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Fair for All: Best-effort fairness guarantees for classification.

1 Omitted proofs

We first recall Theorem 1:

Theorem 1. On any data set N , there is no randomized classifier h (for some H) such that for all g ⊆ N
admitting a perfect classifier h∗g ∈ H (i.e., ug(h

∗
g) = 1), we have ug(h) > |g|

|N | .

Proof. Suppose there are only two classifiers h1, h2 in H: h1 classifies set g1 correctly, and h2 (equivalently h1)
classifies g2 = N \ g1 correctly. If an algorithm chooses h1 with probability p ≥ 0 and h2 with probability 1− p,
then the average utility on g1 is p, and that on g2 is 1− p. Clearly, we cannot simultaneously have p > |g1|

n and

1− p > 1− |g1|n .

Next we look at Theorem 2:

Theorem 2. For any subset g ⊆ N that admits a perfect classifier h∗g ∈ H (i.e., ug(h
∗
g) = 1) we have ug(hPF) ≥

|g|
|N | .

Proof. Let hPF be the PF classifier. Thus h = hPF maximizes f(h) :=
∑
i∈N lnui(h). Therefore, for any h ∈ H

and any ε ≥ 0,

f(ε · h+ (1− ε) · hPF)− f(hPF) =
∑
i∈N

lnui(ε · h+ (1− ε) · hPF)− lnui(hPF) ≤ 0.

Since the above expression attains its maxima at ε = 0, we take the derivative with respect to ε, and evaluate it
at ε = 0, to get: ∑

i∈N
(ui(h)− ui(hPF)) · 1

ui(hPF)
≤ 0.

Define n = |N |. Rearranging the inequality above, we get
∑
i∈N

ui(h)
ui(hPF) ≤ n, and consequently,

∑
i∈N :ui(h)=1

1

ui(hPF)
≤
∑
i∈N

ui(h)

ui(hPF)
≤ n.

If g ⊆ N of size αn is perfectly classified by h, then the above inequality gives∑
i∈g

1

ui(hPF)
≤ n,

which in turn implies that

|g|∑
i∈g

1
ui(hPF)

≥ |g|
n

= α.

Since the arithmetic mean is at least the harmonic mean, we get

ug(hPF) =
1

|g|
∑
i∈g

ui(hPF) ≥ α.

Recall Corollary 2.1:

Corollary 2.1. For any subset g ⊆ N , with its best classifier h∗g = arg maxh∈H ug(h), we have ug(hPF) ≥
α
[
ug(h

∗
g)
]2

, where α = |g|
n .
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Proof. For any T ⊆ g, we have:

ug(hPF) ≥ uT (hPF)
|T |
|g|
.

Let T be the largest subset of g that is perfectly classifiable by hj . By Theorem 2, uT (hPF) ≥ α |T ||g| . Then, we
get

ug(hPF) ≥ uT (hPF)
|T |
|g|
≥ α

(
|T |
|g|

)2

.

Since |T ||g| = ug(h
∗
g), the above inequality turns into

ug(hPF) ≥ α
[
ug(h

∗
g)
]2
.

2 Omitted examples

In the following example, we see that there are instances where, for some specific H, the claim of Theorem 1
does not hold.

Example 2. Suppose there are three data points {1, 2, 3}, and there are four classifers h1, h̄1, h2 and h̄2 in H.
Classifier h1 classifies {1, 2} correctly, and h2 classifies {2, 3} correctly. If a randomized classifier h picks h1 and
h2 with the same probability 1/2, then for all subsets S which are perfectly classifiable, i.e., for each of {1}, {2},
{3}, {1, 2} and {2, 3}, the utility uS(h) is 0.5, 1, 0.5, 0.75 and 0.75, respectively. Each of these utilities is greater
than the fractional size of the subsets, which does not agree with the claim of Theorem 1.

3 Computing the Proportional Fairness classifier

In this section, we describe how to compute our Proportional Fairness (PF) classifier. We present computa-
tional results for two different settings. Lemma 1 states that when the set of deterministic classifiers are given
explicitly, we can compute the PF classifiers in polynomial time. Lemma 2 focuses on the case where there are
exponentially or infinitely many deterministic classifiers, and shows that the PF classifier can still be computed
in polynomial time, assuming that we have black-box access to an agnostic learning oracle.

Recall that N is the set of data-points with |N | = n, H is the set of (deterministic) classifiers with |H| = m,
and ui(h) = 1 if the classifier h labels the i-th data-point correctly, and ui(h) = 0 otherwise.

The PF classifier is a distribution (pj)j:hj∈H over deterministic classifiers. PF corresponds to the optimal solution
to the following mathematical program:

maximize
∑
i∈N ln vi

subject to vi ≤
∑
hj∈H pjui(hj), ∀i ∈ N∑

hj∈H pj ≤ 1

pj ≥ 0, ∀hj ∈ H

(1)

where the variables pj describes the randomized classifier (which chooses hj with probability pj); and 0 ≤ vi ≤ 1
is the utility of the i-th data-point under the distribution p (i.e., the probability that the i-th data-point is
classified correctly). Observe that the objective function is monotone in every vi, so at optimality, we always
have

∑
hj∈H pj = 1, and vi =

∑
hj∈H pjui(hj) for every i ∈ N .

Lemma 1. Given a classification instance (N ,H) with n = |N | data-points and m = |H| classifiers, the
mathematical program (1) can be solved to precision ε > 0 in time poly(n,m, log(1/ε)).

Proof. When |N | = n and |H| = m, the mathematical program (1) has n + m variables. The feasible region
is given explicitly by a set of n + 1 linear constraints. Because the objective function is concave in the vari-
ables (v, p), we can minimize it using the ellipsoid method (Khachiyan, 1979; Grötschel et al., 1988) in time
poly(n,m, log(1/ε)).
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In many applications, we often have infinitely many hypotheses in H (e.g., all hyperplanes in Rd). If this is
the case, the mathematical program (1) has infinitely many variables, and to solve it, we need to make some
assumptions on the structure of H.

A commonly used assumption is that there exists an agnostic learning oracle: given a set of weights on the data-
points, the oracle returns an optimal classifier h ∈ H subject to these weights. Formally, we assume black-box
access to an oracle for the following problem:

Definition 1 (Agnostic Learning). Fix a set of data-points N and a family of classifiers H. Given any weights
(wi)i∈N , find a classifier h ∈ H that maximizes the (weighted) average accuracy on N . That is, h maximizes∑
i∈N wiui(h).

Given such an oracle, there are a few ways in which Problem (1) can be solved theoretically in polynomial time.
We first sketch the outline of a multiplicative weights approach: Consider the feasibility version of the problem,
where we want to check if there is a feasible solution that gives us an objective value of at least U∗. If we define
a region P as the set of v, p, where v = {vi}i∈N and p = {pj}j:hj∈H, that satisfy:∑

i∈N
ln vi ≥ U∗, and vi ≥ 0 ∀i ∈ N , (2)∑

j:hj∈H

pj = 1, and pj ≥ 0 ∀j : hj ∈ H, (3)

then the problem can be restated as:

∃?(v, p) ∈ P such that
∑

j:hj∈H

pjui(hj) ≥ vi, ∀i ∈ N .

This can be solved via the multiplicative weights if we have an efficient oracle for solving the following optimization
problem for a given y ≥ 0 (Bhalgat et al., 2013; Arora et al., 2012):

maximize
∑
i∈N

yi

 ∑
j:hj∈H

pjui(hj)− vi


subject to (v, p) ∈ P.

It can be seen that the above devolves into two decoupled problems: The first one is for v, which can be solved
analytically,

minimize
∑
i∈N

yivi

subject to
∑
i∈N

ln(vi) ≥ U∗

v ≥ 0,

and the second for p, which can be solved with access to an agnostic learning oracle:

minimize
∑
i∈N

∑
j:hj∈H

pjyiui(hj)

subject to
∑

j:hj∈H

pj = 1

p ≥ 0.

As the next lemma shows, Problem (1) can also be theoretically solved in a more straightforward way using the
ellipsoid method.

Lemma 2. Given a classification instance (N ,H) with n = |N | data-points and an agnostic learning oracle for
the set of classifiers H, the mathematical program (1) can be solved to precision ε > 0 in time poly(n, log(1/ε)).
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Proof. We use the “Ellipsoid Against Hope” algorithm proposed in Papadimitriou and Roughgarden (2008).

Consider the dual of (1):
minimize −

(∑
i∈N lnwi

)
− n+ z

subject to
∑
i wiui(hj) ≤ z, ∀hj ∈ H

wi ≥ 0, ∀i ∈ N
(4)

The dual program (4) has n + 1 variables (w, z) and infinitely many constraints. Strong duality holds despite
the infinite-dimensionality of (1).

Let OPT denote the optimal value of the primal and dual programs. The dual objective is convex in (w, z), so
we can add a constraint

−

(∑
i∈N

lnwi

)
− n+ z ≤ OPT− ε (5)

and use ellipsoid method to check the feasibility of the dual with this additional constraint. We show a separation
oracle exists so we can run the ellipsoid method. For a fixed point (w, z), we can verify Constraint (5) directly,
and we can use the agnostic learning oracle to check the infinitely many constraints∑

i

wiui(hj) ≤ z, ∀hj ∈ H (6)

because it is sufficient to first use the oracle to find some hj that maximizes
∑
i wiui(hj), and then check only

the j-th constraint.

We know the ellipsoid method must conclude infeasibility, because the minimum possible value of the dual is
OPT but we are asking for OPT− ε. Let H′ denote the set of classifiers whose corresponding constraints (6) are
checked in the execution of the ellipsoid method. Because the ellipsoid only examines the constraints in H′ and
concludes infeasibility, we know that if we replace H with H′ in the dual program (4), the objective value is still
larger than OPT− ε. Moreover, the cardinality of H′ is at most poly(n, log(1/ε)) because the ellipsoid method
terminates in poly(n, log(1/ε)) steps.

Consequently, we can replace H with H′ in the primal convex program (1) to make it finite-dimensional,
and invoke Lemma 1 to solve it where m = |H′| = poly(n, log(1/ε)). Therefore, the overall running time is
poly(n, log(1/ε)).

It is worth noting that the proof of Lemma 2 continues to hold even if we only have an ε-approximately optimal
agnostic learning oracle.

4 A heuristic for PF

Here we describe a heuristic for PF drawing inspiration from some literature on social choice (voting). Imagine
a social choice setting: we have a set N of voters and a set C of candidates. Each voter i ∈ N has a subset
Ai ⊆ C of candidates which she prefers. The goal here is to select a committee of a fixed size k, i.e., a subset
W ⊆ C (|W | = k), which “satisfies” the voters as much as possible

One method to do so is Proportional Approval Voting (Aziz et al., 2017), or PAV for short. Here, a voter
is assumed (for the sake of computation) to derive a utility of 1 + 1

2 + . . . + 1
j from a committee W that

contains exactly j of her approved candidates, i.e., |Ai ∩ W | = j. For PAV, as a method of computing a
committee W , the overall goal is to maximize the sum of the voters’ utilities – in other words, PAV outputs a
set W ∗ = arg maxW⊆C:|W |=k

∑
i∈N |Ai ∩W |.

Reweighted Approval Voting (RAV for short) converts PAV into a multi-round rule as follows: Start by set-
ting W = ∅. Then in round j (j = 1, . . . , k), select (without replacement) a candidate c which maximizes∑
i∈N :c∈Ai

1
1+|W∩Ai| , and adds it to W . Finally, it outputs the set W , after k rounds. i.e., having chosen k

candidates. RAV is also sometimes referred to as “Sequential PAV” (Brams and Kilgour, 2014).

In our case, for PF, we want to maximize f(h) :=
∑
i∈N lnui(h). Since ln(t) ≈

∑t
i=1

1
i , we can think of PAV as

a close enough proxy (where the voters are the data points, and the candidates are all the available classifiers).
In the same token, we can potentially apply RAV to our problem (assuming black box access to an agnostic
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learning oracle). In fact, in practice, we find that a slight modification to RAV works better. We describe this
in terms of our problem setting and notation in Algorithm 1.

Algorithm 1 PF Heuristic Classifier

Input: data set N , family of classifiers H, number of iterations R
Initialize: r ← 1, (ci)i∈N ← 0, (wi)i∈{1,...,R} ← 0
while r ≤ R do
h∗r ← argmaxhj∈H

∑
i∈N

1
1+ci

· ui(hj)
Tr ← {i ∈ N | ui(h∗r) = 1}
wr ←

∑
i∈Tr

1
1+ci

for all i ∈ Tr do
ci ← ci + 1

end for
r ← r + 1

end while
Return: classifier hPF that chooses h∗t ∈ H with probability pt ∝ wt for t = 1, 2, . . . , R.

Note that a direct analog of RAV would be choosing h∗t with probability just 1
R , i.e., uniform over all r ∈

{1, . . . , R}. Also note that any implementation of RAV would not have black-box access to an agnostic learning
oracle. And when data points are reweighted each time, standard out-of-the-box training methods apply the
weights to the respective gradient updates. Since scaling the gradient updates affects the convergence of the
training procedure, some kind of rescaling is necessary. In practice, we find that reweighting the probabilities
to be proportional to wt (see Algorithm 1) works well. For example, doing so helps us to always beat the lower
bound (which does not happen otherwise). For details about the exact implementation, please refer to the
attached code.

5 A Greedy approximation of PF

The next question to consider is whether there is a simpler classifier that achieves similar guarantees to those
given by the PF classifier. We answer this question in the affirmative by presenting the iterative Greedy
algorithm (Algorithm 2): select the classifier that classifies the most number of data points correctly, allocate it
a weight proportional to this number, discard the data points that it classifies correctly, and simply repeat the
above procedure until there are no data points left. The randomized classifier Greedy is defined by giving to
each of these classifiers a probability proportional to its weight, i.e., the number of data points classified correctly
in the corresponding iteration.

We now show that the Greedy algorithm provides a constant-factor approximation to the guarantee provided
by the PF classifier. Note that the first step in the while loop of Greedy (Algorithm 2) involves using the ERM
agnostic learning black box.

Theorem 3. If hG is the Greedy classifier, then for any subset S ⊆ N that admits a perfect classifier h ∈ H,

we have uS(hG) ≥ α
2 + 1

2α (max (0, 2α− 1))
2 ≥ α

2 , where |S|n = α.

Proof. Consider any set S of size αn (where n = |N |) that admits a perfect classifier hS . Let h∗1 be the classifier
found at the first step of Greedy (Algorithm 2). Suppose it classifies an points in S correctly, bn points in
S incorrectly, and cn points not in S correctly. Clearly, a + b = α, and c ≤ 1 − α. Further, the greedy choice
implies b ≤ c, so that b ≤ 1− α. Therefore, a = α− b ≥ max(2α− 1, 0).

Since Greedy assigns p1 = a + d and classifies an points in S correctly, the total utility generated on S is
a(a+ c)n ≥ a(a+ b)n.

At the second step, |T2| ≥ nb, since hS classifies bn points correctly. Suppose |T2 ∩ S| = y1n. Similarly,
|T3| ≥ (b− y1)n; let |T3 ∩ S| = y2n, and so on. Therefore, the total utility generated by Greedy is at least

n ·

a(a+ b) +
∑
q≥1

(b− zq−1)yq

 ,
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Algorithm 2 Greedy Classifier

Input: data set N , family of classifiers H
Initialize: r ← 1, Sr ← N
while |Sr| > 0 do
h∗r ← argmaxhj

uSr (hj)
Tr ← {i ∈ Sr | ui(h∗r) = 1}
pr ← |Tr|

n
Sr+1 ← Sr \ Tr
r ← r + 1

end while
Return: classifier hG that chooses h∗s ∈ H with probability ps for s = 1, 2, . . . , r − 1

where zq =
∑q
t=1 yt and

∑
q≥1 yq = b.

Now focus on the term
∑
q≥1(b− zq−1)yq.∑

q≥1

(b− zq−1)yq =
∑
q≥1

(b− yq−1)(zq − zq−1)

≥
∑
q≥1

(b− zq−1)(zq − zq−1)

≥
∫ b

0

(b− x)dx.

Therefore,

n ·

a(a+ b) +
∑
q≥1

(b− zq−1)yq


≥ n ·

(
a(a+ b) +

∫ b

0

xdx

)
, (7)

which on further simplification yields

n ·
(
a(a+ b) +

b2

2

)
= n ·

(
a2

2
+

(a+ b)2

2

)
.

Now, since |S| = αn, a+ b = α, and a ≥ max(2α− 1, 0),

uS(hG) ≥ 1

α

(
(a+ b)2

2
+
a2

2

)
≥ α

2
+

1

2α
(max (0, 2α− 1))

2
.

Therefore, for any set S that has a perfect classifier, the average utility of Greedy is at least half the average
utility of Proportional Fairness; for large sets, the approximation factor is better, and approaches 1 as α → 1.
We complement our α

2 analysis with the example below which shows that the above bound is tight when α→ 0.

Example 3. Let N consist of the following n = k(k+1)
2 data-points:

(1, 1), (1, 2), . . . , (1, k − 1), (1, k),
(2, 1), (2, 2), . . . , (2, k − 1),
. . . , . . . , . . . ,

(k − 1, 1), (k − 1, 2),
(k, 1).

There are k + 1 classifiers:
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1. h1 correctly classifies every (1, i) for i ∈ [k].

2. The classifier hj (j = 2, 3, . . . , k) correctly classifies every (j, i) for i ∈ [k − j + 1] as well as (1, j).

3. The classifier hk+1 only correctly classifies (1, 1).

Let S = {(1, i) | i ∈ [k]}, i.e., the set which h1 correctly classifies. In the j-th round, Greedy can pick hj+1 since
it covers k − j + 1 new data-points (tied with h1). However, each of h2, h3, . . . , hk+1 only covers one data-point

in S, meaning that the accuracy of Greedy on S is only 1
k = α

2 ·
k+1
k , where α = |S|

|N | .

6 Generalization bound for PF

In this section, we will outline how to derive generalization bounds for PF. To begin with, assume that H is a
hypothesis space of finite VC dimension, say d. Let ∆(H) be the space of randomized classifiers. Let D represent
the distribution of data.

For some h ∈ H, as before, let ui(h) be the utility of a point i from classifier h. Let Si(h) = log(ui(h) + ε),
where ε > 0. Let A∆(H) be the set of (expected) outcomes for i in a finite sample S of size m based on the
function Si() and the space ∆(H). From standard generalization bounds (Theorem 26.3 in Shalev-Shwartz and
Ben-David (2014)) based on Rademacher complexity, we have a bound of 2R

δ with probability 1 − δ over the
choice of S (drawn randomly from D), where R is the Rademacher complexity of A∆(H).

We now show how to bound R. First note that in the domain [ε,+∞), log is 1
ε -Lipschitz. By Lemma 26.9 in

Shalev-Shwartz and Ben-David (2014), we need only bound the Rademacher complexity corresponding to ui(h)
for h ∈ ∆(H), and R will be at most factor 1

ε of this bound. Moreover, by Lemma 26.7 of Shalev-Shwartz and
Ben-David (2014), the Rademacher complexity is unaffected by taking the convex hull of a set, and therefore,
we need only consider h ∈ H. Since H is of finite VC dimension d, we can bound the resulting Rademacher
complexity by O(

√
d/m) (Bartlett and Mendelson, 2002).

For example, if H consisted of linear classifiers whose coefficients have a bounded `2 norm of 1, and the features
x are similarly bounded, then the R is O( 1

ε
√
m

). Therefore, the generalization error is bounded by O( 1
δε
√
m

).

And if this is at most ε, then we get a 2ε-approximation of the optimal PF solution, i.e., for m = O( 1
ε4δ2 ).

7 Omitted details from the experiments

In all our experiments, we drop sensitive features such as race and gender. For all the methods in the paper,
whenever possible, we use standard implementations from the scikit-learn (0.21.3) package (Pedregosa et al.,
2011). Wherever we need an agnostic learning black-box, we just use Logistic Regression, since it performs
reasonably well on the data-sets explored in this paper. For the adult data set, we use the train data and test data
as available at https://archive.ics.uci.edu/ml/datasets/Adult. For the compas data set, we do a train-test
split of 80-20. We use the same features as discussed in https://github.com/propublica/compas-analysis.
All code to compute the various classifiers is attached herewith.

Below, we provide some additional plots.

7.1 Additional plots for the compas data-set

We look at subsets that are mis-classified to varying degrees by LR and Ada, and check how well PF and
Greedy perform on them. More precisely, for each x ∈ {0, 0.1, . . . , 1}, we sample 25% of the test set such that a
fraction x of it comes from the points in the test set that are classified correctly by LR and Ada respectively. For
example, if x = 0.2, then one-fifth of the sampled subset comes from the correctly classified points, and four-fifths
from the incorrectly classified. Figure 1 shows the accuracy obtained by the different methods averaged across
100 samples of subsets obtained (as described above) based on LR and Ada. We see that the performance of
both PF and Greedy is similar irrespective of whether the subsets are defined based on LR or Ada. Similar
trends are seen when other methods are used instead of LR or Ada.

In Figure 2, we repeat the procedure used in Figure 1, but this time the sampled subset is 75% of the test set.
More precisely, for each x, we sample 75% of the test set such that a fraction x of it comes from the points in

https://archive.ics.uci.edu/ml/datasets/Adult
https://github.com/propublica/compas-analysis
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the test set that are classified correctly by LR and Ada respectively. Since 75% is a large subset, we see both
PF and Greedy doing a bit worse than the ERM methods, and also getting close to the lower bound when the
subset becomes perfectly classifiable.

Figure 1: Accuracy on sampled subsets which are 25% of the test set (compas): x axis denotes the fraction of
points that are classified correctly by LR (left) and Ada (right).

Figure 2: Accuracy on sampled subsets which are 75% of the test set (compas): x axis denotes the fraction of
points that are classified correctly by LR (left) and Ada (right).

Similar observations can be made on the adult data set.
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