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A Detailed setup

In Appendix B we will prove the claims in the body of the paper. This requires us to establish some additional
notation, which we do in Appendix A.1. Most of these symbols and definitions were used in the original
FALCON paper [Simchi-Levi and Xu, 2020]. The results in Appendix C use notation and definitions from
[Koltchinskii, 2011] and are stated within Appendix C. Appendix A.2 states the main assumption used in
Theorem 2, and Appendix A.3 describes the general version of Epsilon-FALCON.

A.1 Preliminaries

To start, let Γt denote the set of observed data points up to and including time t. That is

Γt := {(xs, as, rs(as))}ts=1 (12)

Recalling the text, an “action selection kernel” p gives us the probability p(a|x) of selecting an arm a given
a context x, and a “policy” is a deterministic mapping from contexts to actions. Let Ψ = AX denote the
universal policy space containing all possible policies. Following Lemma 3 in [Simchi-Levi and Xu, 2020],
given any action selection kernel p we can construct a unique product probability measure on Ψ, given by:

Qp(π) :=
∏
x∈X

p(π(x)|x), (13)

and it satisfies the following property

p(a|x) =
∑
π∈Ψ

I{π(x) = a}Qp(π). (14)

Property (14) establishes a duality between action selection kernels, which are used in practice in the algo-
rithm implementation, and the probability distribution (13), which is a theoretical object that can be used
to simplify the proofs below. For short-hand, we let Qm ≡ Qpm denote the product probability measure on
Ψ induced by the action selection kernel pm defined in (6).

Now, for any action selection kernel p and any policy π, we let V (p, π) denote the expected inverse probability.

V (p, π) := E
x∼DX

[
1

p(π(x)|x)

]
(15)

One can interpret (15) as a measure of average divergence between p(·|x) and π(x).
[Simchi-Levi and Xu, 2020] refer to this as the decisional divergence between the randomized policy
Qp and deterministic policy π.

Given an outcome model f and policy π, we can define the expected instantaneous reward of the policy π
with respect to the model f as

Rf (π) := E
x∼DX

[f(x, π(x))]. (16)

When there is no possibility of confusion, we will write R(π) to mean Rf∗(π), the reward with respect to
the true model f∗.. The policy πf induced by the model f is defined by setting πf (x) := arg maxa f(x, a)
for every x. Note that this policy has the highest instantaneous reward with respect to the model f , that is
πf = arg maxπ∈ΨRf (π). We can also define the expected instantaneous regret with respect to the outcome
model f as

Regf (π) := E
x∼DX

[f(x, πf (x))− f(x, π(x))]. (17)

When there is no possibility of confusion, we will write Reg(π) to mean Regf∗(π), the regret with respect
to the true model f∗.

Recall that we define f̂∗ as the best in-class approximation to the true outcome model when actions are
sampled uniformly at random. Also recall that we define b as the approximation error or mean squared
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difference between f̂∗ and f∗ when actions are sampled uniformly at random. We now define B to be the
largest mean squared difference between f̂∗ and f∗ under any action selection kernel. That is, 7

B := max
p

E
x∼DX

E
a∼p(·|x)

[(f̂∗(x, a)− f∗(x, a))2] = E
x∼DX

[max
a

(f̂∗(x, a)− f∗(x, a))2]. (18)

A.2 Main assumption

Assumption 1. Suppose that our outcome model F satisfies the following property. There exists constants
C > 0, ρ ∈ (0, 1], ρ′ ∈ [0,∞) such that for any action selection kernel p, any convex subset F ′ ⊂ F ,
any natural number n, any ζ ∈ (0, 1), and any η > C lnρ

′
(n) ln(1/ζ)comp(F)/nρ, the following holds with

probability at least 1− ζ:

F ′(η, p) ⊆ F̂ ′(3η/2, S̃) and F̂ ′(η, S̃) ⊆ F ′(2η, p), (19)

where the η-minimal set is defined as

F ′(η, p) :=

{
f ∈ F ′

∣∣∣∣ E
(xi,ri)∼D

E
ai∼p(·|x)

[(f(xi, ai)− ri(ai))2] ≤ min
f̃∈F ′

E
(xi,ri)∼D

E
ai∼p(·|x)

[(f̃(xi, ai)− ri(ai))2] + η

}
,

(20)
and the empirical η-minimal set is defined as

F̂ ′(η, S̃) :=

{
f ∈ F

∣∣∣∣ 1

n

n∑
i=1

(f(xi, ai)− ri(ai))2 ≤ min
f̃∈F ′

1

n

n∑
i=1

(f̃(xi, ai)− ri(ai))2 + η

}
. (21)

and where the data S̃ ≡ (xi, ai, ri(ai))
n
i=1 are drawn independently and identically from xi ∼ DX , ai|xi ∼

p(·|xi) and ri ∼ Dri|xi,ai , and the expectations are taken with respect to these distributions.

A.3 Algorithm

The general version of our algorithm for general classes of outcome models F requires three modifications.
Note the constants C, ρ, and ρ′ mentioned below are rate terms from Assumption 1, C3 := 1/(4C5) (see
Lemma 8), and C5 := 2C × 4ρ × (2 + ln(12)) (see Lemma 7).

First, the epoch schedule needs to satisfy τ0 = 0, τ1 ≥ 4 and for subsequent epochs we set τm+1 = 2τm.

Second, the parameter γt is set to γ1 = 1 and

γm =

√
C3K(τm−1 − τm−2)ρ

lnρ
′
(τm−1 − τm−2) ln((m− 1)/δ)comp(F)

. (22)

Third and finally, the constraint set F ′m consists of the set of outcome models f ∈ F such that

F ′m :=

f ∈ F
∣∣∣∣ 1

|S′m|
∑
S′m

(fm+1(x, a)− r(a))2 ≤ αm +
C1 lnρ

′
(|S′m|) ln(1/δ′)comp(F)

|S′m|ρ

 , (23)

where αm := 1
|S′m|

ming∈F
∑
S′m

(g(x, a)− r(a))2, δ′ = δ/(12m2), and C1 = 3C/2 (see Lemma 7).

7Lemma 1 bounds B with Kb.
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Algorithm 1 Epsilon-FALCON
input: epoch schedule τ1 ≥ 4, confidence parameter δ, and forced exploration parameter ε.
1: Set τ0 = 0, and τm+1 = 2τm for all m ≥ 1.
2: Let f̂1 ≡ 0.
3: for epoch m = 1, 2, . . . do
4: Let γm =

√
C3K(τm−1−τm−2)ρ

lnρ
′
(τm−1−τm−2) ln((m−1)/δ)comp(F)

(for epoch 1, γ1 = 1).
5: for round t = τm−1 + 1, . . . , τm − dε(τm − τm−1)e do
6: Observe context xt, let ât = arg maxa∈A f̂m(xt, a), and define:

pt(a) :=

{
1

K+γm(f̂m(xt,ât)−f̂m(xt,a))
, for all a 6= ât

1−
∑
a′ 6=ât p(a

′|x), for a = ât

7: Sample at ∼ pt(·) and observe rt(at).
8: end for
9: for round t = τm − dε(τm − τm−1)e+ 1, . . . , τm do
10: Observe context xt, sample at uniformly at random from A, and observe rt(at).
11: end for
12: Let:

Sm = {(xt, at, rt(at))}τm−dε(τm−τm−1)e
t=τm−1+1

S′m = {(xt, at, rt(at))}τmt=τm−dε(τm−τm−1)e+1.

13: Compute f̂m+1 by solving

min
f∈F

∑
(x,a,r(a))∈Sm

(f(x, a)− r(a))2

s.t. f ∈ F ′m.
(24)

where F ′m is defined as in (23).
14: end for

B Proofs

The goal of this section is to present our proof of Theorem 2. Section B.1 gives a brief overview of the
argument. Section A.2 restates the main assumption. Sections B.2-B.8 prove auxiliary Lemmas, and finally
Section B.9 concludes with a proof of the theorem. A small, more technical, portion of the argument is
deferred to Section C.

B.1 Overview of the proof for Theorem 2

For convenience, here is an informal, abridged version of the argument used in the proofs. We hope the
reader will find it useful to navigate the results that follow.

• First of all, during the passive phase we always incur εT regret. For the remainder, let’s consider the
regret incurred during periods occurring in the active phase of each epoch.

• The cumulative regret incurred across the active phases will be close to the sum of its conditional
expectations at each period,∑

t∈Tactive

rt(π
∗(x))− rt(at) ≈

∑
t∈Tactive

E
xt,rt,at

[rt(π
∗(x))− rt(at)|Γm(t)−1] w.h.p.,

so we only need to bound these conditional expectations.
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• By Lemma 3, the conditional expectation of instantaneous regret at period t in the active phase of epoch
m can be rewritten in terms of the probability measure Qm over policies,

E
xt,rt,at

[rt(π
∗(x))− rt(at)|Γm(t)−1] =

∑
π∈Ψ

Qm(π)Regf∗(π).

• By design, our method will produce a sequence of actions such that the estimated regret Regf̂m(π) is
small for the policies that receive high probability under Qm (see Lemma 4). In order to show that the
expected regret Regf∗(π) is also small, we need to show that the two are “close”, at least for policies that
receive high probability under Qm.

• Naturally the difference between expected and estimated regret depends on how closely the sequence
f̂m approximates f∗. In Lemma 7, we characterize this approximation as a function of two objects:
the expected distance between f̂m and the best in-class approximation f̂∗, and the distance between f̂∗
and the true model f∗. The former decreases at a rate characterized by 1/γm due to properties of our
constrained regression problem. The latter is upper bounded by B. Therefore,

E
x∼DX

E
a∼Unif(A)

[(f̂m+1(x, a)− f̂∗(x, a))2] .
1

εργm

E
x∼DX

E
a∼pm(·|x)

[(f̂m+1(x, a)− f∗(x, a))2] . B +
1

γm
.

• In Lemma 8, we extend these results to bound on the approximation error for any policy π,∣∣∣∣ E
x∼DX

[f̂m+1(x, π(x))− f∗(x, π(x))]

∣∣∣∣ .√V (pm, π)

(
√
B +

√
K

γm

)
.

• Lemmas 9 and 10 characterize the behavior of the object V (pm, π). In Lemma 11 we use these results
to show that estimated and expected regret satisfy the following relation, which formalized the notion
of “closeness” between the two:

Regf∗(π) . Regf̂m(π) +
K

γm
+

√
KB√
ερ

+
√
V (pm, π)B

Regf̂m(π) . Reg(π) +
K

γm
+

√
KB√
ερ

+
√
V (pm, π)B.

• Lemma 12 concludes that the average expected regret suffered during any point in the active phase is
bounded by ∑

π∈Ψ

Qm(π)Reg(π) .
K

γm
+

√
KB√
ερ
.

• In subsection B.9 we put all of these results together to prove Theorem 2.

B.2 Bounds on best predictor

In this subsection we provide basic bounds on terms involving the best predictor. We start by bounding
the empirical mean square error between the best predictor (f̂∗) and the true model (f∗) under any action
selection kernel, see Lemma 1. We then use this to bound the regret of the policy induced by the best
predictor (πf̂∗), see Lemma 2. Hence indicating that this policy is a reasonable policy to try to converge to.

Lemma 1 (Bounding B). For any action selection kernel p, we then have that:

E
x∼DX

E
a∼p(·|x)

[(f̂∗(x, a)− f∗(x, a))2] ≤ B ≤ Kb.
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Proof. We get the first inequality from the definition of B:

E
x∼DX

E
a∼p(·|x)

[(f̂∗(x, a)− f∗(x, a))2] ≤ max
p′

E
x∼DX

E
a∼p′(·|x)

[(f̂∗(x, a)− f∗(x, a))2] = B.

For any context x ∈ X , note that:

E
a∼p′(·|x)

[(f̂∗(x, a)− f∗(x, a))2] ≤
∑
a∈A

(f̂∗(x, a)− f∗(x, a))2.

Now, taking expectations on both sides gives us the second inequality of Lemma 1:

B ≤
∑
a∈A

E
x∼DX

[(f̂∗(x, a)− f∗(x, a))2] = Kb.

Lemma 2 (Regret of the policy induced by the best predictor). We have the following bound on the regret
of πf̂∗ :

Reg(πf̂∗) := R(πf∗)−R(πf̂∗) ≤ 2
√
B.

Proof. Note that, for any policy π, we have:

|Rf̂∗(π)−R(π)|2 = | E
x∼DX

[f̂∗(x, π(x))− f∗(x, π(x))]|2 ≤ E
x∼DX

[(f̂∗(x, π(x))− f∗(x, π(x)))2] ≤ B.

Where the last inequality follows from Lemma 1. Hence for any policy π, we have that:

R(πf̂∗) ≥ Rf̂∗(πf̂∗)−
√
B ≥ Rf̂∗(π)−

√
B ≥ R(π)− 2

√
B.

In particular, this implies that Reg(πf̂∗) := R(πf∗)−R(πf̂∗) ≤ 2
√
B.

B.3 Properties of the action selection kernel

In this subsection, we explore properties of the algorithm that directly follow from the definitions in Ap-
pendix A and from the form of the action kernel used in the active phase of Epsilon-FALCON. For this
reason, all the properties stated here hold true for the Falcon algorithm as well. Except for Lemma 5 and
the lower bound in Lemma 6, all Lemmas in this subsection have been proved for Falcon and can be found
in [Simchi-Levi and Xu, 2020]. We state and prove these Lemmas that we use for completeness and to
show that they hold for Epsilon-FALCONas well. We start with Lemma 3 which shows that the expected
instantanious regret is equal to the regret of the randomized policy Qm.

Lemma 3 (Conditional expected reward). For any epoch m ≥ 1 and time-step t ≥ 1 in the active phase of
epoch m, we have:

E
xt,rt,at

[rt(π
∗(x))− rt(at)|Γt−1] =

∑
π∈Ψ

Qm(π)Reg(π).

Proof. Consider any epochm ≥ 1 and time-step t ≥ 1 in the active phase of epochm, then from Equation (14)
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we have:

E
xt,rt,at

[rt(π
∗(x))− rt(at)|Γt−1]

= E
x∼DX ,a∼pm(·|x)

[f∗(x, π∗))− f∗(x, a)]

= E
x∼DX

[∑
a∈A

pm(a|x)(f∗(x, π∗))− f∗(x, a))

]

= E
x∼DX

[∑
a∈A

∑
π∈Ψ

I(π(x) = a)Qm(π)(f∗(x, π∗))− f∗(x, a))

]

=
∑
π∈Ψ

Qm(π) E
x∼DX

[
(f∗(x, π∗))− f∗(x, π(x)))

]
=
∑
π∈Ψ

Qm(π)Reg(π).

Lemma 4 states a key bound on the estimated regret of the randomized policy Qm.

Lemma 4 (Action selection kernel has low estimated regret). For any epoch m ≥ 1, we have:

∑
π∈Ψ

Qm(π)Regf̂m(π) ≤ K

γm
.

Proof. Note that:

∑
π∈Ψ

Qm(π)Regf̂m(π) =
∑
π∈Ψ

Qm(π) E
x∼DX

[
f̂m(x, πf̂m(x))− f̂m(x, π(x))

]
= E
x∼DX

[∑
π∈Ψ

Qm(π)
(
f̂m(x, πf̂m(x))− f̂m(x, π(x))

)]
= E
x∼DX

[∑
a∈A

∑
π∈Ψ

I(π(x) = a)Qm(π)
(
f̂m(x, πf̂m(x))− f̂m(x, a)

)]
= E
x∼DX

[∑
a∈A

pm(a|x)
(
f̂m(x, πf̂m(x))− f̂m(x, a)

)]

= E
x∼DX

[∑
a∈A

(
f̂m(x, πf̂m(x))− f̂m(x, a)

)
K + γm

(
f̂m(x, πf̂m(x))− f̂m(x, a)

)] ≤ K

γm
.

Lemma 5 is a direct concequence of Jensen’s inequality and helps us in the derivation of Lemma 12, which
bounds the true regret of the randomized policy Qm.

Lemma 5 (An implication of inherent duality between pm and Qm). For any epoch m ≥ 1, we have:∑
π∈Ψ

Qm(π)
√
V (pm, π) ≤

√
K.
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Proof. Note that:∑
π∈Ψ

Qm(π)
√
V (pm, π) ≤

√∑
π∈Ψ

Qm(π)V (pm, π) =

√∑
π∈Ψ

Qm(π) E
x∼DX

[
1

pm(π(x)|x)

]

=

√
E

x∼DX

[∑
π∈Ψ

Qm(π)
∑
a∈A

I(π(x) = a)

pm(a|x)

]
=

√√√√ E
x∼DX

[∑
a∈A

∑
π∈Ψ I(π(x) = a)Qm(π)

pm(a|x)

]

=

√
E

x∼DX

[∑
a∈A

pm(a|x)

pm(a|x)

]
=
√
K.

Where the first inequality is an application of Jensen’s inequality, and the other equalities are straight
forward.

For any policy π, Lemma 6 provides key bounds on V (pm, π). These bounds help us understand the average
divergence between the action distribution pm(·|x) and action selected by the policy π(x).
Lemma 6 (Bounds on expected inverse probability). For all policies π ∈ Ψ and epochs m ≥ 1, we have:

γm E
x∼DX

[(
f̂m(x, πf̂m(x))− f̂m(x, π(x))

)]
≤ V (pm, π) ≤ K + γm E

x∼DX

[(
f̂m(x, πf̂m(x))− f̂m(x, π(x))

)]
Proof. Consider any policy π ∈ Ψ and epoch m ≥ 1. For any context x ∈ X and action a ∈ A \ {πf̂m(x)},
from our choice for pm, we get:

1

pm(a|x)
= K + γm(f̂m(x, πf̂m(x))− f̂m(x, a)).

For the action a = πf̂m(x), we have:

0 = γm

[(
f̂m(x, πf̂m(x))− f̂m(x, a)

)]
≤ 1

pm(a|x)
=

1

1−
∑
a′ 6=a

1

K+γm

(
f̂m(x,πf̂m (x))−f̂m(x,a′)

) ≤ K
In particular, putting the above inequality together, we get:

γm

[(
f̂m(x, πf̂m(x))− f̂m(x, π(x))

)]
≤ 1

pm(π(x)|x)
≤ K + γm

[(
f̂m(x, πf̂m(x))− f̂m(x, π(x))

)]
.

The Lemma now follows by taking expectation over x ∼ DX .

B.4 Constrained regression oracle guarantees

Lemma 7 (Guarantees on the constrained regression oracle). Suppose Assumption 1 holds and suppose
ε < 0.5. Then there exists positive constants C4 and C5 such that with probability at least 1 − δ/2, the
following holds for all epoch m ≥ 1:

E
x∼DX

E
a∼Unif(A)

[(f̂m+1(x, a)− f̂∗(x, a))2] ≤ C4 lnρ
′
(τm − τm−1) ln(m/δ)comp(F)

(ε(τm − τm−1))ρ
.

E
x∼DX

E
a∼pm(·|x)

[(f̂m+1(x, a)− f∗(x, a))2] ≤ B +
C5 lnρ

′
(τm − τm−1) ln(m/δ)comp(F)

(τm − τm−1)ρ
.

Proof. Let F ′ denote the set of estimators in the constraint set at the end of epoch m. Let δ′ = δ/(12m2).
Since f̂m+1 ∈ F ′, we have:

1

|S′m|
∑

(x,a,r(a))∈S′m

(f̂m+1(x, a)− r(a))2 − 1

|S′m|
min
g∈F

∑
(x,a,r(a))∈S′m

(g(x, a)− r(a))2

≤ C1 lnρ
′
(|S′m|) ln(1/δ′)comp(F)

|S′m|ρ
.
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The above inequality bounds the empirical excess risk for f̂m+1 with respect to the empirical data S′m and the
set of estimators in F . Now note that S′m is generated by sampling actions uniformly at random, and note
that F is a convex set. Hence from Assumption 1, we get that for some universal constant L1 = 2 max{C,C1}
8, with probability at least 1− δ′, we have:

E
(x,r)∼D

E
a∼Unif(A)

[(f̂m+1(x, a)− r(a))2]− E
(x,r)∼D

E
a∼Unif(A)

[(f̂∗(x, a)− r(a))2]

≤ L1 lnρ
′
(|S′m|) ln(1/δ′)comp(F)

|S′m|ρ
.

(25)

Since F is a convex class of functions, Lemma 5.1 in [Koltchinskii, 2011] gives us that:

E
x∼DX

E
a∼Unif(A)

[(f̂m+1(x, a)− f̂∗(x, a))2]

≤ 2 E
(x,r)∼D

E
a∼Unif(A)

[(f̂m+1(x, a)− r(a))2 − (f̂∗(x, a)− r(a))2].
(26)

Therefore, putting everything together (see eq. (25) and eq. (26)), with probability at least 1− δ′ we have:

E
x∼DX

E
a∼Unif(A)

[(f̂m+1(x, a)− f̂∗(x, a))2] ≤ 2L1 lnρ
′
(|S′m|) ln(1/δ′)comp(F)

|S′m|ρ
.

Hence the first inequality in Lemma 7 follows from noting that |S′m| = dε(τm − τm−1)e, and choosing
C4 = 2L1(2 + ln(12)).

Note that F is convex, f̂∗ has no population excess risk with respect to the distribution generated from
picking actions uniformly at random among estimators in F , and note that S′m is generated by sampling
actions uniformly at random. Hence from Assumption 1, with probability at least 1− δ′, we get that:

1

|S′m|
∑

(x,a,r(a))∈S′m

(f̂∗(x, a)− r(a))2 − 1

|S′m|
min
g∈F

∑
(x,a,r(a))∈S′m

(g(x, a)− r(a))2

≤ (3C/2) lnρ
′
(|S′m|) ln(1/δ′)comp(F)

|S′m|ρ
.

Therefore by choosing C1 ≥ 3C/2, with probability at least 1− δ′, we get that f̂∗ ∈ F ′. Now recall that:

f̂m+1 ∈ arg min
f∈F ′

1

|Sm|
∑

(x,a,r(a))∈Sm

(f(x, a)− r(a))2

That is, f̂m+1 has no empirical excess risk with respect to the empirical data S′m among estimators in F ′.
Also note that F ′ is convex subset of F , and Sm is generated by sampling actions according to the action
selection kernel pm. Hence from Assumption 1, with probability at least 1− δ′, we get that:

E
(x,r)∼D

E
a∼pm(·|x)

[(f̂m+1(x, a)− r(a))2]− min
f∈F ′

E
(x,r)∼D

E
a∼pm(·|x)

[(f(x, a)− r(a))2]

≤ 2C lnρ
′
(|Sm|) ln(1/δ′)comp(F)

|Sm|ρ
.

(27)

Hence by taking union bound so that eq. (27) holds and f̂∗ ∈ F ′, with probability at least 1− 2δ′, we have:

E
(x,r)∼D

E
a∼pm(·|x)

[(f̂m+1(x, a)− r(a))2]− E
(x,r)∼D

E
a∼pm(·|x)

[(f̂∗(x, a)− r(a))2]

≤ 2C lnρ
′
(|Sm|) ln(1/δ′)comp(F)

|Sm|ρ
.

8Where C is the constant from Assumption 1.
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Recall that B is the worst case excess risk for f̂∗ under any kernel. Therefore, with probability at least
1− 2δ′, we have:

E
x∼DX

E
a∼pm(·|x)

[(f̂m+1(x, a)− f∗(x, a))2]

= E
(x,r)∼D

E
a∼pm(·|x)

[(f̂m+1(x, a)− r(a))2 − (f∗(x, a)− r(a))2]

≤ E
(x,r)∼D

E
a∼pm(·|x)

[(f̂∗(x, a)− r(a))2 − (f∗(x, a)− r(a))2] +
2C lnρ

′
(|Sm|) ln(1/δ′)comp(F)

|Sm|ρ

= E
x∼DX

E
a∼pm(·|x)

[(f̂∗(x, a)− f∗(x, a))2] +
2C lnρ

′
(|Sm|) ln(1/δ′)comp(F)

|Sm|ρ

≤ B +
2C lnρ

′
(|Sm|) ln(1/δ′)comp(F)

|Sm|ρ
.

For any epoch m ≥ 1, note that τm − τm−1 ≥ τ1 ≥ 4. Therefore since ε < 0.5, we get that:

|Sm| = τm − τm−1 − dε(τm − τm−1)e ≥ 1

4
(τm − τm−1).

Hence the second inequality in Lemma 7 follows from choosing an appropriate value for C5 = 2C × 4ρ ×
(2 + ln(12)). Taking union bound, we finally note that both inequalities in lemma 7 hold for all epochs with
probability at least:

1−
∞∑
m=1

3
δ

12m2
≥ 1− δ(π2/6)

4
≥ 1− δ/2.

Additional notation For compactness of notation, define the following event:

W :=

{
∀m ≥ 1, E

x∼DX
E

a∼Unif(A)
[(f̂m+1(x, a)− f̂∗(x, a))2] ≤ C4 lnρ

′
(τm − τm−1) ln(m/δ)comp(F)

(ε(τm − τm−1))ρ
,

E
x∼DX

E
a∼pm(·|x)

[(f̂m+1(x, a)− f∗(x, a))2] ≤ B +
C5 lnρ

′
(τm − τm−1) ln(m/δ)comp(F)

(τm − τm−1)ρ

}
,

(28)

for two constants C4 and C5 that were defined in Lemma 7.

B.5 Bounding prediction error of implicit rewards

For any policy, Lemma 8 bounds the prediction error of implicit reward estimate of the policy at every epoch.
This Lemma and its proof are similar to Lemma 7 in [Simchi-Levi and Xu, 2020].

Lemma 8 (Accuracy of implicit policy estimate). Suppose C3 ≤ 1/(4C5) and suppose the event W from
(28) holds. Then, for all policies π and epoch m ≥ 1, we have:

|Rf̂m+1
(π)−R(π)| ≤

√
V (pm, π)

√
B +

√
V (pm, π)

√
K

2γm+1
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Proof. For any policy π and epoch m ≥ 1, note that:

|Rf̂m+1
(π)−R(π)|2

≤
(

E
x∼DX

[∣∣∣f̂m+1(x, π(x))− f∗(x, π(x))
∣∣∣])2

=

(
E

x∼DX

[√
1

pm(π(x)|x)
pm(π(x)|x)

(
f̂m+1(x, π(x))− f∗(x, π(x))

)2
])2

≤

(
E

x∼DX

[√
1

pm(π(x)|x)
E

a∼pm(·|x)

[
f̂m+1(x, a)− f∗(x, a)

]2])2

≤ E
x∼DX

[
1

pm(π(x)|x)

]
E

x∼DX
E

a∼pm(·|x)

[(
f̂m+1(x, a)− f∗(x, a)

)2]
≤V (pm, π)

(
B +

C5 lnρ
′
(τm − τm−1) ln(1/δ′)comp(F)

(τm − τm−1)ρ

)
.

The first inequality follows from Jensen’s inequality, the second inequality is straight forward, the third
inequality follows from Cauchy-Schwarz inequality, and the last inequality follows from assuming that W
from (28) holds. Now from the sub-additive property of square-root, we get:

|Rf̂m+1
(π)−R(π)| ≤

√
V (pm, π)

(√
B +

√
C5 lnρ

′
(τm − τm−1) ln(m/δ)comp(F)

(τm − τm−1)ρ

)
≤
√
V (pm, π)

√
B +

√
V (pm, π)

√
K

2γm+1
.

Where the last inequality follows from the choice of γm+1 and from assuming that C3 ≤ 1/(4C5).

B.6 Bounding decisional divergence

At any epoch m, Lemma 9 bounds the decisional divergence between the active policy at that epoch (Qm)
and the policy induced by the best estimator (πf̂∗). This implies that even as the active policy is less
explorative, Qm is not very far from πf̂∗ and hence eventually converges to it.

Lemma 9 (Action selection kernels are always close to target policy). Suppose the event W from (28) holds.
Then there exists a positive constant C6 such that, for any epoch m ≥ 1, we have:

V (pm, πf̂∗) ≤
C6K√
ερ

Proof. Since the action selection kernel p1(·|x) draws actions uniformly at random for all x ∈ X , we have
that V (p1, πf̂∗) = K. Hence, by choosing C6 ≥ 1, we get that V (p1, πf̂∗) ≤ C6K/

√
ερ. Now consider any

epoch m ≥ 2. Note that from the definition of πf̂∗ , for any context x ∈ X we get:

f̂∗(x, πf̂∗(x)) = max
a∈A

f̂∗(x, a) ≥ f̂∗(x, πf̂m(x)).

Hence from the above inequality, for any context x ∈ X we get:

f̂m(x, πf̂m(x))− f̂m(x, πf̂∗(x))

=
(
f̂m(x, πf̂m(x))− f̂∗(x, πf̂m(x))

)
+
(
f̂∗(x, πf̂m(x))− f̂m(x, πf̂∗(x))

)
≤
(
f̂m(x, πf̂m(x))− f̂∗(x, πf̂m(x))

)
+
(
f̂∗(x, πf̂∗(x))− f̂m(x, πf̂∗(x))

)
≤
∣∣f̂m(x, πf̂m(x))− f̂∗(x, πf̂m(x))

∣∣+
∣∣f̂∗(x, πf̂∗(x))− f̂m(x, πf̂∗(x))

∣∣
≤ 2 max

a∈A

∣∣f̂∗(x, a)− f̂m(x, a)
∣∣.
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Now from Lemma 6, the above inequality, and Jensen’s inequality, we get:

V (pm, πf̂∗) ≤ E
x∼X

[
K + γm

(
f̂m(x, πf̂m(x))− f̂m(x, πf̂∗(x))

)]
≤ K + 2γm E

x∼X

[
max
a∈A

∣∣f̂∗(x, a)− f̂m(x, a)
∣∣]

≤ K + 2γm

√
E

x∼X

[
max
a∈A

∣∣f̂∗(x, a)− f̂m(x, a)
∣∣2]

≤ K + 2γm

√∑
a∈A

E
x∼X

[(
f̂m(x, a)− f̂∗(x, a)

)2]
.

Now let C6 = 1 + 2
√
C3C4. From the above inequality, we further get:

V (pm, πf̂∗) ≤ K + 2γm

√∑
a∈A

E
x∼X

[(
f̂m(x, a)− f̂∗(x, a)

)2]

≤ K + 2γm

√
K
C4 lnρ

′
(τm−1 − τm−2) ln((m− 1)/δ)comp(F)

(ε(τm−1 − τm−2))ρ

= K + 2K

√
C3C4

ερ
≤ C6K√

ερ
.

Where the second inequality follows from the assumption thatW holds. And the last inequality follows from
our choice of C6.

Lemma 10 shows that for any policy π and epoch m, if the decisional divergence between Qm and π was
large, then the decisional divergence between Qm+1 and π must also be large. Hence the Lemma shows that
the active phase of Epsilon-FALCON stops exploring in a stable manner.

Lemma 10 (Do not pick up policies that you drop). Suppose the eventW defined in (28) holds, and δ ≤ 0.5.
Then there exists a positive constant C7 such that, for all policies π and epochs m, we have:

V (pm, π) ≤ C7K√
ερ

+ V (pm+1, π).

Proof. Consider any policy π. Since the action selection kernel p1(·|x) draws actions uniformly at random
for all x, we have that V (p1, π) = K. Hence, by choosing C7 ≥ 1, we get that V (p1, , π) ≤ C7K√

ερ
+ V (p2, π).

Now consider any epoch m ≥ 2. For any context x ∈ X , we get:

f̂m+1(x, πf̂m+1
(x)) = max

a∈A
f̂m+1(x, a) ≥

{
f̂m+1(x, πf̂m(x))

f̂m+1(x, π(x)).

From Lemma 6, the fact that γm+1 ≥ γm, and the above inequality, we get:

V (pm, π)−K − V (pm+1, π)

≤ γm E
x∼DX

[f̂m(x, πf̂m(x))− f̂m(x, π(x))]− γm+1 E
x∼DX

[f̂m+1(x, πf̂m+1
(x))− f̂m+1(x, π(x))]

≤ γm E
x∼DX

[(f̂m(x, πf̂m(x))− f̂m+1(x, πf̂m+1
(x))) + (f̂m+1(x, π(x))− f̂m(x, π(x)))]

≤ γm E
x∼DX

[(f̂m(x, πf̂m(x))− f̂m+1(x, πf̂m(x))) + (f̂m+1(x, π(x))− f̂m(x, π(x)))]

≤ 2γm E
x∼DX

[
max
a
|f̂m+1(x, a)− f̂m(x, a)|

]
.

(29)
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Also note that from Jensen’s inequality, we get:

E
x∼DX

[
max
a
|f̂m+1(x, a)− f̂m(x, a)|

]
≤
√

E
x∼DX

[
max
a
|f̂m+1(x, a)− f̂m(x, a)|2

]
≤
√∑

a

E
x∼DX

[
(f̂m+1(x, a)− f̂m(x, a))2

]
=

√
K E

x∼DX
E

a∼Unif(A)

[
(f̂m+1(x, a)− f̂m(x, a))2

]
≤
√

2K E
x∼DX

E
a∼Unif(A)

[
(f̂m+1(x, a)− f̂∗(x, a))2 + (f̂∗(x, a)− f̂m(x, a))2

]
≤

√
4KC4 lnρ

′
(τm − τm−1) ln(m/δ)comp(F)

(ε(τm−1 − τm−2))ρ
.

(30)

The second last inequality follows from the identity that for any two real numbers u, v, (u+v)2 ≤ 2(u2 +v2).
The last inequality follows from the assumption that W holds, the fact that m ≥ m − 1, and the fact that
epoch lengths are non-decreasing (i.e. τm − τm−1 ≥ τm−1 − τm−1). Now, by combining Equation (29) and
Equation (30), we get:

V (pm, π) ≤ V (pm+1, π) +K + 4γm

√
KC4 lnρ

′
(τm − τm−1) ln(m/δ)comp(F)

(ε(τm−1 − τm−2))ρ

= V (pm+1, π) +K + 4K

√
C3C4

ερ
lnρ
′
(τm − τm−1)

lnρ
′
(τm−1 − τm−2)

ln(m/δ)

ln((m− 1)/δ)

≤ V (pm+1, π) +
C7K√
ερ
.

Where the last inequality follows from choosing C7 = 1 + 4
√

21+ρ′C3C4, and from the fact that for m ≥ 2

and δ ≤ 0.5 we have: ln(m/δ)
ln((m−1)/δ) ≤ 2, and lnρ

′
(τm−τm−1)

lnρ
′
(τm−1−τm−2)

≤ lnρ
′
(τm−1)

lnρ
′
(τm−1/2)

≤ 2ρ
′
.

B.7 Bounding prediction error of implicit regret

For any policy, Lemma 11 bounds the prediction error of implicit regret estimate of the policy at every
epoch. This Lemma and its proof are similar to Lemma 8 in [Simchi-Levi and Xu, 2020].

Lemma 11 (Bounds on implicit estimates of policy regret). Suppose the event W defined in (28) holds, and
δ ≤ 0.5. Then there exists positive constants C0, C8, C9 such that, for all policies π and epochs m, we have:

Reg(π) ≤ 2Regf̂m(π) +
C0K

γm
+ C8

√
KB√
ερ

+ C9

√
V (pm, π)B

Regf̂m(π) ≤ 2Reg(π) +
C0K

γm
+ C8

√
KB√
ερ

+ C9

√
V (pm, π)B

Proof. We will prove this by induction. Let C0 be a positive constant such that C0 ≥ 1 ≥ γ1/K. The base
case then follows from the fact that for all policies π, we have:

Reg(π) ≤ 1 ≤ C0K/γ1

Regf̂1(π) ≤ 1 ≤ C0K/γ1.
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For the inductive step, fix some m ≥ 1. Assume for all policies π, we have:

Reg(π) ≤ 2Regf̂m(π) +
C0K

γm
+ C8

√
KB√
ερ

+ C9

√
V (pm, π)B

Regf̂m(π) ≤ 2Reg(π) +
C0K

γm
+ C8

√
KB√
ερ

+ C9

√
V (pm, π)B (31)

Note that:

Reg(π)− Regf̂m+1
(π)

=
(
R(πf∗)−R(π)

)
−
(
Rf̂m+1

(πf̂m+1
)−Rf̂m+1

(π)
)

≤
(
R(πf̂∗)−R(π)

)
−
(
Rf̂m+1

(πf̂m+1
)−Rf̂m+1

(π)
)

+ 2
√
B

≤
(
R(πf̂∗)−R(π)

)
−
(
Rf̂m+1

(πf̂∗)−Rf̂m+1
(π)
)

+ 2
√
B

≤|R(πf̂∗)−Rf̂m+1
(πf̂∗)|+ |R(π)−Rf̂m+1

(π))|+ 2
√
B.

Where the first inequality follows from Lemma 2, and the second inequality follows from the definition of
πf̂m+1

which gives us that Rf̂m+1
(πf̂∗) ≤ Rf̂m+1

(πf̂m+1
). Now, further simplifying the above inequality we

get:

Reg(π)− Regf̂m+1
(π)

≤|R(πf̂∗)−Rf̂m+1
(πf̂∗)|+ |R(π)−Rf̂m+1

(π))|+ 2
√
B

≤
√
V (pm, πf̂∗)

√
B +

√
V (pm, πf̂∗)

√
K

2γm+1
+
√
V (pm, π)

√
B +

√
V (pm, π)

√
K

2γm+1
+ 2
√
B

≤ 5K

8γm+1
+
V (pm, πf̂∗)

5γm+1
+
V (pm, π)

5γm+1
+
√
B

(√
V (pm, πf̂∗) +

√
V (pm, π) + 2

)
≤ 5K

8γm+1
+
V (pm, πf̂∗)

5γm+1
+
V (pm, π)

5γm+1
+
(√

C6 +
√
C7

)√BK√
ερ

+
√
B
√
V (pm+1, π) + 2

√
B.

(32)

Where the second inequality follow from Lemma 8, the third inequality is an application of Cauchy-Schwarz
inequality, and the last inequality follows from Lemmas 9 and 10. Now note that:

V (pm, πf̂∗)

5γm+1
≤
K + γmRegf̂m(πf̂∗)

5γm+1

≤
K + γm

(
2Reg(πf̂∗) + C0K

γm
+ C8

√
KB√
ερ

+ C9

√
V (pm, πf̂∗)B

)
5γm+1

≤ K(1 + C0)

5γm+1
+

2Reg(πf̂∗)

5
+
C8

5

√
KB√
ερ

+
C9

5

√
V (pm, πf̂∗)B

≤ K(1 + C0)

5γm+1
+

4
√
B

5
+
C8 + C9

√
C6

5

√
KB√
ερ
. (33)

Where the first inequality follows from Lemma 6, the second inequality follows from Equation (31), and the
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last inequality follows from Lemmas 2 and 9. Similarly note that:

V (pm, π)

5γm+1
≤
K + γmRegf̂m(π)

5γm+1

≤
K + γm

(
2Reg(π) + C0K

γm
+ C8

√
KB√
ερ

+ C9

√
V (pm, π)B

)
5γm+1

≤ K(1 + C0)

5γm+1
+

2Reg(π)

5
+
C8

5

√
KB√
ερ

+
C9

5

√
V (pm, π)B

≤ K(1 + C0)

5γm+1
+

2Reg(π)

5
+
C8 + C9

√
C7

5

√
KB√
ερ

+
C9

5

√
V (pm+1, π)B. (34)

Where the first inequality follows from Lemma 6, the second inequality follows from Equation (31), and
the last inequality follows from Lemma 10. Now from combining Equation (32), Equation (33), and Equa-
tion (34), we get:

Reg(π)− Regf̂m+1
(π) ≤ 5K

8γm+1
+

2K(1 + C0)

5γm+1
+

2Reg(π)

5
+

14

5

√
B

+
2C8 + (C9 + 5)(

√
C6 +

√
C7)

5

√
KB√
ερ

+
C9 + 5

5

√
V (pm+1, π)B

Which implies:

Reg(π) ≤5

3
Regf̂m+1

(π) +
K(2C0 + 5.125)

3γm+1
+

14

3

√
B

+
2C8 + (C9 + 5)(

√
C6 +

√
C7)

3

√
KB√
ερ

+
C9 + 5

3

√
V (pm+1, π)B

Now choosing constants so that C0 ≥ 5.125, C9 ≥ 2.5, and C8 ≥ (C9 +5)(
√
C6 +

√
C7). The above inequality

then gives us:

Reg(π) ≤2Regf̂m+1
(π) +

C0K

γm+1
+ C8

√
KB√
ερ

+ C9

√
V (pm+1, π)B. (35)

Hence from our induction hypothesis (Equation (31)), we get Equation (35), which provides the required
upper bound on Reg(π) in terms of Regf̂m+1

(π). To complete the inductive argument, we need to show the
corresponding upper bound on Regf̂m+1

(π). Similar to Equation (32), we get:

Regf̂m+1
(π)− Reg(π)

=
(
Rf̂m+1

(πf̂m+1
)−Rf̂m+1

(π)
)
−
(
R(πf∗)−R(π)

)
≤
(
Rf̂m+1

(πf̂m+1
)−Rf̂m+1

(π)
)
−
(
R(πf̂m+1

)−R(π)
)

≤|R(πf̂m+1
)−Rf̂m+1

(πf̂m+1
)|+ |R(π)−Rf̂m+1

(π))|

≤
√
V (pm, πf̂m+1

)
√
B +

√
V (pm, πf̂m+1

)
√
K

2γm+1
+
√
V (pm, π)

√
B +

√
V (pm, π)

√
K

2γm+1

≤ 5K

8γm+1
+
V (pm, πf̂m+1

)

5γm+1
+
V (pm, π)

5γm+1
+
√
B

(√
V (pm, πf̂m+1

) +
√
V (pm, π)

)
≤ 5K

8γm+1
+
V (pm, πf̂m+1

)

5γm+1
+
V (pm, π)

5γm+1
+ 2

√
C7BK√

ερ
+
√
B

(√
V (pm+1, πf̂m+1

) +
√
V (pm+1, π)

)
. (36)
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Where the first inequality follows from the definition of πf∗ , the second inequality is straight forward, the
third inequality follows from Lemma 8, the forth inequality is an application of Cauchy-Schwarz inequality,
and the last inequality follows from Lemma 10. Similar to Equation (33), we get:

V (pm, πf̂m+1
)

5γm+1
≤
K + γmRegf̂m(πf̂m+1

)

5γm+1

≤
K + γm

(
2Reg(πf̂m+1

) + C0K
γm

+ C8

√
KB√
ερ

+ C9

√
V (pm, πf̂m+1

)B
)

5γm+1

≤ K(1 + C0)

5γm+1
+

2Reg(πf̂m+1
)

5
+
C8

5

√
KB√
ερ

+
C9

5

√
V (pm, πf̂m+1

)B

≤ K(1 + C0)

5γm+1
+

2Reg(πf̂m+1
)

5
+
C8 + C9

√
C7

5

√
KB√
ερ

+
C9

5

√
V (pm+1, πf̂m+1

)B

≤ K(1 + 3C0)

5γm+1
+

3C8 + C9

√
C7

5

√
KB√
ερ

+
3C9

5

√
V (pm+1, πf̂m+1

)B. (37)

Where the first inequality follows from Lemma 6, the second inequality follows from Equation (31), the forth
inequality follows from Lemma 10, and the last inequality follows from Equation (35). Also note that:

V (pm+1, πf̂m+1
) ≤ K + γm+1Regf̂m+1

(πf̂m+1
) = K. (38)

Combining Equation (34), Equation (36), Equation (37), and Equation (38), we get:

Regf̂m+1
(π) ≤7Reg(π)

5
+

5K

8γm+1
+

2K(1 + 2C0)

5γm+1
+

4C8 + 2
√
C7(C9 + 5)

5

√
KB√
ερ

+
C9 + 5

5

√
V (pm+1, π)B +

3C9 + 5

5

√
KB.

Now choosing constants so that C0 ≥ 2, C9 ≥ 2.5, and C8 ≥ 2
√
C7(C9 +5)+(3C9 +5). The above inequality

then gives us:

Regf̂m+1
(π) ≤2Reg(π) +

C0K

γm+1
+ C8

√
KB√
ερ

+ C9

√
V (pm+1, π)B. (39)

This completes the inductive step.

B.8 Bounding true regret

For any epoch m, Lemma 12 bounds regret of the randomized policy Qm.
Lemma 12 (Action selection kernel has low true regret). Suppose the event W defined in (28) holds, and
δ ≤ 0.5. And let C10 := C8 + C9. Then for all epochs m, we have:∑

π∈Ψ

Qm(π)Reg(π) ≤ (2 + C0)K

γm
+ C10

√
KB√
ερ
.

Proof. Note that: ∑
π∈Ψ

Qm(π)Reg(π)

≤
∑
π∈Ψ

Qm(π)

(
2Regf̂m(π) +

C0K

γm
+ C8

√
KB√
ερ

+ C9

√
V (pm, π)B

)

≤ 2K

γm
+
C0K

γm
+ C8

√
KB√
ερ

+ C9

√
KB ≤ (2 + C0)K

γm
+ C10

√
KB√
ερ
.
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Where the first inequality follows from Lemma 11, and the second inequality follows from Lemmas 4 and
Lemma 5.

B.9 Proof of Theorem 2

We can now bound the cumulative regret of Epsilon-FALCON. Fix some (possibly unknown) horizon T . Let
Tactive ⊆ [T ] be the set of time-steps that are in the active phase of some epoch. Similarly let Tpassive ⊆ [T ]
be the set of time-steps that are in the active phase of some epoch. Let m(t) denote the epoch in which the
time-step t occurs. For each round t ∈ {1, 2, . . . , T}, define:

Mt := rt(π
∗(xt))− rt(at)−

∑
π∈Ψ

Qm(t)(π)Reg(π).

Recall that from Lemma 3, for all t ∈ Tactive we have:

E
xt,rt,at

[rt(π
∗(x))− rt(at)|Γt−1] =

∑
π∈Ψ

Qm(t)(π)Reg(π).

Hence from Azuma’s inequality, with probability at least 1− δ/2, we have:

∑
t∈Tactive

Mt ≤ 2
√

2|Tactive| log(2/δ) ≤ 2
√

2T log(2/δ). (40)

Hence when Equation (40) holds, we get:

T∑
t=1

(
rt(π

∗(xt))− rt(at)
)

=
∑

t∈Tpassive

(
rt(π

∗(xt))− rt(at)
)

+
∑

t∈Tactive

(
rt(π

∗(xt))− rt(at)
)

≤ |Tpassive|+
∑

t∈Tactive

∑
π∈Ψ

Qm(t)(π)Reg(π) +
√

8T log(2/δ)

(41)

Since in any epoch m ≥ 1, there are at most 1 + ε(τm − τm−1) passive time-steps. Therefore:

|Tpassive| ≤ εT +m(T ) ≤ 1 + log2(T ) + εT. (42)

Further when W holds, from Lemma 12, we have:

∑
t∈Tactive

∑
π∈Ψ

Qm(t)(π)Reg(π)

≤ τ1 +
∑

{t∈Tactive | t ≥τ1+1}

∑
π∈Ψ

Qm(t)(π)Reg(π)

≤ τ1 + C10

√
KB√
ερ
T +

T∑
t=τ1+1

(2 + C0)K

γm(t)

≤ τ1 + C10

√
KB√
ερ
T +

m(T )∑
m=2

(2 + C0)K

γm
(τm − τm−1)

(43)
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Since τ1 ≥ 4, τm(t)−1 ≤ t for all t ≥ 1, and τm = τ12m−1 for allm ≥ 1. We get that τm(T )−1 ≤ T , τm(T ) ≤ 2T ,
and m− 1 ≤ log2(T ) for all m ≤ m(T ). Therefore, we get:

m(T )∑
m=2

(2 + C0)K

γm
(τm − τm−1)

=

m(T )∑
m=2

(2 + C0)K

√
lnρ
′
(τm−1 − τm−2) ln((m− 1)/δ)comp(F)

C3K(τm−1 − τm−2)ρ
(τm − τm−1)

≤ (2 + C0)√
C3

√
K lnρ

′
(T ) ln(log2(T )/δ)comp(F)

m(T )∑
m=2

τm − τm−1√
(τm−1 − τm−2)ρ

.

(44)

Since for all m ≥ 1, τm+1 = 2τm, we have that:

m(T )∑
m=2

τm − τm−1√
(τm−1 − τm−2)ρ

= 2ρ/2
m(T )∑
m=2

τm − τm−1

τ
ρ/2
m−1

≤ 2ρ/2
m(T )∑
m=2

∫ τm

τm−1

dy

yρ/2

= 2ρ/2
∫ τm(T )

τ1

dy

yρ/2
≤ 2ρ/2

1− ρ/2
τ

1−ρ/2
m(T ) ≤

2

1− ρ/2
T 1−ρ/2.

(45)

Where the last inequality follows from the fact that τm(T ) ≤ 2T . Hence when Equation (40) and W hold,
from Equation (41), Equation (42), Equation (43), Equation (44), and Equation (45), we get:

T∑
t=1

(
rt(π

∗(xt))− rt(at)
)

≤ |Tpassive|+
∑

t∈Tactive

∑
π∈Ψ

Qm(t)(π)Reg(π) +
√

8T log(2/δ)

≤ 1 + log2(T ) + εT +
√

8T log(2/δ) + τ1 + C10

√
KB√
ερ
T

+
(2 + C0)√

C3

4

2− ρ

√
KT 2−ρ lnρ

′
(T ) ln(log2(T )/δ)comp(F)

= O

((
ε+

√
KB√
ερ

)
T +

√
KT 2−ρ lnρ

′
(T ) ln(log2(T )/δ)comp(F)

)
.

Note that from Lemma 7, we know thatW holds with probability 1−δ/2. Also from Azuma’s inequality, we
showed that Equation (40) holds with probability 1− δ/2. Hence from union bound, we get that the above
inequality holds with probability 1− δ. This concludes the proof of Equation (11).

C Learning rates

In this section, we restate results from [Koltchinskii, 2011] on bounds for excess risk in a form that is
convenient for us to use. We consider the standard machine learning setting. That is, we let (Z, Y ) be a
random tuple in Z × [0, 1] with distribution P . Assume Z is observable and Y is to be predicted based on
an observation of Z. Let l : R × R be the squared error loss, that is l(a, b) = (a − b)2. Given a function
g : Z → R, let (l · g)(z, y) := l(y, g(z)) be interpreted as the loss suffered when g(z) is used to predict y. Let
G be a convex class of functions from Z to R. The problem of optimal prediction can be viewed as finding
a solution to the following risk minimization problem:

min
g∈G

P (l · g).

Where P (l · g) is a short hand for EP [(l · g)(Z, Y )]. Let ĝ∗ ∈ G be a solution to the above risk minimization
problem. Let g∗(z) := EP [Y |Z = z]. Since the distribution P is unknown, the above risk minimization
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problem is replaced by the empirical risk minimization problem:

min
g∈G

Pn(l · g).

Where Pn is an empirical distribution generated from n i.i.d. samples of (Z, Y ) from the distribution P .
Here Pn(l · g) is a short hand for EPn [(l · g)(Z, Y )]. In general, we will use P (·) and Pn(·) as a short hand
for EP [·] and EPn [·] respectively. Now, let ĝn ∈ G be a solution to the above empirical risk minimization
problem. Also let Gl denote the loss class, that is Gl := {l · g | g ∈ G}. For any g ∈ G, we define the excess
risk (E(l · g)) and the empirical excess risk (Ê(l · g)), given by:

E(l · g) := P (l · g)− min
l·g′∈Gl

P (l · g′) = E
P

[(l · g)(Z, Y )]− min
g′∈G

E
P

[(l · g′)(Z, Y )],

Ê(l · g) := Pn(l · g)− min
l·g′∈Gl

Pn(l · g′) = E
Pn

[(l · g)(Z, Y )]− min
g′∈G

E
Pn

[(l · g′)(Z, Y )].

For δ ∈ R+, we define the δ-minimal set (Gl(δ)) and the empirical δ-minimal set (Ĝl(δ)), given by:

Gl(δ) :=

{
h ∈ Gl | E(h) ≤ δ

}
, Ĝl(δ) :=

{
h ∈ Gl | Ê(h) ≤ δ

}
.

We now define a version of local Rademacher averages (ψn). We start by defining the Rademacher process
(Rn(·)). For any function h : Z → R, Rn(h) is given by:

Rn(h) :=
1

n

n∑
i=1

εih(Zi).

Where {Zi}ni=1 are i.i.d. random samples from the marginal distribution of P on Z. And where {εi}ni=1

are i.i.d. Rademacher random variables (that is, εi takes the values +1 and −1 with probability 1/2 each)
independent of Zi. We also define a (pseudo)-metric (ρP ) on the set of functions that are square integrable
with respect to P , such that: ρP (f, g) :=

√
P ((f − g)2). We now define the local Rademacher average (ψn)

as:

ψn(δ) := 16 E
P,ε

sup{|Rn(g − ĝ∗)| | g ∈ G, ρ2
P (g, ĝ∗) ≤ 2δ}.

Finally we define the [-transform and the ]-transform. For any κ : R+ → R+, define:

κ[(δ) := sup
δ′≥δ

κ(δ′)

δ′
, κ](ε) := inf{δ > 0 | κ[(δ) ≤ ε}.

It is easy to see that ]-transforms are decreasing functions, and we will use this property in the proof of
Lemma 13. For more details and properties of these transformations, see section A.3 in [Koltchinskii, 2011].
We now get to the main Lemma of this section (Lemma 13), which is implicitly evident from results in
[Koltchinskii, 2011]. Lemma 13 shows that, with high-probability, the δ-minimal set (Gl(δ)) and the empirical
δ-minimal set (Ĝl(δ)) approximate each other.

Lemma 13. Let G be a convex class of functions from Z to [0, 1]. Suppose ζ ∈ (0, 1/2). With probability at
least 1− ζ, for all δ ≥ max{ψ]n( 1

16 ), 16384 ln(2/ζ)
n } we have:

Gl(δ) ⊂ Ĝl(3δ/2), Ĝl(δ) ⊂ Gl(2δ).

Proof. Lemma 13 is a corollary of a few Lemmas and inequalities in [Koltchinskii, 2011]. In the next few steps,
we will define a function Un and bound U ]n(1/2). Lemma 13 will follow from Lemma 4.2 in [Koltchinskii, 2011]
and the bounds on U ]n(1/2). Let D(δ) denote the ρP -diameter of the δ-minimal set (Gl(δ)). That is:

D(δ) := sup
h,h′∈Gl(δ)

ρP (h, h′).
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Also let φn be a measure of empirical approximation:

φn(δ) := E
[

sup
h,h′∈Gl(δ)

∣∣∣(Pn − P )(h− h′)
∣∣∣].

Let t, σ > 0, and q > 1. We will fix the values of t, σ and q later in the proof. Let δj := q−j and tj := t
δj
σ ,

for all j ≥ 0. We will now define a function Un : (0, 1]→ R+. For all j ≥ 0 and δ ∈ (δj+1, δj ], define:

Un(δ) := φn(δj) +

√
2
tj
n

(D2(δj) + 2φn(δj)) +
tj
2n

= φn(δj) +

√
2
t

n

δj
σ

(D2(δj) + 2φn(δj)) +
t

2n

δj
σ

The reader may have astutely noticed that functions like Un appear as upper bounds in Talagrand type
concentration inequalities, in fact that is where this comes from. We now bound U [n(η) for all η > 0:

U [n(η) ≤ sup
δj≥η

q

δj

{
φn(δj) +

√
2
t

n

δj
σ

(D2(δj) + 2φn(δj)) +
t

2n

δj
σ

}

≤ q sup
δj≥η

φn(δj)

δj
+ sup
δj≥η

q

{√
2t

σn

D2(δj)

δj
+

√
4t

σn

φn(δj)

δj

}
+

qt

2σn

≤ qφ[n(η) + q

√
2t

σn
(D2)[(η) + q

√
4t

σn
φ[n(η) +

qt

2σn

(46)

From Equation (46), we get a bound on U ]n(ε) for all ε > 0:

U ]n(ε) := inf{η > 0 | U [n(η) ≤ ε}

≤ inf

{
η > 0 | qφ[n(η) + q

√
2t

σn
(D2)[(η) + q

√
4t

σn
φ[n(η) +

qt

2σn
≤ ε
}

≤ inf

{
η > 0 | φ[n(η) +

√
2t

σn
(D2)[(η) +

√
4t

σn
φ[n(η) ≤ 1

q

(
ε− qt

2σn

)}
≤ max

{
inf

{
η > 0 | φ[n(η) ≤ 1

3q

(
ε− qt

2σn

)}
, inf

{
η > 0 |

√
2t

σn
(D2)[(η) ≤ 1

3q

(
ε− qt

2σn

)}
,

inf

{
η > 0 |

√
4t

σn
φ[n(η) ≤ 1

3q

(
ε− qt

2σn

)}}

≤ max

{
φ]n

(
ε

3q
− t

6σn

)
, (D2)]

(
σn

2t

(
ε

3q
− t

6σn

)2)
, φ]n

(
σn

4t

(
ε

3q
− t

6σn

)2)}

(47)

To further bound U ]n(·), we need to bound the terms in Equation (47). From page 78 in [Koltchinskii, 2011],
we get that the convexity of G implies a bound on D(·) which further gives us a bound on (D2)[(·):

D(δ) ≤ 4
√

2
√
δ, for all δ ≥ 0.

=⇒ (D2)[(η) = sup
δ′≥η

D2(δ′)

δ′
≤ 32, for all η ≥ 0.

Hence we have:

(D2)](ε) = 0, for all ε ≥ 32 (48)

To upper-bound U ]n(1/2), we now bound the (D2)](·) term in Equation (47). To do this we choose σ =
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4096tq2/n. Hence from the choice of σ and from Equation (48), we get:

σ ≥ 4096tq2

n
= 1024

tq2

n(1/2)2
=⇒ σn

2t

(1/2)2

16q2
≥ 32 =⇒ σn

2t

(
1/2

3q
− t

6σn

)2

≥ 32

=⇒ (D2)]
(
σn

2t

(
1/2

3q
− t

6σn

)2)
= 0

(49)

We now bound the φ]n(·) terms in Equation (47), in terms of ψ]n(·). Again from page 78 in [Koltchinskii, 2011],
we get that the convexity of G implies a bound on φn(·) which further gives us a bound on φ]n(·):

φn(δ) ≤ ψn(δ) for all δ ≥ 0.

=⇒ φ]n(ε) ≤ ψ]n(ε) for all ε ≥ 0.
(50)

To upper-bound U ]n(1/2), we now bound the φ]n(·) terms in Equation (47). From the choice of σ and from
Equation (50), we get:

σ ≥ 4qt

n
=

2qt

n(1/2)
=⇒ 1/2

12q
≥ t

6σn
=⇒ 1/2

3q
− t

6σn
≥ 1/2

4q

=⇒ φ]n

(
1/2

3q
− t

6σn

)
≤ φ]n

(
1/2

4q

)
≤ ψ]n

(
1/2

4q

)
.

(51)

Again from the choice of σ and from Equation (50), we get:

σ ≥ 32tq

n
=

16tq

n(1/2)
=⇒ σn

4t

(1/2)2

16q2
≥ 1/2

4q
=⇒ σn

4t

(
1/2

3q
− t

6σn

)2

≥ 1/2

4q

=⇒ φ]n

(
σn

4t

(
1/2

3q
− t

6σn

)2)
≤ φ]n

(
1/2

4q

)
≤ ψ]n

(
1/2

4q

)
.

(52)

Combining Equation (47), Equation (49), Equation (51), and Equation (52), we get:

U ]n(1/2) ≤ ψ]n
(

1

8q

)
. (53)

Lemma 4.2 in [Koltchinskii, 2011] states that with probability at least 1 −
∑
δj≥δ�n

e−tj , for all δ ≥ δ�n we
have: Gl(δ) ⊂ Ĝl(3δ/2) and Ĝl(δ) ⊂ Gl(2δ). Where δ�n is any number such that δ�n ≥ U ]n(1/2). Hence from
Equation (53), we can choose:

δ�n = max

{
ψ]n

(
1

8q

)
,

4096tq2

n

}
≥ max{U ]n(1/2), σ}.

Now by choosing q = 2 and t = ln(2/ζ), using the fact that ζ ∈ (0, 1/2), we get that t ≥ 1. Hence, we have
that: ∑

δj≥δ�n

e−tj ≤
∑
δj≥σ

e−tj =
∑
δj≥σ

exp
{
− tδj

σ

}
≤
∑
j≥0

e−tq
j

=

e−t +
q

q − 1

∞∑
j=1

q−j(qj − qj−1)e−tq
j

≤ e−t +
1

q − 1

∫ ∞
1

e−txdx =

e−t +
1

q − 1

1

t
e−t ≤ e−t +

1

q − 1
e−t =

q

q − 1
e−t = ζ.

That is, we have shown that with probability at least 1− ζ, for all δ ≥ max{ψ]n(1/8q), 4096tq2/n}, we have:
Gl(δ) ⊂ Ĝl(3δ/2) and Ĝl(δ) ⊂ Gl(2δ).
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Corollary 2 uses Lemma 13 and a bound on ψ]n(·) when G is a convex subset of a d-dimensional linear
space to show that for all δ ≥ Cd ln(1/ζ)

n , the δ-minimal set (Gl(δ)) and the empirical δ-minimal set (Ĝl(δ))
approximate each other with probability at least 1− ζ.
Corollary 2. Let G be a convex class of functions from Z to [0, 1], and a subset d dimensional linear space.
Suppose ζ ∈ (0, 1/2). With probability at least 1− ζ, for all δ ≥ Cd ln(1/ζ)

n we have:

Gl(δ) ⊂ Ĝl(3δ/2), Ĝl(δ) ⊂ Gl(2δ).

Where C > 0 is a positive constant.

Proof. Since G is a convex subset of a d dimensional linear space, we get from proposition 3.2 in
[Koltchinskii, 2011] that:

ψn(δ) = 16 E
P,ε

sup{|Rn(g − ĝ∗)| | g ∈ G, ρ2
P (g, ĝ∗) ≤ 2δ}

≤ 16
√

2δ

√
d

n
.

Which implies that:

ψ[n(δ) = sup
δ′≥δ

ψn(δ′)

δ′
≤ sup
δ′≥δ

16

√
2d

nδ′
= 16

√
2d

nδ
.

Hence, we get that:

ψ]n(ε) = inf{δ > 0 | ψ[n(δ) ≤ ε}

≤ inf

{
δ > 0 | 16

√
2d

nδ
≤ ε
}

= inf

{
δ > 0 | 512d

nε2
≤ δ
}

=
512d

nε2
.

Therefore:

ψ]n(1/16) ≤ 512d

n(1/16)2
=

131072d

n
.

Hence Corollary 2 follows from Lemma 13 and the above inequality.

Rates for general classes of functions Lemma 14 provides rates for ψ]n for different classes of G. Hence
similar to Corollary 2, these bounds imply that for all δ ≥ O(ψ]n(1/16) ln(1/ζ)), the δ-minimal set (Gl(δ))
and the empirical δ-minimal set (Ĝl(δ)) approximate each other with probability at least 1− ζ. The results
stated in Lemma 14 are from [Koltchinskii, 2011] (pages 85 to 87), we state the same results without proof.
Lemma 14. Let G be a convex class of functions from Z to [0, 1].

• Suppose G is VC-subgraph class of functions with VC-dimension V . Then for all ε > 0, we have:

ψ]n(ε) ≤ O
(
V

nε2
log

(
nε2

V

))
.

• Let N(G, L2(Pn), ε) denote the number of L2(Pn) balls of radius ε covering G. Suppose the empirical
entropy is bounded, that is for some ρ ∈ (0, 1) we have that: log(N(G, L2(Pn), ε)) ≤ O(ε−2ρ). Then for
all ε > 0, we have:

ψ]n(ε) ≤ O
(

(nε2)
−1
1+ρ

)
.

• Suppose G is a convex hull of a VC-subgraph class of functions with VC-dimension V . Then for all
ε > 0, we have:

ψ]n(ε) ≤ O

((
V

nε2

) 1
2

2+V
1+V

)
.
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Proving Assumption 1 We now describe the general outline to prove Assumption 1 using the results in
this section for different convex classes F . Note that we need the conditions of Assumption 1 to hold for any
convex set F ′ ⊆ F , and any action selection kernel p. First let Z used in this section correspond to X ×A,
and let distribution P correspond to the distribution described by xt ∼ DX , a|x ∼ p(a|x) and rt ∼ Dr|x,a
induced by the action selection kernel p. Also note that the empirical distribution corresponding to S̃, in
fact corresponds to Pn in this section. Hence from lemma 13, to show that the empirical and population
η-minimal sets approximate each other with high-probability (as is required in Assumption 1), it is sufficient
to bound ψ]n(1/16) uniformly for all convex subsets F ′ ⊆ F and all distributions induced by action selection
kernels. Such bounds can be proven for many interesting convex classes of estimators because the bounds
on ψ]n are often distribution-free and we often have that comp(F ′) ≤ comp(F).

For example, say F is a convex subset of a d dimensional linear space, then any convex subset F ′ ⊆ F is
also a convex subset of a d dimensional linear space. Hence, corollary 2 can be used on F ′ to show that
the empirical and population η-minimal sets approximate each other (as is required in Assumption 1). Note
that this along with Theorem 2 gives us Theorem 1. Similarly, say F is a convex set with VC sub-graph
dimension V . Note that, for any convex set F ′ ⊆ F , we have that F ′ has a VC sub-graph dimension V .
Hence, we can then use Lemma 14 to bound ψ]n(1/16) in a distribution free manner and then show that the
empirical and population η-minimal sets approximate each other (using Lemma 13). Note that this along
with Theorem 2 gives us Example 1 in Section 2. We can similarly that Examples 2 and 3 follow from
Theorem 2 and the results in this section.

D Solving the constrained regression problem

In this section, we show the constrained regression problem can be solved using a weighted regression oracle.
The purpose of this argument is to show that the constrained regression problem is computationally tractable
for many class of estimators. Suppose F is a convex set. Let S, S′ ⊆ X ×A× [0, 1], often these sets represent
the data collected in the active and passive phases respectively. Consider the following optimization problem:

min
f∈F

1

|S|
∑

(x,a,r(a))∈S

(f(x, a)− r(a))2

s.t.
1

|S′|
∑

(x,a,r(a))∈S′
(f(x, a)− r(a))2 ≤ α+ β.

(54)

Where β > 0 is a fixed problem parameter, and α := 1
|S′| minf∈F

∑
(x,a,r(a))∈S′(f(x, a) − r(a))2. From the

definition of α and β, we have that there exists a g ∈ F such that:

1

|S′|
∑

(x,a,r(a))∈S′
(g(x, a)− r(a))2 < α+ β. (55)

That is there is a g ∈ F such that the constraint in the optimization problem (54) is not tight. Hence strong
duality holds 9. Now consider the lagragian of the constrained regression problem:

L(f, λ) :=
1

|S|
∑

(x,a,r(a))∈S

(f(x, a)− r(a))2 + λ

(
1

|S′|
∑

(x,a,r(a))∈S′
(f(x, a)− r(a))2 − α− β

)
.

Note that probelem 54 can be re-written as, minf∈F maxλ≥0 L(f, λ). Since strong duality holds, this is
equivalent to solving the following dual optimization problem:

max
λ≥0

min
f∈F

L(f, λ) ≡ max
λ≥0

g(λ).

9See proposition 1.1.3 in [Bertsekas and Scientific, 2015].
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Where, g(λ) := minf∈F L(f, λ). For any fixed λ, note that evaluating g(λ) is equivalent to solving a weighted
regression problem:

arg min
f∈F

L(f, λ) = arg min
f∈F

1

|S|
∑

(x,a,r(a))∈S

(f(x, a)− r(a))2 +
λ

|S′|
∑

(x,a,r(a))∈Spass
(f(x, a)− r(a))2.

Now, let λ∗ be an optimal dual solution. Since the dual problem is a one-dimensional concave maximization
problem, we can use a bisection method to find the optimal dual solution. Hence one can solve the dual
optimization problem with O(log(λ∗)) calls to evaluate g(·), where each evaluation call corresponds to one
call to a weighted regression oracle. Suppose this procedure outputs λ̄ as the optimal dual solution. We then
output the estimator that solves:

arg min
f∈F

1

|S|
∑

(x,a,r(a))∈S

(f(x, a)− r(a))2 +
λ̄

|S′|
∑

(x,a,r(a))∈Spass
(f(x, a)− r(a))2.

Note that this estimator must be optimal for the primal problem 10. Since there are many algorithms
and heuristics to solve weighted regression problems, this argument shows that the constrained regression
problem is often computationally tractable.

Algorithm 2 Solving constrained regression
input: Given a threshold parameter κ > 0 and a weighted regression oracle to evaluate g(·).
1: Set λL = 0, λM = 1, and λR = 2.
2: while g(λM ) < g(λR) do
3: Set λR ← 2λR and set λM ← 2λM .
4: end while
5: while |λR − λL| ≥ κ do
6: if g(λM + κ) > g(λM ) then
7: Set λL ← λM .
8: else
9: Set λR ← λM .
10: end if
11: Set λM ← 1

2 (λL + λR).
12: end while
13: Return the output of the weighted regression oracle on the following problem:

min
f∈F

1

|S|
∑

(x,a,r(a))∈S

(f(x, a)− r(a))2 +
λM
|S′|

∑
(x,a,r(a))∈Spass

(f(x, a)− r(a))2.

We note that in practice, rather than solving multiple weighted regression problems, one may prefer to directly
find a minimax solution to the lagrangian of the constrained regression problem (see [Jin et al., 2019]).

E Sensitivity of confidence intervals to realizability

In this section, we demonstrate that the confidence intervals used by LinUCB can be extremely sensitive
to the realizability assumption. We also point out analogous issues in LinTS and FALCON (with linear
estimates). We do this by constructing a family of contextual bandit problems where the approximation
error to the class of linear models can be arbitrarily small, but given data from the policy induced by the
best linear estimate (which also happens to be optimal), the confidence intervals used by LinUCB tightly
concentrate around bad estimators that induce high-regret policies.

10Here when we say optimal, we mean optimal up to the accuracy thresholds.
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Figure 5: This is a plot of the conditional expected reward (f∗) and the best linear estimate f̂∗ when actions
are sampled uniformly at random. Note that the conditional expected reward for arm 2 is linear. The
problem is constructed so that the policy (πf̂∗) that is induced by the best linear estimates (f̂) samples arm
2 for all x such that f∗(x, 1) = 0.1, and samples arm 1 for all x such that f∗(x, 1) = 1. Note that this policy
is also optimal.

Consider a family of two armed contextual bandit problems that are parameterized by θ ∈ (0, 0.05]. Let
X = (0, 1) be the set of contexts, and let A = {1, 2} be the set of actions. At every time-step, the environment
draws a context according to the continuous uniform distribution on X . That is, DX ≡ Unif(X ). To estimate
the conditional expected reward (f∗) and select a policy, we pick estimators from a convex class of functions
F , where:

F := {f : X ×A → R | f(·, 1) and f(·, 2) are linear}.

For θ = 0.05, Figure 5 plots the conditional expected rewards (f∗) and the best linear estimate f̂∗ ∈ F when
actions are sampled uniformly at random. We will now specify these terms more generally, starting with the
conditional expected reward for arm 1, which is given by:

f∗(x, 1) :=

{
0.1, for all x ≤ 1− θ
1, for all x > 1− θ.

The conditional expected reward for arm 2 is linear, and is given by f∗(x, 2) := 1 +mθx. Where mθ is such
that f̂∗(x, 1) and f∗(x, 2) meet at x = 1− θ, which is ensured by defining:

mθ :=
f̂∗(1− θ, 1)− 1

1− θ
.

Since f∗(·, 2) is linear, we get that f̂∗(·, 2) ≡ f∗(·, 2). Further since mθ < 0, we get that f̂∗(x, 2) is decreasing
in x. Similarly, one can show that f̂∗(x, 1) is increasing in x. Therefore, we get that πf̂∗ is given by:

πf̂∗(x) :=

{
2, for all x ≤ 1− θ
1, for all x > 1− θ.

It is interesting to note that πf̂∗ is optimal for this family of bandit problems, that is πf∗ ≡ πf̂∗ . Now let f̂
be the best predictor of arm rewards under the distribution induced by πf̂∗ . That is:

f̂ ∈ arg min
f∈F

E
x∼DX

[(f(x, πf̂∗(x))− f∗(x, πf̂∗(x)))2].

Since f∗(x, 1) = 1 for all x > 1− θ, we get that f̂(·, 1) ≡ 1. Also since f∗(·, 2) is linear and arm 2 is chosen
for all x ≤ 1− θ, we get that f̂(·, 2) ≡ f∗(·, 2). For a more visual understanding, see Figure 6 which plots f∗

and f̂ for θ = 0.05.
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Figure 6: This is a plot of the conditional expected reward (f∗) and the linear estimate (f̂) that is learnt
from data collected by πf̂∗ . Note that πf̂∗ is infact the same as the optimal policy πf∗ . Also note that the
policy πf̂ that is induced by the estimate f̂ samples arm 1 for all x. Hence, this policy has high regret.

Therefore πf̂ (x) = 1 for all x, and hence incurs high regret:

Reg(πf̂ ) ≥ 1

2
(1− θ)(1− 0.1) ≥ 0.4275.

For this family of bandit problems, while the regret of πf̂ is at least 0.4275, the approximation error (b) can
be arbitrarily small. In particular, since f∗(·, 2) is linear, we get:

b = min
f∈F

1

2
E

x∼DX
[(f(x, 1)− f∗(x, 1))2] ≤ 1

2
E

x∼DX
[(0.1− f∗(x, 1))2] ≤ θ

2
.

Further note that for this family of problems, as sufficient data is collected from policy πf̂∗ (which is also
optimal), the confidence intervals used by LinUCB tightly concentrate around f̂ .

Hence even under minor violations of realizability (the approximation error b of the best linear estimator
can be arbitrarily small), the confidence intervals that are used by LinUCB are invalid, in the sense that this
confidence interval tightly concentrates on a bad linear estimate (f̂) that induces a policy (πf̂ ) with high
regret (Reg(πf̂ ) > 0.4275). Note that a similar argument can be used to argue that for this family of bandit
problems, given data from the optimal policy, the posterior of LinTS concentrates on the same bad linear
estimate. Similarly for this family of bandit problems, given data from the optimal policy, the empirical risk
minimizer would be the bad linear estimate f̂ and the induced randomized policy constructed by FALCON
would converge to the high regret policy (πf̂ ) induced by this estimate. This example calls into question the
validity of any model update step in realizability-based approaches.


	Detailed setup
	Preliminaries
	Main assumption
	Algorithm

	Proofs
	Overview of the proof for thm:main-theorem
	Bounds on best predictor
	Properties of the action selection kernel
	Constrained regression oracle guarantees
	Bounding prediction error of implicit rewards
	Bounding decisional divergence
	Bounding prediction error of implicit regret
	Bounding true regret
	Proof of Theorem 2

	Learning rates
	Solving the constrained regression problem
	Sensitivity of confidence intervals to realizability

