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Abstract

We consider the problem of monotone, sub-
modular maximization over a ground set of
size n subject to cardinality constraint k. For
this problem, we introduce the first determin-
istic algorithms with linear time complexity;
these algorithms are streaming algorithms.
Our single-pass algorithm obtains a constant
ratio in dn/ce + c, for any c ≥ 1. In addi-
tion, we propose a deterministic, multi-pass
streaming algorithm with a constant num-
ber of passes that achieves nearly the opti-
mal ratio with linear query and time com-
plexities. We prove a lower bound that im-
plies no constant-factor approximation exists
using o(n) queries, even if queries to infea-
sible sets are allowed. An empirical analy-
sis demonstrates that our algorithms require
fewer queries (often substantially less than n)
yet still achieve better objective value than
the current state-of-the-art algorithms, includ-
ing single-pass, multi-pass, and non-streaming
algorithms.

1 Introduction

k A nonnegative, set function f : 2U → R+, where
ground set U is of size n, is submodular if for all
S ⊆ T ⊆ U , u ∈ U \ T , f (T ∪ {u}) − f (T ) ≤
f (S ∪ {u}) − f (S) and monotone if f(A) ≤ f(B) if
A ⊆ B. Intuitively, submodularity captures a natu-
ral diminishing returns property that arises in many
machine learning applications, such as viral marketing
(Kempe et al., 2003), network monitoring (Leskovec
et al., 2007), sensor placement (Krause and Guestrin,
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2007), video summarization (Mirzasoleiman et al.,
2018), and MAP Inference for Determinantal Point
Processes (Gillenwater et al., 2012).

A well-studied NP-hard optimization problem in this
context is submodular maximization subject to a car-
dinality constraint (SMCC): arg max|S|≤k f(S), where
the cardinality constraint k is an input parameter and
the function f is submodular and monotone. A simple
greedy procedure (Nemhauser et al., 1978) achieves
approximation ratio of 1 − 1/e ≈ 0.632 for SMCC in
O(kn) time; this ratio is optimal under the value query
model (Nemhauser and Wolsey, 1978). In the value
query model, the function f is provided to an algo-
rithm as a value oracle, which when queried with set
S returns f(S) in a single operation that requires O(1)
time. In this work, the time complexity of an algo-
rithm is measured in terms of the number of arithmetic
operations and number of oracle queries.

For k = Ω(n), the standard greedy algorithm has Ω(n2)
time complexity, which is prohibitive on modern in-
stance sizes. Further, loading the entire ground set
into memory may be impossible. Therefore, much ef-
fort has gone into the design of algorithms with lower
time complexity (Badanidiyuru and Vondrák, 2014;
Mirzasoleiman et al., 2015; Buchbinder et al., 2015;
Kuhnle, 2019; Crawford, 2020); and into streaming
algorithms (Gomes and Krause, 2010; Badanidiyuru
et al., 2014; Chakrabarti and Kale, 2015). In this con-
text, a streaming algorithm1 accesses elements by one
or more sequential passes through the ground set and
stores at most O(k log(n)) elements in memory.

Several randomized approximation algorithms (Mirza-
soleiman et al., 2015; Buchbinder et al., 2015; Fahrbach
et al., 2019) have been designed that require O(n) time,
independent of k. However, the ratios of these algo-
rithms hold only in expectation, which is undesirable for
applications in which a good solution is required with
high probability. Furthermore, these algorithms are

1Formally, this is the semi-streaming model since k could
be large relative to n. In this work, we will assume each
element of the ground set requires O(1) space.
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Table 1: State-of-the-art algorithms for SMCC in terms of time complexity.

Reference Passes Ratio Memory Queries Time

LTL (Mirzasoleiman et al., 2015) k 1− 1/e− ε O(n) n log(1/ε) O(n)
P-Pass (Norouzi-Fard et al., 2018) O(1/ε) 1− 1/e− ε O(k log(k)/ε) O(n log(k)/ε2) O(n log k)
SieveStream++ (Kazemi et al., 2019) 1 1/2− ε O(k/ε) O(n log(k)/ε) O(n log k)
C&K (Chakrabarti and Kale, 2015) 1 1/4 O(k) 2n O(n log k)

QuickStreamc, c ≥ 1 (Theorem 1) 1 1/(4c)− ε O (ck log(k) log(1/ε)) dn/ce+ c O(n)
QS+BR (Theorem 2) O(1/ε) 1− 1/e− ε O(k log(k)) O(n/ε) O(n)

not streaming algorithms and require the entire ground
set to be loaded into memory. Indeed, every determin-
istic or streaming algorithm with constant ratio that
has been described in the literature requires Ω(n log k)
time. This statement remains true if “deterministic” is
replaced by “with high probability” (that is, probability
that converges to 1 as n → ∞). Moreover, every de-
terministic or streaming algorithm requires Ω(n log k)
queries to the value oracle, except for the single-pass
streaming algorithm of Chakrabarti and Kale (2015),
which obtains a ratio of 1/4 with 2n oracle queries and
O(n log k) arithmetic operations.

Contributions In this work, we propose the first
deterministic, streaming algorithms for SMCC that
have linear time complexity in the size n of the ground
set. The first algorithm is a single-pass streaming
algorithm that obtains a constant ratio, and the second
is a multi-pass streaming algorithm that obtains nearly
the optimal ratio. Specifically:

• We provide a linear-time, single-pass algorithm
QuickStream (Section 2 and Appendix B),
which achieves a constant ratio of while making at
most dn/ce+c queries to the value oracle for f , for
any c ≥ 1. This is the lowest query complexity2

of any constant factor algorithm, which is impor-
tant as the cost to evaluate the function f may be
expensive. The following theorem summarizes the
guarantees for QuickStream.

Theorem 1. Let c ≥ 1 be an integer, and let ε >
0. There exists a deterministic, single-pass stream-
ing algorithm that makes at most dn/ce+c queries,
has memory complexity O (ck log(k) log(1/ε)) has
approximation ratio at least 1/(4c)− ε for SMCC,
and the ratio converges to (1 − 1/e)/(c + 1) as
k →∞. Further, the time complexity of the algo-
rithm is O(n).

We also show a lower bound of Ω(n/k) on the time
2The query complexity of an algorithm is the total num-

ber of queries made to the value oracle for f and is upper-
bounded by the time complexity.

complexity to obtain a constant ratio (Section 2.2).

• We propose a multi-pass algorithm QS+BR (Sec-
tion 3), which achieves nearly the optimal ratio
1 − 1/e − ε in a constant number of passes and
linear time complexity. In addition, this algorithm
is the first deterministic algorithm for SMCC to
obtain nearly the optimal ratio with a linear query
complexity.

Theorem 2. There exists a deterministic, multi-
pass streaming algorithm for SMCC that achieves
approximation ratio 1−1/e−ε, makes O(n/ε) ora-
cle queries, requires O(1/ε) passes over the ground
set, and requires O(k log k) memory. Further, the
time complexity of the algorithm is O(n).

• An empirical evaluation (Section 4) of our single-
pass algorithm QuickStream shows that if
QuickStream is supplemented with a linear-time
post-processing procedure (which does not com-
promise any of the theoretical guarantees of the
algorithm), it empirically exceeds the objective
value of the state-of-the-art single-pass streaming
algorithm SieveStream++ (Kazemi et al., 2019)
and the non-streaming LTL algorithm, while us-
ing fewer queries than either algorithm. Further,
QS+BR obtains an even greater objective value
while remaining query efficient.

Table 1 shows how our algorithms compare theoretically
to the current state-of-the-art algorithms for SMCC.

1.1 Related Work

The literature studying SMCC is vast, so we only dis-
cuss algorithms for SMCC with monotone objective
and cardinality constraint in this section. Streaming
algorithms for more generalized constraints and sub-
modular but not necessarily monotone functions include
the works of Chekuri et al. (2015), Mirzasoleiman et al.
(2016), Mirzasoleiman et al. (2018), and Feldman et al.
(2018), among others.
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Fast Approximation Algorithms The stochastic
greedy algorithm LTL of Mirzasoleiman et al. (2015)
obtains a ratio of 1−1/e−ε in O(n) time, and thus has
nearly optimal ratio and time complexity. However,
its ratio holds only in expectation: LTL returns a
poor solution with constant probability if k = O(1).
We refer the reader to Hassidim and Singer (2017) for
discussion and further analysis of the ratio of LTL;
also, in Section 4, we empirically explore the behavior
of LTL for large values of ε. In addition to LTL, two
other randomized approximation algorithms with linear
query and time complexities have been developed. The
algorithm of Buchbinder et al. (2015) achieves ratio
1/e − ε in O(n log(1/ε)/ε2) time. Very recently, the
randomized, parallelizable algorithm of Fahrbach et al.
(2019) obtains ratio 1 − 1/e − ε in expectation with
time complexity O(n log(1/ε)/ε3). In contrast to our
algorithms, none of these algorithms are streaming
algorithms or are deterministic. For some applications
of SMCC, an approximation ratio that holds only in
expectation (rather than deterministically or with high
probability) may be undesirable.

Single-Pass Streaming Algorithms Chakrabarti
and Kale (2015) provided the first single-pass stream-
ing algorithm for SMCC; they designed a (1/4)-
approximation with one pass, 2n total queries, and
O(k) memory. However, this algorithm requires time
complexity of Ω(n log k). Badanidiyuru et al. (2014) im-
proved the ratio for a single-pass algorithm to 1/2−ε in
O(k log(k)/ε) memory, and O(n log(k)/ε) total queries
and time. Kazemi et al. (2019) have provided the single
pass 1/2− ε approximation SieveStream++, which
improves the algorithm of Badanidiyuru et al. (2014)
to have memory complexity of O(k/ε) as indicated
in Table 1. The current state-of-the-art, single-pass
algorithm is SieveStream++, which is empirically
compared to our algorithms in Section 4. Finally, Feld-
man et al. (2020) recently showed that any one-pass
algorithm with approximation guarantee of 1/2 + ε
must essentially store all elements of the stream. In
contrast to our single-pass algorithm, none of these
algorithms have linear time complexity. Further, they
require more oracle queries by at least a constant factor.

Multi-Pass Streaming Algorithms The first
multi-pass streaming algorithm for SMCC has been
given by Gomes and Krause (2010), which obtains value
OPT/2− kε using O(k) memory and O(B/ε) passes,
where f is upper bounded by B. Norouzi-Fard et al.
(2018) designed a multi-pass algorithm P-Pass that
obtains ratio 1−1/e−ε in O(1/ε) passes, O(k log(k)/ε)
memory, O(n log(k)/ε2) time. This is a generalization
of the multi-pass algorithm of McGregor and Vu (2019)
for the maximum coverage problem. The current state-

Algorithm 1 For each c ≥ 1, a single-pass algo-
rithm with approximation ratio (1/(4c)− ε) if k ≥ 2,
query complexity dn/ce+ c, and memory complexity
O (ck log(k) log(1/ε)).
1: procedure QuickStreamc(f, k, ε)
2: Input: oracle f , cardinality constraint k, ε > 0
3: A← ∅, A′ ← ∅, C ← ∅, `← dlog2(1/(4ε))e+ 3
4: for element e received do
5: C ← C ∪ {e}
6: if |C| = c or stream has ended then
7: if f(A ∪ C)− f(A) ≥ f(A)/k then
8: A← A ∪ C
9: if |A| > 2c`(k + 1) log2(k) then
10: A← {c`(k+1) log2(k) elements most

recently added to A}
11: C ← ∅
12: A′ ← {ck elements most recently added to A}.

13: Partition A′ arbitrarily into at most c sets of
size at most k. Return the set of the partition with
highest f value.

of-the-art, multi-pass algorithm is P-Pass, which is
empirically compared to our algorithms in Section 4.
In contrast to our multi-pass algorithm, no multi-pass
algorithm has linear time complexity; further, our algo-
rithm makes fewer passes than P-Pass to achieve the
same ratio of 1− 1/e− ε.

2 The QuickStreamc Algorithm

The algorithm QuickStreamc is a single-pass, de-
terministic streaming algorithm. The parameter c is
the number of elements buffered before the algorithm
processes them together; this parameter determines
the approximation ratio, query complexity, and mem-
ory complexity of the algorithm: respectively, 1/(4c),
dn/ce+ c, and O (ck log(k) log(1/ε)). Notably, this al-
gorithm is the first deterministic algorithm for SMCC
to obtain linear time complexity. To handle the case
that k = 1 and obtain better ratios if k ≥ 8c/e, we
provide two related algorithms in Appendix B.

The algorithm QuickStreamc maintains a set A, ini-
tially empty. We refer to the sets of size at most c of
elements processed together as blocks of size c. When a
new block C is received, the algorithm makes one query
of f(A∪C). If f(A∪C)−f(A) ≥ f(A)/k, the block C
is added to A; otherwise, it is discarded. If the size |A|
exceeds 2`c(k + 1) log2 k, elements are deleted from A.
At the end of the stream, the algorithm partitions the
last ck elements added to A into c pieces of size at most
k and return the one with highest f value. Pseudocode
is given in Alg. 1.
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At a high level, our algorithm resembles a swapping
algorithm such as Chakrabarti and Kale (2015) or Buch-
binder et al. (2014), which replaces previously added
elements with better ones as they arrive. However, our
algorithm uses simply the order in which elements were
added to A to compare elements; which bypasses the
need of a direct comparison of the value of an incoming
element with the other elements of A. This indirect
method of comparison allows us to obtain an algorithm
with linear time complexity.

Below, we prove the following theorem.

Theorem 3. Let c ≥ 1, ε ≥ 0, and let (f, k)
be an instance of SMCC with k ≥ 2. The solu-
tion S returned by QuickStreamc satisifes f(S) ≥
(1/(4c)− ε) OPT, where OPT is the optimal solution
value on this instance. Further, QuickStreamc makes
at most dn/ce+ c queries and has memory complexity
O (ck log(k) log(1/ε)).

We remark that using the the value f(A) of a poten-
tially infeasible set A is an important feature of our
algorithm; the use of infeasible sets is necessary to
obtain a constant ratio with fewer than n queries to
the oracle.

Proof of Theorem 3. The query complexity, time com-
plexity, and memory complexity of QuickStreamc

are clear from the limit on the size of A, the choice
of `, and the fact that one query is required every c
elements together with c queries at the termination
of the stream. The rest of the proof establishes the
approximation ratio of QuickStreamc.

First, we argue it is sufficient to prove the ratio in the
case c = 1. Let N = {C1, . . . , Cm}, where each Ci is
the i-th block of at most c elements of U considered
for addition to A on line 7. Define monotone, sub-
modular function g : 2N → R+ by g(S) = f(

⋃
C∈S C).

Observe that if we omit lines 12 and 13, the behav-
ior of QuickStreamc on instance (f, k) is equivalent
to QuickStream1 run on instance (g, k) of SMCC;
further, arg max|S|≤k g(S) ≥ arg max|S|≤k f(S). Let
S be the solution returned by QuickStream1 on in-
stance (g, k). Then the value of A′ at termination of
QuickStreamc is A′ =

⋃
C∈S C. Let {D1, . . . , Dc}

be the partition of A on line 13 of Alg. 1. Then by
submodularity of f

g(S) = f(A′) ≤
c∑
i=1

f(Di) ≤ c max
1≤i≤c

f(Di).

Since QuickStreamc returns arg max1≤i≤c f(Di), it
suffices to show that QuickStream1 has approxima-
tion ratio (1/4− ε).

For the rest of the proof, we let c = 1. We require

the following claim, which follows directly from the
inequality log x ≥ 1− 1/x for x > 0.

Claim 1. For y ≥ 1, if i ≥ (k + 1) log y, then (1 +
1/k)i ≥ y.

Throughout the proof, let Ai denote the value of A at
the beginning of the i-th iteration of for loop; let An+1

be the value of A after the for loop completes. Also,
let A∗ =

⋃
1≤i≤n+1Ai, and let ei denote the element

received at the beginning of iteration i. We refer to
line numbers of the pseudocode Alg. 1. First, we show
the value of f(A) does not decrease between iterations
of the for loop, despite the possibility of deletions from
A.

Lemma 1. For any 1 ≤ i ≤ n, it holds that f(Ai) ≤
f(Ai+1).

Proof. If no deletion is made during iteration i of the
for loop, then any change in f(A) is clearly nonnegative.
So suppose deletion of set B from A occurs on line 10
of Alg. 1 during this iteration. Observe that Ai+1 =
(Ai \ B) ∪ {ei}, because the deletion is triggered by
the addition of ei to Ai. In addition, at some iteration
j < i of the for loop, it holds that Aj = B. From the
beginning of iteration j to the beginning of iteration
i, there have been `(k + 1) log2(k) − 1 ≥ (` − 1)(k +
1) log2(k) additions and no deletions to A, which add
precisely the elements in (Ai \Aj).

It holds that

f (Ai \Aj)
(a)

≥ f (Ai)− f (Aj)

(b)

≥
(

1 +
1

k

)(`−1)(k+1) log k

· f(Aj)− f(Aj)

(c)

≥ (k`−1 − 1)f(Aj),

where inequality (a) follows from submodularity and
nonnegativity of f , inequality (b) follows from the fact
that each addition from Aj to Ai increases the value of
f(A) by a factor of at least (1 + 1/k), and inequality
(c) follows from Claim 1. Therefore

f(Ai) ≤ f (Ai \Aj) + f (Aj)

≤
(

1 +
1

k`−1 − 1

)
f (Ai \Aj) . (1)

Next,

f ((Ai \Aj) ∪ {ei})− f (Ai \Aj)
(d)

≥ f (Ai ∪ {ei})− f (Ai)

(e)

≥ f (Ai) /k ≥ f (Ai \Aj) /k, (2)
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where inequality (d) follows from submodularity, and
inequality (e) is by the condition to add ei to Ai on line
7. Finally, using Inequalities (1) and (2) as indicated
below, we have

f (Ai+1) = f (Ai \Aj ∪ {ei})
By (2)
≥

(
1 +

1

k

)
f (Ai \Aj)

By (1)
≥

1 + 1
k

1 + 1
k`−1−1

· f(Ai) ≥ f(Ai),

where the last inequality follows since k ≥ 2 and ` ≥
3.

Next, we bound the total value of f(A) lost from dele-
tion throughout the run of the algorithm.

Lemma 2. f (A∗) ≤
(

1 + 1
k`−1

)
f (An+1) .

Proof. Observe that A∗ \An+1 may be written as the
union of pairwise disjoint sets, each of which is size
`(k + 1) log2(k) + 1 and was deleted on line 10 of Alg.
1. Suppose there were m sets deleted from A; write
A∗ \ An+1 = {Bi : 1 ≤ i ≤ m}, where each Bi is
deleted on line 10, ordered such that i < j implies Bi
was deleted after Bj (the reverse order in which they
were deleted); finally, let B0 = An+1.

Claim 2. Let 0 ≤ i ≤ m. Then f
(
Bi
)
≥ k`f

(
Bi+1

)
.

Proof. Let Bi, Bi+1 ∈ B. There are at least `(k +
1) log k + 1 elements added to A and exactly one dele-
tion event during the period between starting when
A = Bi+1 until A = Bi. Moreover, each addition ex-
cept possibly one (corresponding to the deletion event)
increases f(A) by a factor of at least 1 + 1/k. Hence,
by Lemma 1 and Claim 1, f

(
Bi
)
≥ k`f

(
Bi+1

)
.

By Claim 2, for any 0 ≤ i ≤ m, f (An+1) ≥ k`if
(
Bi
)
.

Thus,

f (A∗) ≤ f (A∗ \An+1) + f (An+1)

(a)

≤
m∑
i=0

f
(
Bi
)

(b)

≤ f (An+1)

∞∑
i=0

k−`i

(c)
= f (An+1)

(
1

1− k−`

)
,

where inequality (a) follows from submodularity and
nonnegativity of f , inequality (b) follows Claim 2, and
inequality (c) follows from the sum of a geometric
series.

Next, we bound the value of OPT in terms of f (An+1).

Lemma 3.
(

2 + 1
k`−1

)
f (An+1) ≥ OPT.

Proof. Let O ⊆ U be an optimal solution of size k to
SMCC; for each o ∈ O, let i(o) be the iteration in
which o was processed. Then

f(O)− f (A∗) ≤ f (O ∪A∗)− f (A∗)

≤
∑

o∈O\A∗

f (A∗ + o)− f (A∗)

≤
∑

o∈O\A∗

f
(
Ai(o)

)
/k

≤
∑

o∈O\A∗

f (An+1) /k ≤ f (An+1) ,

by monotonicity and submodularity of f , the condition
of Line 7, Lemma 1, and the size of O. From here, the
result follows from Lemma 2.

Recall that QuickStream1 returns the set A′, the
last k elements added to A. Lemma 4 shows that
2f(A′) ≥ f (An+1).

Lemma 4. f (An+1) ≤ 2f (A′).

Proof. If |An+1| ≤ k, f (A′) ≥ f (An+1) by mono-
tonicity, and the lemma holds. Therefore, suppose
|An+1| > k. Let A′ = {a′1, . . . , a′k}, in the order these
elements were added to A. Let A′i = {a′1, . . . , a′i},
A′0 = ∅. Then

f (A′) ≥ f (An+1)− f (An+1 \A′)

=

k∑
i=1

[
f
(
(An+1 \A′) ∪A′i−1 + a′i

)
−f
(
(An+1 \A′) ∪A′i−1

)]
(a)

≥
k∑
i=1

f
(
(An+1 \A′) ∪A′i−1

)
k

(b)

≥
k∑
i=1

f (An+1 \A′)
k

= f (An+1 \A′) ,

where inequality (a) is by the condition on Line 7,
and inequality (b) is from monotonicity of f . Thus
f(An+1) ≤ f (An+1 \A′) + f (A′) ≤ 2f(A′).

Since k ≥ 2, Lemmas 3 and 4 show that the set A′ of
QuickStream1 satisifes f(A′) ≥

(
1

4+2/(k`−1)

)
OPT.

By the choice of `, f(A′) ≥ (1/4− ε) OPT.
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2.1 Post-Processing: QuickStreamc++

In this section, we describe a simple post-processing
procedure to improve the objective value obtained by
QuickStreamc. At the termination of the stream,
QuickStreamc stores a set A of size O(k log k) from
which the set A′ and solution are extracted, on which
the worst-case approximation ratio is proven in the pre-
vious section. However, the set A may be regarded as
a filtered ground set of size O(k log k) ≤ n, upon which
any algorithm may be run to extract a solution. As long
as the post-processing algorithm has query and time
complexity and runtime O(n), Theorem 3 still holds
for the resulting single-pass streaming algorithm with
post-processing. This modification of QuickStream
is termed QuickStream++.

We remark that the condition of Line 7 of
QuickStreamc may be changed to the following con-
dition: f (A ∪ C)−f (A) ≥ δf (A) /k, for input param-
eter δ > 0. In this case, it is not difficult to extend the
analysis in the previous section to show that the algo-
rithm achieves ratio [c(1 + δ)(1 + 1/δ)]−1, in memory
O(k log k) and the same query complexity and runtime.
This ratio is optimized for δ = 1, but when using post-
processing with QuickStreamc++, smaller values
of δ result in larger sets A, although still bounded in
O(k log k) ≤ n. We found in our empirical evaluation in
Section 4 that setting δ = c/10 for QuickStreamc++
yields good empirical results.

2.2 Lower Bound on Query and Time
Complexity

While it is clear that at least n queries are required
for any constant factor if the algorithm is only allowed
to query feasible sets (consider k = 1), our algorithms
bypass this restriction. Our next result is a lower
bound on the number of queries (and hence also the
time complexity) required to obtain a constant-factor
approximation.

Theorem 4. Let c ≥ 2 be an integer, and let ε > 0.
Any (randomized) approximation algorithm for SMCC
with ratio 1/c+ε for SMCC with probability δ requires
at least dδn/(ck − 1)e oracle queries and hence Ω(n/k)
time.

Theorem 4 implies no constant-factor approximation
exists with o(n) time in the value query model. Another
consequence of Theorem 4 is that any algorithm with
ratio (1/2 + ε) with probability greater than 1− 1/n
requires at least n queries.

Proof. We prove the theorem for instances of SMCC
with cardinaity constraint k ≥ 1. Let c ∈ N, c ≥ 2, and
let 0 < ε < 1. Let n ∈ N, and let Un = {0, 1, . . . , n−1}.

Algorithm 2 A procedure to boost to from constant
ratio α to ratio 1 − e−1+ε in O(1/ε) passes, 1 query
per element per pass, and O(k) memory.
1: procedure BoostRatio(f, k, α,Γ, ε)
2: Input: evaluation oracle f : 2N → R+, con-

straint k, constant α, value Γ such that Γ ≤
OPT ≤ Γ/α, and 0 < ε < 1.

3: τ ← Γ/(αk), A← ∅.
4: while τ ≥ (1− ε)Γ/(4k) do
5: τ ← τ(1− ε)
6: for n ∈ N do
7: if f(A+ n)− f(A) ≥ τ then
8: A← A+ n

9: if |A| = k then
10: return A
11: return A

Define f : 2Un → R+ by f(A) = min{|A|, ck}, for
A ⊆ Un. Next, we define a function g that is hard to
distinguish from f : pick a ∈ Un uniformly randomly.
Let g(A) = f(A) if a 6∈ A, and g(A) = ck otherwise.
Clearly, both f and g are monotone and submodular.

Now, consider queries to f and g of a set A ⊆ Un. These
queries can only distinguish between f and g if |A| ≤
ck− 1 and a ∈ A; in any other case, the values of f(A)
and g(A) are equal. Consider a (possibly adaptive)
sequence of queries of sets A1, A2, . . . , Am. Without
loss of generality, we may assume |Ai| ≤ ck−1 for each
i, since the query of any set of larger size yields no
information about the element a. Then the algorithm
can correctly distinguish f from g iff a ∈

⋃
Ai, which

happens with probability at most m(ck − 1)/n, since
|
⋃
Ai| ≤ m(ck − 1). Therefore, to distinguish between

f and g with probability at least δ requires at least
dδn/(ck − 1)e queries.

Since any approximation algorithm with ratio at least
1/c+ε with probability δ would distinguish between f, g
with probability δ, since the optimal solution with f
has value k, while g(a) = ck, the theorem is proven.

3 Multi-Pass Streaming Algorithm to
Boost Constant Ratio to 1− 1/e− ε

In this section, we describe BoostRatio (Alg. 2),
which given any α-approximation A for SMCC can
boost the ratio to 1 − e−1+ε ≥ 1 − 1/e − ε using the
output of A. Theorem 5 is proven below.
Theorem 5. Let 0 < ε < 1. Suppose a deterministic
α-approximation A exists for SMCC. Then algorithm
BoostRatio is a multi-pass streaming algorithm that
when applied to the solution of A yields a solution
within factor 1− e−1+ε ≥ 1− 1/e− ε of optimal in at
most n(log(4/α)/ε+ 1 queries, log(4/α)/ε+ 1 passes,
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and O (k) memory.

If the algorithm A is the algorithm provided by Theo-
rem 1, this establishes Theorem 2.

As input, the algorithm BoostRatio takes an instance
(f, k) of SMCC, an approximate solution value Γ, and
accuracy parameter ε > 0. On the instance (f, k), it
must hold that Γ ≤ OPT ≤ Γ/α, where OPT is the
value of an optimal solution. The algorithm works
by making one pass (line 6) through the ground set
for each threshold value τ , during which any element
with marginal gain at least τ to A is added to A (lines
7 – 8). The maximum and minimum values of τ are
determined by Γ, α, and k: initally τ = Γ/(αk), and
the algorithm terminates if τ < (1 − ε)Γ/(4k); each
iteration of the while loop, τ is decreased by a factor
of (1 − ε). The set A is initially empty; if |A| = k,
the algorithm terminates and returns A; otherwise, at
mostO(log(1/α)/ε) passes are made until the minimum
threshold value is reached.

Intuitively, the 1− 1/e− ε ratio is achieved since the α-
approximate solution Γ allows the algorithm to approx-
imate the value for τ of OPT/k in a constant number
of guesses. Once this threshold has been reached, only
log(1/4)/ε more values of τ are needed to achieve the
desired ratio. While BoostRatio may be used with
any α-approximation, if it is used with QuickStream1,
the resulting algorithm is the first linear-time, deter-
ministic, (1− 1/e− ε)-approximation for SMCC, which
is a multi-pass streaming algorithm.

Proof of Theorem 5. Suppose 0 < ε < 1. Let (f, k)
be an instance of SMCC. The algorithm is to first
run A, to obtain set A′. Next, BoostRatio is called
with parameters (f, k, α, f(A′), ε). Observe that the
inital value of the threshold τ in the while loop is at
least (1− ε)OPT/k, and the final value of τ is at most
OPT/(4k).

Consider the case that at termination |A| < k. Then
by the last iteration of the while loop, submodularity
and monotonicity of f ,

f(O)− f(A) ≤ f(O ∪A)− f(A)

≤
∑

o∈O\A

f(A ∪ {o})− f(A)

≤
∑

o∈O\A

Γ/(4k) ≤ OPT/4,

from which f(A) ≥ 3OPT/4 ≥ (1− e−1+ε)OPT.

Next, consider the case that at termination |A| = k.
Let Ai = {a1, a2, . . . , ai}, ordered by the addition of
elements to A, and let A0 = ∅.

Claim 3. Let i ∈ {0, . . . , k − 1}. Then

f (Ai+1)− f (Ai) ≥
(1− ε)
k

(OPT− f (Ai))

Proof. Let i ∈ {0, . . . , k − 1}. First, suppose ai+1 is
added to Ai during an iteration with τ ≥ (1−ε)OPT/k.
In this case, f(Ai+1)− f(Ai) ≥ τ ≥ (1− ε)OPT/k ≥
(1−ε)
k (OPT− f(Ai)).

Next, suppose ai+1 is added to Ai during an iteration
with τ < (1 − ε)OPT/k. Consider the set O \ Ai; in
the previous iteration of the while loop, no element of
O \Ai is added to A; hence, by submodularity, for all
o ∈ O \Ai, f(Ai + o)− f(Ai) < τ/(1− ε). Therefore,

f(Ai+1)− f(Ai) ≥ τ

≥ (1− ε)
k

∑
o∈O\Ai

f(Ai ∪ {o})− f(Ai)

≥ (1− ε)
k

(f(O ∪Ai)− f(Ai))

≥ (1− ε)
k

(OPT− f(Ai)).

From Claim 3, standard arguments show the f(Ak) ≥
OPT

(
1− e−1+ε

)
≥ OPT(1− 1/e− ε).

For the query complexity, observe that the for loop of
BoostRatio makes at most n queries, and the while
loop requires log(α/4)/ log(1− ε) + 1 ≤ log(4/α)/ε+ 1
iterations.

4 Empirical Evaluation

In this section, we demonstrate that the objec-
tive value achieved empirically by our algorithm
QuickStreamc++ beats that of the state-of-the-art
algorithms LTL, SieveStream++, and C&K, while
using the fewest queries and only a single pass. Our
multi-pass algorithm QS+BR (QuickStream1 fol-
lowed by BoostRatio) achieved mean objective value
better than 0.99 of the standard Greedy value across
all instances tested.

Algorithms Our algorithms are compared to the
following methods: Greedy, the standard greedy
algorithm analyzed by Nemhauser et al. (1978),
LTL (Mirzasoleiman et al., 2015), SieveStream++
(Kazemi et al., 2019), P-Pass (Norouzi-Fard et al.,
2018), and C&K (Chakrabarti and Kale, 2015), as
described in Section 1. Randomized algorithms were
averaged over 10 independent runs and the shaded re-
gions in plots correspond to one standard deviation.
Any algorithm with an accuracy parameter ε is run
with ε = 0.1 unless otherwise specified.
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Figure 1: Evaluation of single-pass streaming algorithms on web-Google (n = 875713), in terms of objective
value normalized by the standard greedy value, total number of queries, and the maximum memory used by each
algorithm normalized by k. The legend shown in (a) applies to all subfigures.

We evaluate our algorithm QuickStreamc++ for var-
ious values of c. The post-processing procedure run on
A is taken to be our linear time BoostRatio and we
set parameter δ = c/10 (see Section 2.1 for the defini-
tion of δ). We also evaluate our multi-pass algorithm
QS+BR.

Applications We evaluate all of the algorithms on
two applications of SMCC: the first is maximum cov-
erage on a graph: for each set of vertices S, the value
of f(S) is the number of vertices adjacent to the set
S. The second application is the revenue maximization
problem on a social network (Hartline et al., 2008), a
variant of influence maximization. For detailed spec-
ification of these applications, see Appendix C. We
evaluate on a variety of network technologies from the
Stanford Large Network Dataset Collection (Leskovec
and Krevl, 2020), including ego-Facebook (n = 4039)
and web-Google (n = 875713), among others listed in
Appendix C. Values of k evaluated include small values
(k ≤ 1000) and large values (k = Ω(n)).

Results: Single-Pass Algorithms In Fig. 1, rep-
resentative results are shown for the single-pass al-
gorithms. Results were qualitatively similar across
applications and datasets; additional results are shown
in Appendix C.

Objective Value For small k (k ≤ 1000), the mean
objective value (normalized by the standard Greedy

value) obtained by each single-pass algorithm across
all instances is as follows: QuickStream1++
0.99; QuickStream4++ 0.95; C&K 0.93;
SieveStream++ 0.87; QuickStream16++ 0.84. On
the instances with large k (k ≤ 0.1n), the means are:
QuickStream1++ 0.99; QuickStream4++ 0.94;
SieveStream++ 0.89; QuickStream16++ 0.88.

Queries In terms of queries, QuickStreamc++ re-
quired roughly n/c queries for small k; the the next
smallest was C&K, which required 2n queries, followed
by SieveStream++, which started at more than 10n
queries and increased logarithmically with k. For large
k, the queries of QuickStreamc++ increased due to
the O(n) post-processing step which depends on k, but
always remained less than 2n.

The algorithm C&K, while very efficient in terms of
queries, was unable to run in a reasonable timeframe on
our larger instances. Most of the algorithms we evaluate
(including both of our algorithms) use a marginal gain
query of sets that only increase in size, which yields
an optimized implementation for the maximum cover
application. However, C&K cannot be implemented
with this optimization and requires the full O(n) oracle
query; thus, on some instances we were able to run
the standard greedy algorithm but not C&K. This
illustrates the fact that the oracle query complexity
only constitutes partial information about the runtime
of the algorithm.
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Figure 2: Evaluation of our algorithms compared with the multi-pass P-Pass and non-streaming algorithm LTL.
We compare the objective value (normalized by the standard Greedy objective value) and total queries on
web-Google for the maximum cover application for both small and large k values. The large k values are given as
a fraction of the number of nodes in the network. The legend shown in (a) applies to all subfigures.

Memory As shown in Figs. 1(c) and 1(f), the mem-
ory usage of the algorithms remained at most a con-
stant times k; for QuickStreamc++, this constant
decreased as k increased, and with large enough k, the
algorithms used less memory than SieveStream++.
In terms of memory, C&K is optimal both theoretically
and in practice, as it stores only k elements.

Results: Multi-Pass and Non-Streaming Algo-
rithms In Fig. 2, we show results of our algo-
rithms QuickStreamc++ and QS+BR, in compar-
ison with the multi-pass P-Pass algorithm and the
non-streaming LTL algorithm on web-Google. Sur-
prisingly, our single-pass algorithm QuickStream1++
beats the objective values of both P-Pass and LTL,
as it obtained 0.99 of the standard greedy value on
average across all instances (both small and large k).
The only algorithm with better objective value than
QuickStream1++ is our multipass QS+BR. The
algorithm QuickStream4++ exceeded the objective
value of LTL despite using 1/8 of the queries.

5 Conclusions

In this work, we have provided the first constant-factor
algorithms for SMCC that make a linear number of or-
acle queries and arithmetic operations. Supplemented
with post-processing heuristics, our single-pass algo-
rithm QuickStream achieves state-of-the-art empir-
ical objective value while using fewer than n queries
of the objective function. Our multi-pass algorithm
QS+BR nearly achieves the optimal worst-case ratio
of 1 − 1/e and is the first deterministic algorithm to
do so with linear query complexity.

6 Acknowledgments

The work of A. Kuhnle was partially supported by
Florida State University. We thank Victoria G. Craw-

ford and the anonymous reviewers for helpful feedback
on earlier versions of the manuscript.

References

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast
algorithms for maximizing submodular functions.
In ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2014.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman,
Amin Karbasi, and Andreas Krause. Streaming Sub-
modular Maximization: Massive Data Summariza-
tion on the Fly. In ACM SIGKDD Knowledge Discov-
ery and Data Mining (KDD), pages 671–680, 2014.

Niv Buchbinder, Moran Feldman, and Roy Schwartz.
Online Submodular Maximization with Preemption.
In ACM-SIAM Symposium on Discrete Algorithms,
2014.

Niv Buchbinder, Moran Feldman, and Roy Schwartz.
Comparing Apples and Oranges: Query Tradeoff in
Submodular Maximization. In ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2015.

Amit Chakrabarti and Sagar Kale. Submodular maxi-
mization meets streaming: matchings, matroids, and
more. Mathematical Programming, 154(1-2):225–247,
2015.

T. H.Hubert Chan, Zhiyi Huang, Shaofeng H.C. Jiang,
Ning Kang, and Zhihao Gavin Tang. Online Submod-
ular Maximization with Free Disposal: Randomiza-
tion Beats 1/4 for Partition Matroids. ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
1204–1223, 2017.

Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud.
Streaming Algorithms for Submodular Function Max-
imization. In International Colloquium on Automata,
Languages, and Programming (ICALP), 2015.

Victoria G. Crawford. Faster Guarantees of Pareto



Quick Streaming Algorithms for Maximization of Monotone Submodular Functions in Linear Time

Optimization for Submodular Maximization. In arxiv
preprint arXiv:1908:01230, 2020.

Matthew Fahrbach, Vahab Mirrokni, and Morteza
Zadimoghaddam. Submodular Maximization with
Nearly Optimal Approximation, Adaptivity, and
Query Complexity. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 255–273, 2019.

Moran Feldman, Amin Karbasi, and Ehsan Kazemi.
Do less, Get More: Streaming Submodular Maxi-
mization with Subsampling. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson,
and Rico Zenklusen. The One-way Communication
Complexity of Submodular Maximization with Ap-
plications to Streaming and Robustness. In arXiv
preprint arXiv:2003.13459, 2020.

Jennifer Gillenwater, Alex Kulesza, and Ben Taskar.
Near-Optimal MAP Inference for Determinantal
Point Processes. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2012.

Ryan Gomes and Andreas Krause. Budgeted Nonpara-
metric Learning from Data Streams. In International
Conference on Machine Learning (ICML), 2010.

Jason Hartline, Vahab S. Mirrokni, and Mukund Sun-
dararajan. Optimal marketing strategies over social
networks. International Conference on World Wide
Web (WWW), pages 189–198, 2008.

Avinatan Hassidim and Yaron Singer. Robust Guaran-
tees of Stochastic Greedy Algorithms. International
Conference on Machine Learning (ICML), 2017.

Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghad-
dam, Silvio Lattanzi, and Amin Karbasi. Submodu-
lar Streaming in All its Glory: Tight Approximation,
Minimum Memory and Low Adaptive Complexity.
In International Conference on Machine Learning
(ICML), 2019.

David Kempe, Jon Kleinberg, and Éva Tardos. Maxi-
mizing the spread of influence through a social net-
work. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD),
2003.

Andreas Krause and Carlos Guestrin. Near-optimal
observation selection using submodular functions.
AAAI Conference on Artificial Intelligence, 2007.

Alan Kuhnle. Interlaced Greedy Algorithm for Maxi-
mization of Submodular Functions in Nearly Linear
Time. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Jure Leskovec and Andrej Krevl. {SNAP Datasets}:
{Stanford} Large Network Dataset Collection.
\url{http://snap.stanford.edu/data}, jun 2020.

Jure Leskovec, Andreas Krause, Carlos Guestrin,
Christos Faloutsos, Jeanne VanBriesen, and Natalie
Glance. Cost-effective Outbreak Detection in Net-
works. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD),
2007.

Andrew McGregor and Hoa T. Vu. Better Stream-
ing Algorithms for the Maximum Coverage Prob-
lem. Theory of Computing Systems, 63(7):1595–1619,
2019.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru,
Amin Karbasi, Jan Vondrak, and Andreas Krause.
Lazier Than Lazy Greedy. In AAAI Conference on
Artificial Intelligence (AAAI), 2015.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru,
and Amin Karbasi. Fast Constrained Submodular
Maximization : Personalized Data Summarization.
In International Conference on Machine Learning
(ICML), 2016.

Baharan Mirzasoleiman, Stefanie Jegelka, and Andreas
Krause. Streaming Non-Monotone Submodular Max-
imization: Personalized Video Summarization on the
Fly. In AAAI Conference on Artificial Intelligence,
2018.

G L Nemhauser and L A Wolsey. Best Algorithms for
Approximating the Maximum of a Submodular Set
Function. Mathematics of Operations Research, 3(3):
177–188, 1978.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodu-
lar set functions-I. Mathematical Programming, 14
(1):265–294, 1978.

Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan
Mitrovic, Amir Zandieh, Aidasadat Mousavifar, and
Ola Svensson. Beyond 1/2-Approximation for Sub-
modular Maximization on Massive Data Streams.
In International Conference on Machine Learning
(ICML), volume 9, 2018.



Alan Kuhnle

Algorithm 3 For each c ≥ 1, a single-pass algorithm with approximation ratio 1/c for SMCC if k = 1. The
query complexity is dn/ce+ c, memory complexity is O(c).
1: procedure QuickSingletonc(f, k)
2: Input: oracle f , cardinality constraint k
3: A← ∅, C ← ∅
4: for element e received do
5: C ← C + e
6: if |C| = c or stream has ended then
7: if f(C) > f(A) then
8: A← C
9: C ← ∅
10: return arg maxa∈A f(a)

A Additional Related Work

Online Algorithms Amore restrictive streaming model is the preemptive, online model proposed by Buchbinder
et al. (2014). In this setting, the algorithm receives elements one by one in an arbitrary order and must maintain
a competitive solution with respect to the optimal solution on elements seen so far; the algorithm is allowed to
discard elements that were previously chosen into the solution and must maintain a feasible solution (a set of
size at most k). Buchbinder et al. (2014) described a deterministic 1/4-competitive algorithm in this model that
requires O(kn) queries. Chan et al. (2017) improved the competitive ratio to 0.296 for a deterministic algorithm
in O(kn) queries; their ratio converges to ≈ 0.318 as k →∞. They also show that the ratio of 0.318 is optimal
in this online model. Our algorithms are not online in this sense, since they maintain an infeasible set of size
O(k log k) rather than a feasible set of size k and if c > 1, QuickStreamc requires additional processing at
termination of the stream. However, QuickStreamLargeKc requires no processing at the end of the stream
and does maintain a competitive ratio that converges to ≈ 0.316/c.

B Variants of QuickStreamc

In this section, we describe algorithms that are similar in design to QuickStreamc. In Section B.1, we describe
QuickSingletonc, designed for the case k = 1. Finally, in Section B.2, we describe QuickStreamLargeKc,
designed to have an improved ratio for k ≥ 8c/e.

Observe that Theorem 1 is a direct consequence of Theorems 3, 6, and 7.

B.1 The QuickSingletonc Algorithm

In this section, we describe the algorithm QuickSingletonc, a deterministic, single-pass algorithm that has
guarantees summarized in the following theorem. Full pseudocode is given in Alg. 3. After receipt of c elements
stored in buffer C, the algorithm evaluates f(C) and replaces A with C if f(C) > f(A). At termination, the
maximum singleton in A is returned.

Theorem 6. The algorithm QuickSingletonc is a deterministic, single-pass algorithm with ratio 1/c if k = 1,
query complexity dn/ce+ c, and memory complexity O(c).

Proof. Suppose k = 1. Observe that at termination of the algorithm any singleton u ∈ U satisifes f(u) ≤ f(A).
Further, at termination of the stream, the element a in A maximizing f is returned. Let b be an optimal singleton;
by submodularity and the fact |A| ≤ c, cf(a) ≥ f(A) ≥ f(b).

Memory complexity and query complexity are clear.

B.2 The QuickStreamLargeKc Algorithm

In this section, we describe algorithms, parameterized by c, that require dn/ce queries, have O (ck log(k)) memory
complexity, and have ratio that converges to (1− 1/e)/(1 + c) as k →∞. However, for small k, these algorithms
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Algorithm 4 For each c ≥ 1, a single-pass algorithm with approximation ratio(
1

1+c+1/(k3−1)

) (
1− 1/e− (2c)/(ke)− c2/(k2e)

)
if k ≥ 8c/e. The query complexity is dn/ce.

1: procedure QuickStreamLargeKc(f, k)
2: Input: oracle f , cardinality constraint k
3: A← ∅, A′ ← ∅, C ← ∅, j ← 0
4: for element e received do
5: C ← C + e
6: if |C| = c or stream has ended then
7: if f(A ∪ C)− f(A) ≥ cf(A)/k then
8: A← A ∪ C
9: j ← j + 1

10: if j > 6(k + 1) log2(k) then
11: A← {3(k + 1) log2(k) blocks most recently added to A}
12: j ← 3(k + 1) log2(k)

13: C ← ∅
14: A′ ← {k elements most recently added to A}
15: return A′

may not have any approximation ratio. We refer to these algorithms as QuickStreamLargeKc.

Full pseudocode for QuickStreamLargeKc is given in Alg. 4. The main differences with QuickStreamc are
1) a block C is added to A only if the gain exceeds cf(A)/k rather than f(A)/k as in QuickStreamc; (2) A′
keeps only the last k elements added, rather than the last k blocks; hence, there is no need to partition A′ at the
end of the algorithm. Instead, the set A′ is simply returned. The rest of the section proves the following theorem.
Theorem 7. The algorithm QuickStreamLargeKc is a single-pass, deterministic streaming algorithm with
approximation ratio (

1

1 + c+ 1/(k3 − 1)

)(
1− 1/e− (2c)/(ke)− c2/(k2e)

)
,

if k ≥ 8c/e, query complexity dn/ce, and memory complexity O(ck log(k)).

Proof. In addition to Claim 1 above, we need the following elementary fact about the number e:

Claim 4. For any real number x > 0, (1 + 1/x)x < e < (1 + 1/x)x+1.

We will actually show that QuickStreamLargeK maintains a competitive ratio with respect to the optimal
solution on the elements seen thus far; suppose m blocks have been received, let Ci denote the i-th block of
elements processed on line 7. Let OPTN denote the optimal solution to SMCC with input (f �N , k), where
N =

⋃m
i=1 Ci ⊆ U . Let Ai denote the value of set A immediately before processing the i-th block Ci, and let

Am+1 denote the value of A after processing all blocks. Finally, let A∗ denote
⋃m+1
i+1 Ai.

The following two lemmas have exactly analogous proofs to Lemmas 1 and 2 by replacing blocks for elements, 2
for `, and noting that (1 + c/k) ≥ (1 + 1/k). We provide the proofs for completeness.

Lemma 5. Suppose k > 1; let 1 ≤ i ≤ m. Then f(Ai) ≤ f(Ai+1).

Proof. If no deletion is made during the processing of block Ci, then the change in f(A) is clearly nonnegative.
So suppose deletion of set B from A occurs on line 11 during this iteration. Observe that Ai+1 = (Ai \B) ∪ Ci,
because the deletion is triggered by the addition of block Ci to Ai. In addition, at some iteration j < i of the for
loop, it holds that Aj = B. From the beginning of iteration j to the beginning of iteration i there have been
3(k+ 1) log2(k)− 1 ≥ 2(k+ 1) log2(k) additions of blocks and no deletions to A, which add precisely the elements
in (Ai \Aj).

It holds that

f (Ai \Aj)
(a)

≥ f (Ai)− f (Aj)
(b)

≥
(

1 +
1

k

)2(k+1) log k

· f(Aj)− f(Aj)
(c)

≥ (k2 − 1)f(Aj),
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where inequality (a) follows from submodularity and nonnegativity of f , inequality (b) follows from the fact that
each addition from Aj to Ai increases the value of f(A) by a factor of at least (1 + 1/k), and inequality (c) follows
from Claim 1. Therefore

f(Ai) ≤ f (Ai \Aj) + f (Aj) ≤
(

1 +
1

k2 − 1

)
f (Ai \Aj) . (3)

Next,

f ((Ai \Aj) ∪ Ci)− f (Ai \Aj)
(d)

≥ f (Ai ∪ Ci)− f (Ai)
(e)

≥ f (Ai) /k ≥ f (Ai \Aj) /k, (4)

where inequality (d) follows from submodularity, and inequality (e) is by the condition to add Ci to Ai on line 7.
Finally, using Inequalities (3) and (4) as indicated below, we have

f (Ai+1) = f (Ai \Aj ∪ Ci)
By (4)
≥

(
1 +

1

k

)
f (Ai \Aj)

By (3)
≥

1 + 1
k

1 + 1
k2−1

· f(Ai) ≥ f(Ai),

where the last inequality follows since k ≥ 2.

Lemma 6.

f (A∗) ≤
(

1 +
1

k3 − 1

)
f (Am+1) .

Proof. Observe that A∗ \ Am+1 may be written as the union of pairwise disjoint sets, each of which is size
3c(k + 1) log2(k) + 1 and was deleted on line 11 of Alg. 4. Suppose there were l sets deleted from A; write
A∗ \Am+1 = {Bi : 1 ≤ i ≤ l}, where each Bi is deleted on line 10, ordered such that i < j implies Bi was deleted
after Bj (the reverse order in which they were deleted); finally, let B0 = Am+1.

Claim 5. Let 0 ≤ i ≤ l. Then f
(
Bi
)
≥ k3f

(
Bi+1

)
.

Proof. Let Bi, Bi+1 ∈ B. There are at least 3(k + 1) log k + 1 blocks added to A and exactly one deletion event
during the period between starting when A = Bi+1 until A = Bi. Moreover, each addition except possibly one
(corresponding to the deletion event) increases f(A) by a factor of at least 1 + 1/k. Hence, by Lemma 5 and
Claim 1, f

(
Bi
)
≥ k3f

(
Bi+1

)
.

By Claim 5, for any 0 ≤ i ≤ l f (Am+1) ≥ k3if
(
Bi
)
. Thus, by submodularity and nonnegativity of f and the

sum of a geometric series,

f (A∗) ≤ f (A∗ \Am+1) + f (Am+1) ≤
m∑
i=0

f
(
Bi
)

≤ f (Am+1)

∞∑
i=0

k−3i

= f (Am+1)

(
1

1− k−3

)
.

The next lemma shows that f(Am+1) has a significant fraction of the optimal value.

Lemma 7.
(

1 + c+ 1
k3−1

)
f (Am+1) ≥ OPTN .

Proof. Let O ⊆ N be an optimal solution to of size k to SMCC. Let Co denote the block containing o ∈ O that
is considered for addition into A. Then by monotonicity and submodularity of f , the fact that if block Ci is not
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added to A, f (A ∪ Ci)− f (Ai) < cf (Ai) /k, and by Lemma 5, we have

f(O)− f (A∗) ≤ f (O ∪A∗)− f (A∗)

≤
∑

o∈O\A∗

f (A∗ ∪ {o})− f (A∗)

≤
∑

o∈O\A∗

f (Ao ∪ {o})− f (Ao)

≤
∑

o∈O\A∗

f (Ao ∪ Co)− f (Ao)

≤
∑

o∈O\A∗

cf (Ao) /k

≤
∑

o∈O\A∗

cf (Am+1) /k ≤ cf (Am+1) .

From here, the result follows from Lemma 6.

Recall that QuickStreamLargeKc returns the set A′, the last k elements added to A. The last portion of the
proof shows that f(A′) is a large fraction of the value of f(Am+1); this part of the proof departs from the proof
of Theorem 3 above.

Lemma 8. Let A′ have its value after processing block Cm. Then

f (Am+1) ≤
(

e

e− (1 + c/k)2

)
f (A′) .

.

Proof. If |Am+1| ≤ k, A′ = Am+1, and the lemma holds. Suppose |Am+1| > k. Let A′ = {a′1, . . . , a′k}, in the
order these elements were added to Am+1. Let A′i = {a′1, . . . , a′i}, A′0 = ∅. Observe that by the condition on the
marginal gain the addition of each block to A,

f(Am+1) ≥ (1 + c/k)bk/ccf (Am+1 \A′) ≥
e

(1 + c/k)2
f (Am+1 \A′) ,

by Claim 4. Hence, by submodularity and nonnegativity of f ,

f(A′) ≥ f(Am+1)− f (Am+1 \A′) ≥
(

e

(1 + c/k)2
− 1

)
f (Am+1 \A′) . (5)

From (5), we have

f (Am+1) ≤ f (Am+1 \A′) + f (A′) ≤

((
e

(1 + c/k)2
− 1

)−1
+ 1

)
f (A′)

=

(
e

e− (1 + c/k)2

)
f (A′) .

Since k ≥ 8c/e, Lemmas 7 and 8 show that the set A′ of QuickStreamLargeKc maintains f(A′) ≥(
1

1+c+1/(k3−1)

) (
1− 1/e− (2c)/(ke)− c2/(k2e)

)
OPTN .
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Figure 3: Additional empirical results on the maxcover application on as-Skitter.

C Additional Empirical Evaluation

C.1 Applications and Datasets

The maximum cover objective is defined as follows. Suppose G = (V,E) is a graph. For any set S ⊆ V , let SI be
the set of all vertices incident with any edge incident with a vertex in S. Then, define

f(S) =
∣∣SI ∣∣ .

This objective is monotone and submodular.

The revenue maximization application uses the concave graph model introduced in Hartline et al. (2008). Given a
social network G = (V,E) with nonnegative edge weights, each user u ∈ V is associated with a non-negative,
concave function fu : R+ → R+. In Hartline et al. (2008), optimal marketing strategies are defined, for which
each user u ∈ V has an associated revenue function Ru(S), which depends on the set S of players who have
bought the item. Thus, the total revenue from set S is

f(S) =
∑
u∈V

Ru(S).

For this evaluation, we choose Ru(S) =
(∑

v∈S wuv
)αu where αu is chosen independently for each u uniformly in

(0, 1). The revenue maximization objective f is monotone and submodular.

Network topologies are used from Stanford Large Network Dataset Collection (Leskovec and Krevl, 2020):
ca-Astro (n = 18772), a collaboration network of Arxiv Astro Physics; ego-Facebook (n = 4039); and as-Skitter
(n = 1696415).

C.2 Additional Results

Additional results from the maxcover application are shown in Fig. 3. Results from the revenue maximization
application are shown in Figs. 4 and 5. These results are qualitatively similar to the results from maximum
coverage discussed in Section 4.
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Figure 4: Additional empirical results for the revenue maximization application on soc-Facebook.
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Figure 5: Additional empirical results for the revenue maximization application on ca-AstroPh.


