+ To) (12)

The last inequality follows using Eq.(7), Eq.(11), and
the induction assumption.

We now show that on the RHS of Eq.(12), the second
term is larger than the third term. Since ¢; = ba(t +
Ty)'/3, for every t it holds that

2¢ _ 2t To) V2b
alt—1+Ty) \ (t—1+Tp) ~ (t—14Tp)L/3
2(G+ 2R«)
- (t +T0)Oé

The last inequality is since b > 2 (%)27 Ty > 1.

Then, plugging-in the value of ¢; in Eq.(12), using the
1

last result, and since iiff‘jr);:? <& 1?3())2 75 , we obtain
an upper bound for the initial gap:
4(G + 2Ra) Vb
Fioi(xy) — Fia1(xp ) <e+———F——. (13
t+ ( t) t+ ( t+1) t (t—l—i—To)% ( )

Now we will analyze the improvement step. For
our analysis we define the optimal step-size 6; =

. VFt+1(xt)T(xt—vt) . . ST
min { T CRE 1. Since oy is chosen via line-

search, we have that

Fopr1(xe41) < Frpa(xe + 6¢(ve — x¢)).

Since Fyi1(x) is a(t + Tp)-smooth, it holds that

Ft+1(xt+1) - Ft+1(xt) §6tVFt+1(Xt)T(Vt - Xt)
t 4+ T
n o ! 0)

Gt llve — .

‘We now consider several cases.
Case 1: If VF;1(x;) T (x¢ — v¢) < €141, then from Eq.
(10) we have

Fria(xe41) = Fipr(xf4q) < €41

Case 2: Else, VF;11(x¢)" (x; — Vi) > €41, then we
have two sub cases:

Case 2.1: If a(t + Tp)(2R)? < VFip1(x:) T (x¢ — Vi),
then 6; = 1 and we have

Oé(t + To)(2R)2 .

Fip1(xi41) — Fiya(x) < — 5

(14)

Case 2.2: Else, a(t+Tp)(2R)? > VFy 1 (x¢) T (x—Vv¢),
VFtJrl(xt)T(xtfvt)
a(t1To) 2R)?

then 6; = and we have

(VFo1(x) T (x — v¢))”

2a(t + Tp)(2R)2

Ft+1(Xt+1) - Ft+1(Xt) < -

2

€t+1
<t 15
— 2a(t+To)(2R)? (15)
Combining Eq.(13), Eq.(14), Eq.(15) and plugging-in
the value of €41, we have

r . 4(G 4 2Ra) Vb
41 (Xe41) — Frpr(Xpp1) <€+ ((75_1_1_ Z0))é
T Vot + 14 Tp)*/?
_ 3 2 2 1
mm{ alt+ To) R, 8(t + Tp) R? } (16)

Since Ty > %\/& we have 2a(t + Ty)R? >
2

N 2
4EG+127RTD‘;1/E and also, since b > (M) 3, we
t—1+Tp)3
b2a(t+14+T5)%/3 4(G+2Ra)Vb
have S(To) 12 Z b From both, we
have that
4(G +2Ra) Vb s bPaft+1+Tp)3

< min {Qa(t +To)R7,

(t—1+Tp)3 8(t + To) R2

3
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Then, from Eq.(16) and since ¢; < €41, we finally
obtain Ft+1(Xt+1) — Ft+1(X2<+1) S €t S €t41- ]

With all technical ingredients set in place, we can now
prove Theorem 1.

Proof of Theorem 1. Using Lemma 5, Lemma 6, and
plugging-in 7y = max {1, w} and {et =

aR?
ba(t + T0)1/3}tT:1, we have

Rr <

W(1+ln (1)) +4(G + 2Ra)Vb

T
t+ Tp)t/3
+20R? + V26V U+ T)' 7
—\ (t-1+To)

(1+In(T)) 4 4(G + 2Ra)Vb

_2(G+ 2Ra)?
(6]

1 2aR? + 2V2GVT

(e

2
Plugging in b = max {2 (G+§Ra)2 ) (64(G+2RQ)R2) ’ }7

we obtain the regret bound in the theorem. O

4 BANDIT SETTING

In this section we present our improved bound for the
bandit-information setting. Our algorithm is simply
that of Garber and Kretzu (2020) and is presented
below as Algorithm 2. Due to lack of space, we refer
the interested reader to Garber and Kretzu (2020) for
more details.

Theorem 2. Suppose all loss functions are a-strongly
convex for some o > 0. For all ¢ > 0 such that
e < 1, setting § = T3, K = T%, Ty =
max {4T%, 81 em = 16R2[3§L, when 3, = a(mK +
To), in Algorithm 2, guarantees that the expected re-
gret is upper-bounded by

4 4
RG | oR2a 4 G) T3
T a3

E[R7] g(
(%

and that the expected overall number of calls to the
linear optimization oracle is upper-bounded by

+ 4R\/&> T3 (1 + In(T)),

Algorithm 2: Online Bandit Frank-Wolfe (see
Garber and Kretzu (2020))

T/K
m=1>

Data: T, r,R, K, a, 6 € (0,7], {em}
Xg < arbitrary point in Ky, x1 < Xq

To

for m:l,...,% do
define )
m— ~
B e S0 xTE + KSx x|

+T05 [[x —x1?

if m > 1 then

run Algorithm 3 with set /Cs, tolerance €,,,
initial vector X,,_1, and function F,(x).
Execute in parallel to the following for

loop over s
end
for s=1,...,K do
u, ~ S pt=(m—-1)K+s

play y; < X;m—1 + du; and observe f;(y:)

gt < %ft(Yt)ut
end

gm <~ Zf:l B(m—1)K+s
if m > 1 then

| X, < output of Algorithm 3
end

end

Algorithm 3: Frank-Wolfe with Stopping Condi-
tion

Data: ¢, x;,, Fip(x)
Z1 < Xijn, T+ 0
do

T+ T7+1

v, € argmin{VF,,(z,)" - x}

xeEX
or = argmin{F,,(z- + o(v. —z,;))} > Line-search
o€[0,1]

Zry1l =Zr + UT(VT - ZT)
while VF,,(z,) " (z; —v;) > €
Xout < Zr

> Zri1 ek

2
i % < T then, setting ¢ =
1

(r(nM)*InT/GRa)*?, we have

In particular,

4(nMGR)3 (InT)3

2
3

1
as3r a3

4 5
E[Rr] < < +2R*a + G) T3

) 2
2(nMGR)§ 2G 2
<a6r3(lnT)3 Va \/&> ( n(D))
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and

Lm S M""E""a T
2r3R3(InT)s 2R

&=
M ==

3
I

1 (nMGa)s G
|11ttt
a3 \2rsR3(InT)s 2R

2
a) T.

The following lemma is a key ingredient for obtaining
improved bounds for the bandit setting. At a high-
level it can be used to show that the “drift” in objec-
tive F,,(+) from one round to the next, which is due
to the gradients on each new block, as a first approxi-
mation, scales like vK (the second term on the RHS
K?G? will typically be smaller) and not linear in K.
On the other-hand, during such a block of length K
we can squeeze O(K) linear optimization steps. This
intuitively explains why the optimal tradeoff is to take
block-length K > 1 (as opposed to the full-information
setting).

Lemma 7. [ Lemma 5 in Garber and Kretzu (2020)]
For any iteration (block) m of the outer-loop in Algo-
rithm 2 it holds that

4.1 Proof of Theorem 2

E[|gm]]* < E[Igm]?] < K(nmé™)? + K*G2.

The following lemma is analogous to Lemma 5 in the
full-information setting, and upper-bounds the regret
of Algorithm 2 in terms of the approximation error
each iterate x,, guarantees with respect to the cor-
responding objective Fm() (which is captured by the
scalar €,,,). The proof is given in the appendix.

Lemma 8. Let {em}ﬂ:}i > 0. Suppose that through-
out the run of Algorithm 2, for all blocks m =1,. .., %
it holds that Fy,(Xm) — Fn(x%,) < €. Then, the ex-

m

pected regret of the algorithm is upper-bounded by

E[R7] <4 (”fsw +VK(G+ 2Ra)> (1+1InT)

(0%

+ 20R%T + 36GT + 5§GT

2 13 €m
ey o

The following lemma is analogues to the use of Lemma
6 in the full-information setting, and is used to upper-
bound the number of iterations required by the Frank-
Wolfe method, Algorithm 3, to terminate on each in-
vocation from Algorithm 2. A proof is given in the
appendix.

Lemma 9. Let € > 0. Given a function F(x), 20-
smooth, and x; € Ky such that hy := F(x1) — F(x*),

where x* = argmin F'(x), Algorithm 3 produces a
x€s
point x7,411 € K5 such that F(xp41) — F(x*) < € af-

ter at most L = max 4[3(627213)2(}“ —€), 2(h1 — e)}

iterations.

Proof of Theorem 2. We first upper bound the ex-
pected overall number of calls to the linear optimiza-
tion oracle throughout the run of the algorithm, and
then we upper-bound the expected regret.

Let z,, - be the iterate of Algorithm 3 after completing
T — 1 iterations of the do-while loop, when invoked on
iteration (block) m of Algorithm 2. Also, for all m, T,
define hp, » = Fm(zmﬁ) — Fm(xfn) Recall that for
any iteration m of Algorithm 3, we have z,, 1 = X;—1.

Using the fact Fm(xfnﬂ) > F,(x%,), we have

< Fm(xm) - Fm(x;kn) + gm (Xm) — gm(x;kn-i-l)
< em + (&0l + 2RKQ) [[xm — x5, -
The last inequality is since, hm,.r, = Fpn(Xm) —

F(x%,) < e and Eq.(22).
Using triangle inequality, we have

Elhm1.1] <ém + E[(|&m ] + 2REKa) [[xm — x7,|l]
+E [([1gmll +2RKa) [|x;, — x5, 4] -

Since b, 1,, < €m, using Eq. (2), we have that ||x,, —
x5 < ((m_ffi]?_«_%)a Also, from Eq. (23), we have
Ity — X1l < trrcys (18l + 2RKa). Thus, we
have

V2m (E[||gm|]] + 2RK )
Va((m = 1)K +To)

2E [||gm || + 2RK o)

a(mK +Ty)

Elhmt1.1] <ém +

Using Lemma 9 with h; = hyy, 1, then we have

V26n—1 (E[[|&m-1] + 2RK )
Va((m—2)K +Ty)
OF [||gm—1| + 2RK o]*
a((m—-1)K +Tp)

Elhi] <em—1 +

for m = 1,...,%, we have that on each iteration
(block) m, the number of calls to the linear op-

2
timization oracle is L,, < max{%mﬁgm(hm’l —
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em); %(hm,l

m

— em)}, when F,(x) is 2Bm-Smooth,

1
note that 3, = a(mK +Tp). Since €,, = 16R?33 and
Ty > % for any m we have Bm(QR)2 > €y, then we
have L,, < 28=CR% G, — ¢ ). Following Eq. (17),
Lemma 7 and plugging in €,,, we have

1 B
E(L, }SSRQ i Bl =)

- 8R B )

+KG+2RKQ>

+

B3 VEnM
16R26m71 1)

2
+KG+2RKa> .

a(mK+T
T% B = ( S 0) and
L (ﬂm/ﬁ )sﬂ%

1
and Zm 2 5 < é% Then, overall on all

blocks, we obtam

Since for every m = 0, ..
Ty > 4K, it holds that

T
K 1 T (VKnM
E L,| <-—= KG + 2RK
> RK( +KG4 2R a>
2
1 T3
_— f + KG+2RKa
4R2a3K

2
< (nM ¢ +O‘>T+1<RM+G+0¢> T.
@

AR ' 4R as
Inequality (d) is due to plugging-in J, K.

We now turn to upper-bound the expected regret of
the algorithm. using Lemma 8, plugging-in ¢, and

s )% 2
the fact that > % _; (g% < 2 L2 we obtain
- I
2v/2
E[Ry] <30GT +4 Ror v oar?ny + 2207
s

+§(ﬁ5+¢K@+mm0(LHMﬂ)

< <3CG+ch+2R2a+ -
d

—
=

TLM 2 2
+5 ~ = +G+2Ra) TH(L+In(T)).

Equality (d) is due to plugging-in §, K, Tp.

5 DISCUSSION

We have proved strong convexity leads to faster rates
for projection-free online learning both in the full-

information and bandit settings. This is obtained via
the standard Online Frank-Wolfe method (Hazan and
Kale, 2012) and its bandit variant with blocks (Garber
and Kretzu, 2020). In particular, this improvement is
in stark contrast to the state-of-affairs in offline con-
vex optimizaiton, in which, in general, strong convex-
ity does not lead to faster rates for the Frank-Wolfe
method.

In light of this current work and the recent work,
Hazan and Minasyan (2020), it is interesting if the
combination of smoothness and strong convexity can
lead to a faster rate than O(7/3). Also, given the re-
cent interest in projection-free online learning, and in
particular with a linear optimization oracle, it would
be interesting to derive lower bounds on the regret of
such algorithms, perhaps with online variants of stan-
dard constructions used in the offline setting (see for
instance Jaggi (2013); Garber and Hazan (2016)).
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