
Appendix: Quantifying the Privacy Risks of Learning
High-Dimensional Graphical Models

Contents

A Derivation of mean and variance of the likelihood ratio 3

A.1 Distribution of the log-likelihood ratio . 4

B Number of Samples for Estimating Conditional Probabilities 5

C Approximation for mean derivation 5

D Approximation for variance derivation 6

D.1 Approximation of Epop[L
2
i] . 7

D.2 Approximation of Epop[LiLj] . 7

E Generic Categorical Variable 9

F Naive Bayes 11

G Understanding the complexity metric - Parameter estimation errors 12

H What about models trained with differential privacy? 13

I Evaluation details: Bayesian network learning and Data synthesis 14

I.1 Structure Learning . 14

I.2 Parameter Learning . 14

I.3 Data Synthesis . 14

J Additional evaluation 15

J.1 Effect of releasing statistically insignificant edges . 15

J.2 Optimality of the theoretical threshold . 16

J.3 Effect of using a complex model for estimating likelihood of Null hypothesis 17

J.4 Effect of Biased Sampling . 19

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

Symbol Description
m Number of attributes
n Pool (training set) size
〈G, θ̂〉 Released Model
〈G, θ〉 Population Model
Xi Random variable for attribute i
xi A particular value for Xi

V (Xi) Set of possible values of attribute i
PaGXi

Set of random variables that are parents of node Xi in G
pvi Pr(xi = 1|PaGXi

= v; θ)

p̂vi Pr(xi = 1|PaGXi
= v; θ̂)

nvi Number of samples used to compute p̂vi
C(G) Complexity of G (number of independent parameters)
η Maximum number of parents per node in G

L(x) Log-likelihood ratio statistic for data sample x
Li Contribution of Xi to the Log-likelihood ratio L(x)
F CDF of L(x) over the general population (under HOUT)
α Error (False Positive Rate) of LR tracing attack
β Power (True Positive Rate) of LR tracing attack
zs Quantile at level 1− s of the Standard Normal distribution

Table 1: Notations

A Derivation of mean and variance of the likelihood ratio

We compute the mean and variance of L(x) under the two hypotheses. We sketch the proof for the mean
E(L) under the population hypothesis, followed by the variance Var(L). Similar calculations apply for the pool
hypothesis.

Let the target x have the feature vector (x1, x2, . . . , xm), and let us assume, for now, that all attributes are
binary: xi ∈ {0, 1}, i = 1, . . . ,m. In Appendix E we generalize to attributes that can take more than two values.
We can take advantage of the Bayesian network decomposition to write the log-likelihood ratio for x as follows:

L(x) = log

[
Pr(x; 〈G, θ〉)
Pr(x; 〈G, θ̂〉)

]
=

m∑
i=1

Li (1)

where Li is the contribution of Xi to the likelihood ratio, as defined as:

Li = log

(
Pr[Xi|PaGXi

; θ]

Pr[Xi|PaGXi
; θ̂]

)

=
∑

v∈V (PaGXi
)

1{PaGXi
=v}

(
xi log

pvi
p̂vi

+ (1− xi) log
1− pvi
1− p̂vi

)
︸ ︷︷ ︸

Lv
i

=
∑

v∈V (PaGXi
)

1{PaGXi
=v}L

v
i (2)

where pvi = Pr{Xi = 1|PaGXi
= v; θ}, and similarly p̂vi = Pr{Xi = 1|PaGXi

= v; θ̂}. The notation 1{PaGXi
=v} is an

indicator variable for a particular assignment of values to the parent nodes of Xi, i.e. 1{PaGXi
=v} = 1 if PaGXi

= v

and 0 otherwise. The sum ranges over |V (PaGXi
)| terms Lvi , one for each element of V (PaGXi

).

The parameters θ and θ̂ are estimated from data (reference population and pool, respectively). By the central
limit theorem, the distribution of such an estimate converges to a Gaussian around the mean value of the estimate
as the number of data samples increases. In our derivations of the mean and variance, we use this approximation
in (10) and (11). By the Berry-Esseen theorem [1, 3], the rate of convergence to the Gaussian is O(1√

n
) if the

third moment of the random variable being sampled is finite. In our case this condition is true, because each
random variable can only take a finite number of possible finite values.

We compute the mean and variance of L(x) as follows:

Epop(L) =
C

2n
+O(Cn−2) (3a)

Epool(L) = − C
2n

+O(Cn−2) (3b)

Varpop(L) =
C

n
+O(C2n−2) (3c)

Varpool(L) =
C

n
+O(C2n−2). (3d)

Proof sketch - Mean under HOUT. The mean Epop(L) can be computed as follows:

Epop(L) =

m∑
i=1

Epop(Li)

=

m∑
i=1

∑
v

Epop(1{PaGXi
=v}L

v
i) (4)

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

Using approximation (12) in Appendix Section C, we compute Epop(1{PaGXi
=v}L

v
i) ≈ 1

2n + O(n−2). Since the

total number of Lvi parameters is C =
∑m
i=1 |V (PaGXi

)|, we conclude that

Epop(L) =
C

2n
+O(Cn−2). (5)

Proof sketch - Variance under HOUT. By definition,

Varpop(L) = Epop[L
2]− (Epop[L])2. (6)

The latter term (Epop[L])2 is the square of the mean, which we compute in (5). The former term Epop[L
2]

decomposes as follows:

Epop[L
2] =

m∑
i=1

Epop[L
2
i] + 2

∑
1≤i<j≤m

Epop[LiLj] (7)

We compute Epop[L
2
i] by expanding Epop[(

∑
v 1{PaGXi

=v}L
v
i)

2]. Then, approximation (22) in Appendix D gives

us that each square term Epop[(1{PaGXi
=v}L

v
i)

2] is approximately equal to 1
n . As for the product terms in the

expansion, each term multiplies two different indicator variables 1{PaGXi
=v} and 1{PaGXi

=v′} with v 6= v′. Because

at most one of the two is equal to 1, all product terms will be zero. Hence Epop[L
2
i] = |V (PaGXi

)| × 1
n .

The number of joint terms Epop[LiLj] is O(C2). From the approximation in Appendix Section D.1 for Epop[LiLj],
each of these terms is equal to 1

4n2 with error term O(n−2). Hence, the value of Epop[L
2] is

Epop[L
2] =

C

n
+
C2

4n2
+O(C2n−2). (8)

We conclude that the variance is

Varpop(L) = Epop[L
2]− (Epop[L])2

=
C

n
+
C2

4n2
+O(C2n−2)−

(
C

2n
+O(Cn−2)

)2

=
C

n
+O(C2n−2) (9)

Although we haven’t provided the calculation here, it is possible to calculate the exact value of the O(C2n−2)
term from the released model. As a simple example, in appendix F, we calculate the exact value of this O(C2n−2)
term, when the released model is a Naive Bayes model.

A.1 Distribution of the log-likelihood ratio

To compute the distribution of L(x), the log-likelihood ratio of the parameter vector estimate with the actual
value of the parameter vector in a graphical model, we need to understand what parameters contribute to the
likelihood ratio given a data sample. As shown in equation (2), the parameter that contributes to the likelihood
ratio for an attribute is determined by the value taken by its parent node. The contribution of attribute Xi to
the likelihood function, denoted by Li, is computed as:

Li =
∑

v∈V (PaGXi
)

1{PaGXi
=v}L

v
i

Hence the distribution of Li is a mixture of the distributions of Lvi , where the mixing probabilities are determined
by the distribution of the parent nodes (hence the dependence of L(x)’s distribution on the probability distribution

that generated the data). The distribution of Lvi , the log-likelihood ratio for the estimate of a single parameter
value, is asymptotically a chi-squared distribution with degree of freedom 1 (from Wilks’ theorem). Hence, the
exact distribution of log-likelihood ratio is a sum of mixture of chi-squared distributions, where the mixing
distribution is dependent on the distribution that generated the data. In case of high-dimension models, this
log-likelihood ratio distribution is very close to normal distribution (as it is a sum of large number of independent
random variables (which are sum of mixtures themselves)). Hence, using the first two moments, that do not depend
on the exact distribution of the sensitive data, is sufficient to produce a generic data-independent upper-bound
on the privacy risk of learning the graphical model.

B Number of Samples for Estimating Conditional Probabilities

We use p̂vi to denote the estimated conditional probability that Xi = 1, given that the values of the activator
variables are PaGXi

= v. The number of samples nvi used to compute p̂vi are approximately Gaussian around npv
(n is the pool size, and pv is the probability of PaGXi

= v in the general population):

nvi ≈ npv +
√
npv(1− pv)Z1, (10)

where Z1 is a standard Gaussian random variable. In parallel, the value of p̂vi is also approximately Gaussian
around the true value pvi :

p̂vi ≈ pvi +

√
pvi (1− pvi)

nvi
Z2, (11)

where Z2 is a standard Gaussian random variable.

Using these two approximations, we now prove the results required for derivation of LR statistic mean and
variance.

C Approximation for mean derivation

As explained in section A, to compute the mean of the likelihood ratio we need the average contribution of
each Lvi i.e. value of Epop[1{PaGXi

=v}L
v
i]. Here we prove that Epop[1{PaGXi

=v}L
v
i], when the expectation is over

population is approximately equal to 1
2n . When expectation is over pool, the derivation steps are similar and the

value is − 1
2n .

Lemma 1. We will prove the following result:

Epop[1{PaGXi
=v}L

v
i] ≈

1

2n

(
1 +

1− pv
npv

)
(12)

Proof. We first observe that

Epop[1{PaGXi
=v}L

v
i] =Ep̂vi

[
Ex

[
1{PaGXi

=v}L
v
i | p̂vi

]]
=pvEp̂vi

[
pvi log

pvi
p̂vi

+ (1− pvi) log
1− pvi
1− p̂vi

]
,

and now all we need to show is that

EZ1,Z2

[
pvi log

pvi
p̂vi

+ (1− pvi) log
1− pvi
1− p̂vi

]
≈ 1

2npv

(
1 +

1− pv
npv

)
(13)

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

We approximate p̂vi with (11) and we use the Taylor expansion of log(1 + x) ≈ x− 1
2x

2:

pvi log
pvi
p̂vi
≈− pvi log

pvi +
√

pvi (1−pvi)
nv
i

Z2

pvi

=− pvi log

(
1 +

√
1− pvi
nvi p

v
i

Z2

)

≈− pvi

(√
1− pvi
nvi p

v
i

Z2 −
1− pvi
2nvi p

v
i

Z2
2

)

=−

√
pvi (1− pvi)

nvi
Z2 +

1− pvi
2nvi

Z2
2 (14)

Similarly,

(1− pvi) log
1− pvi
1− p̂vi

≈ −

√
pvi (1− pvi)

nvi
Z2 +

pvi
2nvi

Z2
2 (15)

Adding (14) and (15), we have

pvi log
pvi
p̂vi

+ (1− pvi) log
1− pvi
1− p̂vi

≈ −2

√
pvi (1− pvi)

nvi
Z2 +

1

2nvi
Z2
2 (16)

Taking the expectation EZ2
[.], and recalling that E[Z2] = 0 and E[Z2

2] = 1, we have

EZ1,Z2

[
pvi log

pvi
p̂vi

+ (1− pvi) log
1− pvi
1− p̂vi

]
=EZ1 [EZ2 [. . . |Z1]]

≈EZ1

[
1

2nvi

]
(17)

We now approximate nvi with (10) and we use the Taylor expansion of 1
1+x ≈ 1− x+ x2:

1

2nvi
≈ 1

2(npv +
√
npv(1− pv)Z1)

=
1

2npv

1

1 +
√

1−pv
npv

Z1

≈ 1

2npv

(
1−

√
1− pv
npv

Z1 +
1− pv
npv

Z2
1

)
(18)

Taking the expectation EZ1
[.], and recalling that E[Z1] = 0 and E[Z2

1] = 1, we have our final result:

EZ1,Z2

[
pvi log

pvi
p̂vi

+ (1− pvi) log
1− pvi
1− p̂vi

]
≈ 1

2npv

(
1 +

1− pv
npv

)

D Approximation for variance derivation

For calculating the variance of likelihood ratio, we need the expected values of L2
i and LiLj . Here we first prove

the below approximation and use it to calculate E(L2
i) and E(LiLj). As explained in section A, using these

values of E(L2
i) and E(LiLj) in equation 7 we get the variance of LR statistic.

Lemma 2. We will prove the following approximation:

Ep̂vi

[
pvi

(
log

pvi
p̂vi

)2

+ (1− pvi)
(

log
1− pvi
1− p̂vi

)2
]
≈ 1

npv

(
1 +

1− pv
npv

)
(19)

Proof. Using approximation (14)

Ep̂vi

[
pvi

(
log

pvi
p̂vi

)2
]
≈EZ1,Z2

 1

pvi

(
−

√
pvi (1− pvi)

nvi
Z2 +

1− pvi
2nvi

Z2
2

)2


=
1

pvi
EZ1,Z2

[
pvi (1− pvi)

nvi
Z2
2 +

(
1− pvi

2nvi

)2

Z4
2 − 2

√
pvi (1− pvi)

nvi

1− pvi
2nvi

Z3
2

]

=
1

pvi
EZ1

[
pvi (1− pvi)

nvi
+ 3

(
1− pvi

2nvi

)2
]

≈(1− pvi) EZ1

[
1

nvi

]
≈(1− pvi) EZ1

[
1

npv

(
1−

√
1− pv
npv

Z1 +
1− pv
npv

Z2
1

)]
=

1− pvi
npv

(
1 +

1− pv
npv

)
(20)

Similar to (20), we have:

Ep̂vi

[
(1− pvi)

(
log

1− pvi
1− p̂vi

)2
]
≈ pvi
npv

(
1 +

1− pv
npv

)
(21)

The desired result follows.

D.1 Approximation of Epop[L
2
i]

We approximate Epop[L
2
i] as:

Epop[L
2
i] = Epop

(∑
v

1{PaGXi
=v}L

v
i

)2


= Ep̂vi

E

(∑
v

1{PaGXi
=v}L

v
i

)2
∣∣∣∣∣∣p̂vi


=
∑
v

pv Ep̂vi [(Lvi)
2]

=
∑
v

pv Ep̂vi

[
pvi

(
log

pvi
p̂vi

)2

+ (1− pvi)
(

log
1− pvi
1− p̂vi

)2
]

≈
∑
v

1

n

(
1 +

1− pv
npv

)
(from approximation (19))

=
1

n
|V (PaGXi

)|+ 1

n2

∑
v

1− pv
pv

(22)

Combining the definition of complexity with equation (22), we have:

m∑
i=1

Epop[L
2
i] ≈

C

n
+

1

n2

m∑
i=1

∑
v

1− pv
pv

(23)

D.2 Approximation of Epop[LiLj]

There are three possible cases while finding the value of E[LiLj]. The random variables Xi and Xj might not
have any common parents, might have some common parents or one is the parent of other. We start with the

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

case in which Xi and Xj have no common parents. Let p(vi, vj) represent the joint probability of PaGXi
= vi and

PaGXj
= vj .

Epop[LiLj] = Epop

(∑
v

1{PaGXi
=vi}L

v
i

)∑
vj

1{PaGXj
=vj}L

v
j


= Epop

∑
vi,vj

1{PaGXi
=vi}1{PaGXj

=vj}L
v
iL

v
j


=
∑
vi,vj

Epop

[
1{PaGXi

=vi}1{PaGXj
=vj}L

v
iL

v
j

]
=
∑
vi,vj

p(vi, vj) Epop
[
LviL

v
j

]
≈
∑
vi,vj

p(vi, vj)×
1

2npvi
× 1

2npvj
(from (13))

=
∑
vi,vj

1

4n2
× p(vi, vj)

pvipvj
(24)

In the case where Xi and Xj have common parents Sij , let Si represent the parents exclusive to Xi and Sj
represent parents exclusive to Xj . Let p(vi, vj , vij) represent the joint probability of PaGXi

= vi and PaGXj
= vj

and common parent of Xi and Xj , PaGXi,j
= vij .

Epop[LiLj] = Epop

∑
vi,vij

1{PaGXi
=vi}1{PaGXij

=vij}L
v
i

∑
vj ,vij

1{PaGXj
=vj}1{PaGXij

=vij}L
v
j


= Epop

 ∑
vi,vj ,vij

(
1{PaGXi

=vi}1{PaGXj
=vj}1{PaGXij

=vij}L
v
iL

v
j

)
=

∑
vi,vj ,vij

p(vi, vj , vij) Epop
[
LviL

v
j

]
≈

∑
vi,vj ,vij

p(vi, vj , vij)×
1

2np(vi, vij)
× 1

2np(vj , vij)
(from (13))

=
∑

vi,vj ,vij

1

4n2
× p(vi, vj , vij)

p(vi, vij)p(vj , vij)
(25)

In the case where Xj is a parent of Xi,

Epop[LiLj] = Epop

(∑
vi

1{PaGXi
=vi}xjL

v
i

)∑
vj

1{PaGXj
=vj}L

v
j


= Epop

∑
vi,vj

(
1{PaGXi

=vi}1{PaGXj
=vj}xjL

v
i

(
xj log

pvj
p̂vj

))
=
∑
vi,vj

p(vi, vj , xj) Epop

[
Lvi log

pvj
p̂vj

]

≈
∑
vi,vj

p(vi, vj , xj)×
1

2np(vi, xj)
×

1− pvj
2npvj

(from (13))

=
∑
vi,vj

1− pvj
4n2

× p(vi, vj , xj)

p(vi, xj)pvj
(26)

E Generic Categorical Variable

In this section, we generalize our results to any categorical variables (not just binary). The extension from binary
to categorical is straightforward. We will have a similar expression for the likelihood ratio statistic:

L(x) = log

(
Pr(x; 〈G, θ〉)
Pr(x; 〈G, θ̂〉)

)

=

m∑
i=1

Li,

where Li is the contribution of Xi to L(x):

Li =
∑
v

1{PaGXi
=v}L

v
i

Instead of writing Lvi as

Lvi = xi log
pvi
p̂vi

+ (1− xi) log
1− pvi
1− p̂vi

we write
Lvi =

∑
o∈V (Xi)

1{xi=o} log
pvio
p̂vio

,

pvio = Pr(xi = o|PaGXi
= v)

Now,

Epop[L
v
i] =

∑
o∈V (Xi)

E

[
pvio log

pvio
p̂vio

]

=
∑

o∈V (Xi)

1− pvio
2nvi

(from (14))

=
|V (Xi)| − 1

2nvi
(27)

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

Epop[Li] =
∑
v

E[1{PaGXi
=v}L

v
i |PaGXi

= v]

=
∑
v

Ep̂vi

[
Ex

[
1{PaGXi

=v}L
v
i | p̂vi

]]
=
∑
v

pv
|V (Xi)| − 1

2nvi
(from (27))

=
∑
v

|V (Xi)| − 1

2n
+O(n−2) (from (18))

=|V (PaXi)| ×
|V (Xi)| − 1

2n
+O(n−2)

Now we can calculate Epop[L(x)] as:

Epop[L(x)] =
m∑
i=1

Epop[Li]

≈
m∑
i=1

|V (PaXi
)| × |V (Xi)| − 1

2n
+O(n−2)

=
C

2n
+O(Cn−2)

Hence,

Epop[L(x)] =
C

2n
+O(Cn−2) (28)

Similarly for deriving variance we have,

Epop[(L
v
i)

2] =
∑

o∈V (Xi)

E

[
pvio

(
log

pvio
p̂vio

)2
]

=
∑

o∈V (Xi)

1− pvio
nvi

(from (20))

=
|V (Xi)| − 1

nvi
(29)

Using equation (29), we can calculate Epop[L
2
i] as:

Epop[L
2
i] =

∑
v

E[1{PaGXi
=v}(L

v
i)

2|PaGXi
= v]

=
∑
v

Ep̂vi

[
Ex

[
1{PaGXi

=v}(L
v
i)

2 | p̂vi
]]

=
∑
v

pv
|V (Xi)| − 1

nvi
(from (29))

=
∑
v

|V (Xi)| − 1

n
+O(n−2) (from (18))

=|V (PaXi
)| × |V (Xi)| − 1

n
+O(n−2)

Hence,

m∑
i=1

Epop[L
2
i] =

m∑
i=1

|V (PaXi
)| × |V (Xi)| − 1

n
+O(n−2)

=
C

n
+O(Cn−2)

Varpop(L) = Epop[L
2]− (Epop[L])2

Epop[L
2] =

m∑
i=1

E[L2
i] + 2

∑
1≤i<j≤m

E[LiLj]

Similar to the derivations of
∑

Epop[Li] and
∑

Epop[L
2
i], we will have

∑
i,j

Epop[LiLj] =
C2

4n2
+O(C2n−2)

Hence, for categorical variables:

V arpop[L(x)] =
C

n
+O(C2n−2) (30)

F Naive Bayes

In section A, while deriving the variance, we haven’t calculated the exact value of the O(C2n−2) term. From
the released model, it is possible to calculate the exact value of this term. Here we derive the exact value of
the O(C2n−2) term, when the released model is a Naive Bayes model. Let the number of attributes in the
model be equal to m. Hence, the complexity of the model is C = 2m − 1. Let X1 be the class variable and
p1i = Pr(Xi = 1|X1 = 1). Then, using equation (13) we have:

Epop(L) = Epop

[
x1 log

p1
p̂1

+ (1− x1) log
1− p1
1− p̂1

+ x1

m∑
i=2

(
xi log

p1i
p̂1i

+ (1− xi) log
1− p1i
1− p̂1i

)

+(1− x1)

m∑
i=2

(
xi log

p0i
p̂0i

+ (1− xi) log
1− p0i
1− p̂0i

)]

=
1

2n
+

m∑
i=2

[
p1 ×

1

2np1
+

1

2n2

[
1− p1
p1

]]
+

m∑
i=2

[
(1− p1)× 1

2n(1− p1)
+

1

2n2

[
p1

1− p1

]]
=

2m− 1

2n
+O(mn−2)

=
C

2n
+O(Cn−2) (31)

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

We can calculate the exact value of Epop(L
2) using the equations (19), (25) and (26) as below :

Epop(L
2) = Epop

[[
x1 log

p1
p̂1

+ (1− x1) log
1− p1
1− p̂1

+ x1

m∑
i=2

(
xi log

p1i
p̂1i

+ (1− xi) log
1− p1i
1− p̂1i

)

+ (1− x1)

m∑
i=2

(
xi log

p0i
p̂0i

+(1− xi) log
1− p0i
1− p̂0i

)]2]

=
1

n
+

m∑
i=2

[
p1 ×

1

np1
+

1

n2

[
1− p1
p1

]]
+

m∑
i=2

[
(1− p1)× 1

n(1− p1)
+

1

n2

[
p1

1− p1

]]
+ 2

[(
m− 1

2

)
× p1

4n2p̂21
+

(
m− 1

2

)
× 1− p1

4n2(1− p̂1)2
+

(m− 1)(1− p1)

4n2
+

(m− 1)(p1)

4n2

]
=

2m− 1

n
+

(m− 1)(m− 2)

4n2

[
p1
p̂21

+
1− p1

(1− p̂1)2

]
+O(mn−2)

≈ C

n
+
m2

4n2

[
1

p1(1− p1)

]
+O(mn−2) (32)

Combining equations (31) and (32), we have the variance for Naive Bayes as:

Varpop(L) = Epop(L
2)− (Epop(L))2

=
C

n
+
m2

4n2

[
1

p1(1− p1)
− 4

]
+O(mn−2)

≈ C

n
+O(C2n−2) (33)

G Understanding the complexity metric - Parameter estimation errors

The complexity of a Bayesian network 〈G, θ〉 with discrete random variables is the number of independent
parameters used to define its probability distribution.

C(〈G, θ〉) =

m∑
i=1

|V (PaGXi
)|(|V (Xi)| − 1)

The parameters θ are estimated from the pool data. To understand the privacy risk of this learning to members
of the pool, we need to study the influence a member can have on the value of the parameters. Fisher information
quantifies the amount of information a random variable carries about the parameter(s) θ of the probability
distribution from which it is generated.

I(θ) = −Eθ(∇2l(θ)),

where I(θ) is Fisher information, and l(θ) is the log-likelihood function for θ.

If θ̂ is a Maximum Likelihood Estimate of θ, then it is known that

θ̂ = Normal(θ, I(θ̂)−1).

The log-likelihood functions of parameter θ from a PGM 〈G, θ〉, given a sample x are typically of the form:

l(θ) = log [Pr(x; 〈G, θ〉)]

=

m∑
i=1

li

where li is contribution of Xi to the likelihood function:

li =
∑

v∈V (PaGXi
)

1{PaGXi
=v}l

v
i

lvi =
∑

o∈V (Xi)

1{xi=o} log pvio

l =
∑
i,v,o

fi,v,o(x1, x2, . . . , xm) log(pvio),

where fi,v,o are activator functions (some combination of xi’s) for the parameter pvio.

I(p) = −Ep(∇2l(p))

All the non-diagonal elements of the information matrix are zero, because:

∂

∂pvio

∂

∂pvjo
[
∑
i,v,o

fi,v,o(x1, x2, . . . , xm) log(pvio)] = 0,∀i 6= j

This implies that all the standard normal variables used to represent frequencies in pool are pair-wise independent
i.e. all the estimation errors are independent across parameters. The difference between an estimated parameter
value (calculated from the pool) and the actual parameter value (calculated from the general population) is the
estimation error that leaks information about the pool. Since these estimation errors are independent across
parameters of a Bayesian network, each parameter makes a separate contribution to the power of the attacker.
Hence, the complexity measure defined as the number of independent parameters, captures the potential privacy
risk of the model.

H What about models trained with differential privacy?

The bound provided in Theorem 1 is computed assuming that the parameters are learned without any privacy
defense. The parameters can also be learned with a privacy defense (like differential privacy) in place. The effect
of a differentially private learning mechanism on our bound can be better reasoned under the recently introduced
notion of “f-differential privacy” (f -DP) [2]. f -DP is a new relaxation of differential privacy based on a framework
of hypothesis testing. It characterizes the trade-off between type I and type II errors in distinguishing any two
neighboring datasets using a function f . When the function f is from a specific family that characterizes the
trade-off between type I and type II errors in distinguishing the two normal distributions N (0, 1) and N (µ, 1)
based on one draw, it is said to be µ-GDP. If the learning mechanism satisfies µ-GDP, then the bound on power
of membership inference in Theorem 1 will become:

zα + z1−β ≤ µ (34)

Corollary 2.13 in the paper [2] provides the relationship between µ-GDP and the standard (ε, δ)−DP .

Corollary 1 [2]: A mechanism is µ-GDP if and only if it is
(
ε, δ(ε)

)
-DP for all ε ≥ 0, where

δ(ε) = Φ
(
− ε

µ
+
µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
, and Φ is the CDF of standard normal distribution.

Using Corollary 1 and equation 34, we can calculate how our bound in Theorem 1 changes when the parameters
are learned with differential privacy guarantees.

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

I Evaluation details: Bayesian network learning and Data synthesis

In this section, we describe the methods used in the evaluation for learning structure and parameters of a Bayesian
network and generating synthetic data. See [5] for a comprehensive overview of the methods to learn Bayesian
networks.

I.1 Structure Learning

The objective is to learn the significant dependencies between random variables, and represent them as a graph.
We used an existing algorithm based on maximizing a score function that measures how correlated different
attributes are, according to the training data [4]. For each attribute we find a set of attributes which are highly
correlated with it, yet are not significantly correlated among themselves.

score(PaGXi
) =

∑
Xj∈PaGXi

corr(Xi, Xj)√
|PaGXi

|+
∑
xj ,xk∈PaGXi

corr(Xj , Xk)
, (35)

corr(Xi, Xj) = 2− 2
H(Xi, Xj)

H(Xi) +H(Xj)
,

where H is the entropy function.

While optimizing this score for each attribute, we need to make sure that the graph remains acyclic. Also, to
control the complexity of the graph, we impose a condition on η, the maximum number of parents for each node.
We use an iterative and greedy algorithm that adds parents to each node while maximizing the score for all nodes
at each iteration, subject to the constraints.

I.2 Parameter Learning

We assume a prior distribution on all possible values of the parameters θ, and use the training data set to update
this distribution, using a Bayesian approach.

Let Xi be the random variable for a categorical attribute. Let ~θi be the parameters of the conditional probability
Pr[Xi|PaGXi

; θ]. For each assignment of values to PaGXi
; θ, we assume a prior distribution on all the possible

k-dimensional multinomial distributions. The prior distribution for each assignment v comes from a Dirichlet
family, i.e., ~θvi ∼ Dirichlet(~αvi), where ~αvi is the hyper parameters of the distribution.

Let ~cvi = [cvi1, c
v
i2, · · · , cvik] include the frequency of the events [Xi = j|PaGXi

; θ = v] in training data. We compute
the posterior distribution for ~θvi as Dirichlet(~αvi + ~cvi). Thus, the most likely estimation for set of parameters ~θvi
is:

θvij =
αvij + cvij∑k

j=1(αvij + cvij)
. (36)

In all our experiments, we use a uniform prior i.e., we set ~αvi to 1 in all dimensions.

I.3 Data Synthesis

Given a data set D, we want to synthesize datasets that are close in distribution to D. Graphical models could
be used for inference and prediction, as well as generating synthetic data (from the underlying distribution that
they encode). We use the below process for generating synthetic datasets:

1. Learn a Bayesian network 〈G, θ〉 from the data set D.

2. Create a Bayesian network 〈G′, θ′〉 with G′ = G, and θ′ drawn from the posterior Dirichlet distribution for θ,
which was computed during parameter learning.

3. Draw independent samples from 〈G′, θ′〉.

In our experiments, while generating the synthetic data, we use η = 3 for learning the structure G of the Bayesian
network 〈G, θ〉 from the data set D.

J Additional evaluation

J.1 Effect of releasing statistically insignificant edges

We analyze the effect on the power of attack of releasing edges (conditional probabilities) that are statistically
insignificant. To perform this evaluation, we consider the case where the structure of released model is not learned
from data but generated in a random way.

Figure 1 compares the power of the attack when two different models of almost equal complexity are released.
The structure of first model is generated by randomly adding edges and the structure of second model is learned
from data. Adversary uses the released model as the population model to calculate the LR statistic and perform
tracing attack. We can observe that the attack power is similar in both the cases.

The edges that are generated randomly might not be statistically significant, but they leak about membership. In
the LR Test for tracing attack, we rely on the difference between probability distributions for pool and population.
Adding a statistically insignificant edge gives similar probability distributions for all configurations of the parent.
Although the conditional probabilities are similar, their values will be different for pool and population and
hence they will leak about membership. Statistically insignificant edges leak as much information about
membership as significant edges.

10−4 10−3 10−2 10−1

0

0.2

0.4

0.6

False Positive Rate

P
ow

er

Location

Random Structure (C(G) = 719)

Learned Structure (C(G) = 789)

10−4 10−3 10−2 10−1

0

0.2

0.4

0.6

False Positive Rate

Purchase

Random Structure (C(G) = 1964)

Learned Structure (C(G) = 1942)

10−4 10−3 10−2 10−1

0

0.2

0.4

0.6

False Positive Rate

Genome

Random Structure (C(G) = 1750)

Learned Structure (C(G) = 1729)

Figure 1: Effect of Releasing Graphical Models with Random Edges: Here we compare the power of attack,
when two models of similar complexity learned on the dataset are released but structure of one model is learned from data
and the structure of other is generated randomly. We can see that for close values of C, the power of attack is almost same
for both the models. This shows that statistically insignificant edges leak as much information about membership, as that
of significant edges.

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

J.2 Optimality of the theoretical threshold

In Figure 2, we compare theoretical thresholds for certain false positive rates with their corresponding values
estimated using the reference population. The adversary has access to some reference population. For a given
false positive rate, the adversary chooses the threshold based on the likelihood ratio on the reference population
data. The attacker then runs the LR test tracing attack. When η = 0 (row 1), we observe that the theoretical
threshold values are much higher than the estimated values. When η = 3 (row 2), the observed thresholds are
closer to the estimated values.

When η = 0, the parameter estimation errors are correlated, which reduces the amount of information leakage.
The adversary, when using the theoretical threshold, overestimates the amount of leakage (power) and hence
chooses a higher threshold. When η = 3, the released model captures most of the dependencies among attributes in
the data. Hence the observed threshold will be closer to the theoretical threshold values. From the adversary’s
perspective, the theoretical threshold value is sub-optimal when the released model is underfitted
(loss of utility).

10−4 10−3 10−2 10−1
−6

−4

−2

0

T
hr
es
ho

ld

Location

Attack
Theoretical

10−4 10−3 10−2 10−1
−6

−4

−2

0

Purchase

Attack
Theoretical

10−4 10−3 10−2 10−1
−6

−4

−2

0

η
=

0

Genome

Attack
Theoretical

10−4 10−3 10−2 10−1
−6

−4

−2

0

False Positive Rate

T
hr
es
ho

ld

Attack
Theoretical

10−4 10−3 10−2 10−1
−6

−4

−2

0

False Positive Rate

Attack
Theoretical

10−4 10−3 10−2 10−1
−6

−4

−2

0

η
=

3

False Positive Rate

Attack
Theoretical

Figure 2: Effect of releasing underfitted models on threshold selection: This plot compares the threshold values
estimated by the adversary using reference population at different false positive rates with their corresponding theoretical
values. The label Attack indicates that the threshold is estimated by the adversary using reference population. We observe
that for underfit models (η = 0) (first row), the threshold value estimated from the reference population is way less than
the corresponding theoretical value. As the model gets closer to the generator distribution (η = 3) (second row), the
estimated threshold values get closer to the theoretical values.

J.3 Effect of using a complex model for estimating likelihood of Null hypothesis

In this subsection, we present the effect of population model choice on the behavior of the likelihood ratio test
and on the power of the tracing attack. Specifically, we study the effect of using models that are more complex
than the released model as population model. The parameters of a graphical model 〈G, θ̂〉 with η = 1 are learned
on the pool data and released. The adversary has access to a complex and better representative model 〈Gpop, θ〉
that was learned with η = 3. The adversary can choose to use either the released model structure G or a complex
model structure Gpop as population model structure.

Figure 3 compares the empirical distribution of test statistic (likelihood ratio) values computed on members of
the pool and on non-members for both choices of population model on the genome dataset. On the right, we
observe that the member distribution is indistinguishable from the non-member distribution when Gpop (learned
with η = 3) is used as structure of population model. We also observe that the values of the likelihood ratio are
much higher – from 20 to 70 – compared to the values we observe on the left (narrowly concentrated around 0)
when the structure of population model is same as that of released model (learned with η = 1).

When a complex model is used as population model, the likelihood value of the null hypothesis increases for both
members and non-members. Hence it cannot help in distinguishing members from non-members. Also it changes
the meaning of the hypothesis test. When a complex model is used to compute the likelihood of null hypothesis,
the computed likelihood is no longer the likelihood of the target being a random sample from the population. The
meaning of this new hypothesis test would be the following: which of the models is more likely given the target.
Since complex models are more likely compared to simpler models, the test statistic (likelihood ratio) values will
be very high and positive. Figure 4 compares the power of the tracing attack for both choices of population
model. The power of the attack is higher when the released model structure is used as the population model
structure. Knowledge of additional statistics about population other than the released statistics
doesn’t increase the power of adversary.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

Likelihood ratio value

Fr
eq
ue
nc
y

Gpop = G

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

G
en

om
e

Likelihood ratio value

Gpop 6= G

Pool

Population

Figure 3: Comparison of likelihood ratio distributions computed on members of the pool (blue histogram)
and on non-members (red histogram): Left: To calculate the likelihood of the null hypothesis HOUT, we use
the population model 〈G, θ〉, whose structure is the same as that of the released model 〈G, θ̂〉 (η = 1). We observe
that the member distribution is clearly distinguishable from the non-member distribution. Right: To calculate the
likelihood of the null hypothesis HOUT, we use the population model 〈Gpop, θ〉, whose structure is different and more
complex (η = 3) than the released model 〈G, θ̂〉 (η = 1). We observe that the member/non-member distributions are
indistinguishable. Also, the values of the likelihood ratio are much higher compared to the left part of the figure. Using
a complex population model might increase the likelihood of null hypothesis HOUT, but it increases the value for both
members and non-members (as a complex model can explain both members and non-members better than a simple model
can), making them indistinguishable. Hence the optimal choice of population model for the adversary is the released model
estimated over the reference population.

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

Figure 4: Effect of using a complex model as population model: The parameters of a graphical model 〈G, θ̂〉
with η = 1 are learned on the pool data and the model is released. The adversary has access to a better (more complex)
generative model 〈Gpop, θ〉 with (η = 3). We observe how the power of the attack changes when calculating the likelihood
of null hypothesis using this complex generative model structure instead of the released model structure. We can see that
the power of the attack reduces when the population model structure is not the same as the released model structure.
As shown in Figure 3, using a complex population model increases the likelihood for both members and non-members
and hence cannot help in distinguishing them. This shows that it is not possible to increase the power of adversary using
knowledge about additional statistics on the data that are not present in the released graphical model.

10−4 10−3 10−2 10−1

0

0.2

0.4

0.6

False Positive Rate

P
ow

er

Location

C(G) = 789 Gpop = G

C(Gpop) = 1905 Gpop 6= G

10−4 10−3 10−2 10−1

0

0.2

0.4

0.6

False Positive Rate

Purchase

C(G) = 1096 Gpop = G

C(Gpop) = 3431 Gpop 6= G

10−4 10−3 10−2 10−1

0

0.2

0.4

0.6

False Positive Rate

Genome

C(G) = 1729 Gpop = G

C(Gpop) = 4323 Gpop 6= G

J.4 Effect of Biased Sampling

In this section, we empirically study the effect of sampling bias on the power of tracing attack. We model a case
of sampling bias, where we discriminate against individuals with some attribute value (say 1). We add a bias in
the sampling mechanism for pool, by making the probability of selecting an attribute with value 1 as 1− bias.

Pr(select|Xi = 0) = 1 (37)

Pr(select|Xi = 1) = 1− bias (38)

Synthetic data for this experiment was generated from graphs learned on Genome data. Pool is sampled in a
biased way as described above. The parameter bias can be used alter the amount of sampling bias. We generate
a total of 10000 samples, of which we randomly select 2000 as pool and 4000 as reference population.

Figure 5 shows the effect of bias on power of attack. We can clearly observe that power of attack increases with
increase in bias. When the pool is drawn from same distribution as population, we leveraged on finite sample
estimation error for membership inference. If pool is drawn from distribution that is even slightly different from
population distribution, power of attack increases and can be greater than provided bounds. Biased sampling
increases the power of tracing attack

10−4 10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

False Positive Rate

P
ow

er

Biased Sampling(η = 0)

bias = 0.3

bias = 0.1

bias = 0(Theory)

10−4 10−3 10−2 10−1 100

0

0.2

0.4

0.6

0.8

1

False Positive Rate

P
ow

er
Biased Sampling(η = 3)

bias = 0.3

bias = 0.1

bias = 0(Theory)

Figure 5: Comparison of Power values in case of biased sampling: Figure shows the effect of sampling
bias on the power of tracing attack. We generate synthetic data using graph structures of different complexity
that are learned on Genome data. The conditional probability values are generated from a Dirichlet distribution
fitted to the conditional probabilities in corresponding graph of Genome data. The parameter bias is used to tune
the bias in sampling of the pool. We can observe that power of attack in case of biased sampling is greater than
the theoretical bound (with out considering bias). With increasing value of bias, the pool distribution deviates
more from the population distribution, which increases the power of attack.

References

[1] A. C. Berry. The accuracy of the gaussian approximation to the sum of independent variates. Transactions of
the american mathematical society, 49(1):122–136, 1941.

[2] J. Dong, A. Roth, and W. J. Su. Gaussian differential privacy. arXiv preprint arXiv:1905.02383, 2019.

[3] C.-G. Esseen. On the liapunoff limit of error in the theory of probability. Arkiv för matematik, astronomi och
fysik, 1942.

Appendix: Quantifying the Privacy Risks of Learning High-Dimensional Graphical Models

[4] M. A. Hall. Correlation-based feature selection for machine learning. 1999.

[5] D. Koller, N. Friedman, and F. Bach. Probabilistic graphical models: principles and techniques. MIT press,
2009.

	Derivation of mean and variance of the likelihood ratio
	Distribution of the log-likelihood ratio

	Number of Samples for Estimating Conditional Probabilities
	Approximation for mean derivation
	Approximation for variance derivation
	Approximation of `39`42`"613A``45`47`"603AEpop[Li2]
	Approximation of `39`42`"613A``45`47`"603AEpop[Li Lj]

	Generic Categorical Variable
	Naive Bayes
	Understanding the complexity metric - Parameter estimation errors
	What about models trained with differential privacy?
	Evaluation details: Bayesian network learning and Data synthesis
	Structure Learning
	Parameter Learning
	Data Synthesis

	Additional evaluation
	Effect of releasing statistically insignificant edges
	Optimality of the theoretical threshold
	Effect of using a complex model for estimating likelihood of Null hypothesis
	Effect of Biased Sampling

