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Abstract

Algorithmic machine teaching has been stud-
ied under the linear setting where exact teach-
ing is possible. However, little is known for
teaching nonlinear learners. Here, we estab-
lish the sample complexity of teaching, aka
teaching dimension, for kernelized perceptrons
for different families of feature maps. As a
warm-up, we show that the teaching complex-
ity is Θ(d) for the exact teaching of linear
perceptrons in Rd, and Θ(dk) for kernel per-
ceptron with a polynomial kernel of order k.
Furthermore, under certain smooth assump-
tions on the data distribution, we establish a
rigorous bound on the complexity for approxi-
mately teaching a Gaussian kernel perceptron.
We provide numerical examples of the opti-
mal (approximate) teaching set under several
canonical settings for linear, polynomial and
Gaussian kernel perceptrons.

1 Introduction

Machine teaching studies the problem of finding an opti-
mal training sequence to steer a learner towards a target
concept (Zhu et al., 2018). An important learning-
theoretic complexity measure of machine teaching is
the teaching dimension (Goldman & Kearns, 1995),
which specifies the minimal number of training ex-
amples required in the worst case to teach a target
concept. Over the past few decades, the notion of
teaching dimension has been investigated under a va-
riety of learner’s models and teaching protocols (e.g,.
Cakmak & Lopes (2012); Singla et al. (2013; 2014); Liu
et al. (2017); Haug et al. (2018); Tschiatschek et al.
(2019); Liu et al. (2018); Kamalaruban et al. (2019);
Hunziker et al. (2019); Devidze et al. (2020); Rakhsha
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et al. (2020)). One of the most studied scenarios is
the case of teaching a version-space learner (Goldman
& Kearns, 1995; Anthony et al., 1995; Zilles et al.,
2008; Doliwa et al., 2014; Chen et al., 2018; Mansouri
et al., 2019; Kirkpatrick et al., 2019). Upon receiving
a sequence of training examples from the teacher, a
version-space learner maintains a set of hypotheses that
are consistent with the training examples, and outputs
a random hypothesis from this set.

As a canonical example, consider teaching a 1-
dimensional binary threshold function fθ∗(x) =
1 {x− θ∗} for x ∈ [0, 1]. For a learner with a finite (or
countable infinite) version space, e.g., θ ∈ { in}i=0,...,n

where n ∈ Z+ (see Fig. 1a), a smallest training set
is {

(
i
n , 0
)
,
(
i+1
n , 1

)
} where i

n ≤ θ∗ < i+1
n ; thus the

teaching dimension is 2. However, when the version
space is continuous, the teaching dimension becomes
∞, because it is no longer possible for the learner to
pick out a unique threshold θ∗ with a finite training
set. This is due to two key (limiting) modeling assump-
tions of the version-space learner: (1) all (consistent)
hypotheses in the version space are treated equally,
and (2) there exists a hypothesis in the version space
that is consistent with all training examples. As one
can see, these assumptions fail to capture the behavior
of many modern learning algorithms, where the best
hypotheses are often selected via optimizing certain
loss functions, and the data is not perfectly separable
(i.e. not realizable w.r.t. the hypothesis/model class).

To lift these modeling assumptions, a more realistic
teaching scenario is to consider the learner as an empir-
ical risk minimizer (ERM). In fact, under the realizable
setting, the version-space learner could be viewed as an
ERM that optimizes the 0-1 loss—one that finds all hy-
potheses with zero training error. Recently, Liu & Zhu
(2016) studied the teaching dimension of linear ERM,
and established values of teaching dimension for several
classes of linear (regularized) ERM learners, including
support vector machine (SVM), logistic regression and
ridge regression. As illustrated in Fig. 1b, for the previ-
ous example it suffices to use {(θ∗ − ε, 0) , (θ∗ + ε, 1)}
with any ε ≤ min(1 − θ∗, θ∗) as training set to teach
θ∗ as an optimizer of the SVM objective (i.e., l2 regu-
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(c) Perceptron

Figure 1: Teaching a 1D threshold function to an
ERM learner. Training instances are marked in grey.
(a) Version-space learner with a finite hypothesis set.
(b) SVM and training set {(θ∗ − ε, 0) , (θ∗ + ε, 1)}. (c)
ERM learner with (perceptron) loss and training set
{(θ∗, 0), (θ∗, 1)}.

larized hinge loss); hence the teaching dimension is 2.
In Fig. 1c, we consider teaching an ERM learner with
perceptron loss, i.e., `(fθ(x), y) = max (−y · (x− θ), 0)
(where y ∈ {−1, 1}). If the teacher is allowed to con-
struct any training example with any labeling1 , then
it is easy to verify that the minimal training set is
{(θ∗,−1), (θ∗, 1)}.
While these results show promise at understanding
optimal teaching for ERM learners, existing work (Liu
& Zhu, 2016) has focused exclusively on the linear
setting with the goal to teach the exact hypothesis
(e.g., teaching the exact model parameters or the exact
decision boundary for classification tasks). Aligned
with these results, we establish an upper bound as
shown in §3.1. It remains a fundamental challenge
to rigorously characterize the teaching complexity for
nonlinear learners. Furthermore, in the cases where
exact teaching is not possible with a finite training set,
the classical teaching dimension no longer captures the
fine-grained complexity of the teaching tasks, and hence
one needs to relax the teaching goals and investigate
new notions of teaching complexity.

In this paper, we aim to address the above challenges.
We focus on kernel perceptron, a specific type of ERM
learner that is less understood even under the linear
setting. Following the convention in teaching ERM
learners, we consider the constructive setting, where the
teacher can construct arbitrary teaching examples in
the support of the data distribution. Our contributions
are highlighted below, with main theoretical results
summarized in Table 1.

• We formally define approximate teaching of kernel
perceptron, and propose a novel measure of
teaching complexity, namely the ε-approximate
teaching dimension (ε-TD), which captures the

1If the teacher is restricted to only provide consistent
labels (i.e., the realizable setting), then the ERM with
perceptron loss reduces to the version space learner, where
the teaching dimension is ∞.

linear polynomial Gaussian

TD (exact) Θ (d) Θ
((
d+k−1
k

))
∞

ε-approximate TD - - dO(log2 1
ε )

Assumption - 3.2.1 3.4.1, 3.4.2

Table 1: Teaching dimension for kernel perceptron

complexity of teaching a “relaxed” target that
is close to the target hypothesis in terms of the
expected risk. Our relaxed notion of teaching
dimension strictly generalizes the teaching di-
mension of Liu & Zhu (2016), where it trades off
the teaching complexity against the risk of the
taught hypothesis, and hence is more practical in
characterizing the complexity of a teaching task (§2).

• We show that exact teaching is feasible for kernel
perceptrons with finite dimensional feature maps,
such as linear kernel and polynomial kernel.
Specifically, for data points in Rd, we establish
a Θ (d) bound on the teaching dimension of
linear perceptron. Under a mild condition on
data distribution, we provide a tight bound of
Θ
((
d+k−1
k

))
for polynomial perceptron of order k.

We also exhibit optimal training sets that match
these teaching dimensions (§3.1 and §3.2).

• We further show that for Gaussian kernelized percep-
tron, exact teaching is not possible with a finite set
of hypotheses, and then establish a dO(log2 1

ε ) bound
on the ε-approximate teaching dimension (§3.4). To
the best of our knowledge, these results constitute
the first known bounds on (approximately) teaching
a non-linear ERM learner (§3).

2 Problem Statement

Basic definitions We denote by X the input space
and Y := {−1, 1} the output space. A hypothesis is
a function h : X → Y. In this paper, we identify
a hypothesis hθ with its model parameter θ. The
hypothesis space H is a set of hypotheses. By training
point we mean a pair (x, y) ∈ X × Y. We assume
that the training points are drawn from an unknown
distribution P over X ×Y . A training set is a multiset
D = {(x1, y1) , · · · , (xn, yn)} where repeated pairs are
allowed. Let D denote the set of all training sets of
all sizes. A learning algorithm A : D → 2H takes
in a training set D ∈ D and outputs a subset of the
hypothesis space H. That is, A doesn’t necessarily
return a unique hypothesis.

Kernel perceptron Consider a set of training points
D := {(xi, yi)}ni=1 where xi ∈ Rd and hypothesis θ ∈
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Rd. A linear perceptron is defined as fθ(x) := sign(θ·x)
in homogeneous setting. We consider the algorithm
Aopt to learn an optimal perceptron to classify D as
defined below:

Aopt (D) := arg min
θ∈Rd

n∑
i=1

`(fθ(xi), yi). (1)

where the loss function `(fθ(x), y) := max(−y·fθ(x), 0).
Similarly, we consider the non-linear setting via kernel-
based hypotheses for perceptrons that are defined with
respect to a kernel operator K : X × X → R which
adheres to Mercer’s positive definite conditions (Vapnik,
1998). A kernel-based hypothesis has the form,

f(x) =

k∑
i=1

αi · K(xi,x) (2)

where ∀i xi ∈ X and αi are reals. In order to simplify
the derivation of the algorithms and their analysis, we
associate a reproducing kernel Hilbert space (RKHS)
with K in the standard way common to all kernel
methods. Formally, let HK be the closure of the set
of all hypotheses of the form given in Eq. (2). A non-
linear kernel perceptron corresponding to K optimizes
Eq. (1) as follows:

Aopt(D) := arg min
θ∈HK

n∑
i=1

`(fθ(xi), yi) (3)

where fθ(·) =
∑l
i=1 αi · K(ai, ·) for some {ai}li=1 ⊂ X

and αi real. Alternatively, we also write fθ(·) = θ ·Φ(·)
where Φ : X → HK is defined as feature map to the ker-
nel function K. A reproducing kernel Hilbert space with
K could be decomposed as K(x,x′) = 〈Φ(x), Φ(x′)〉
(Scholkopf & Smola, 2001) for any x,x′ ∈ X . Thus, we
also identify fθ as

∑l
i=1 αi · Φ(ai).

The teaching problem We are interested in the
problem of teaching a target hypothesis θ∗ where a help-
ful teacher provides labelled data points T S ⊆ X × Y ,
also defined as a teaching set. Assuming the construc-
tive setting (Liu & Zhu, 2016), to teach a kernel per-
ceptron learner the teacher can construct a training set
with any items in Rd i.e. for any (x′, y′) ∈ T S we have
x′ ∈ Rd and y′ ∈ {−1, 1}. Importantly, for the purpose
of teaching we do not assume that T S are drawn i.i.d
from a distribution. We define the teaching dimension
for exact parameter of θ∗ corresponding to a kernel per-
ceptron as TD(θ∗,Aopt), which is the size of the small-
est teaching set T S such that Aopt (T S) = {θ∗}. We
define teaching of exact parameters of a target hypothe-
sis θ∗ as exact teaching. Since, a perceptron is agnostic
to norms, we study the problem of teaching a target
classifier decision boundary where Aopt (T S) = {tθ∗}

for some real t > 0. Thus,

TD({tθ∗},Aopt) = min
real p>0

TD(pθ∗,Aopt).

Since it can be stringent to construct a teaching set
for decision boundary (see §3.4), exact teaching is not
always feasible. We introduce and study approximate
teaching which is formally defined as:

Definition 1 (ε-approximate teaching set). Con-
sider a kernel perceptron learner, with a kernel
K : X × X → R and the corresponding RKHS feature
map Φ(·). For a target model θ∗ ∈ HK and ε > 0, we
say T S ⊆ X × Y is an ε-approximate teaching set wrt
to P if the kernel perceptron θ̂ ∈ Aopt(T S) satisfies∣∣∣E [max(−y · f∗(x), 0)]− E

[
max(−y · f̂(x), 0)

]∣∣∣ ≤ ε
(4)

where the expectations are over (x, y) ∼ P and
f∗(x) = θ∗ · Φ(x) and f̂(x) = θ̂ · Φ(x).

Naturally, we define approximate teaching dimension
as:

Definition 2 (ε-approximate teaching dimension).
Consider a kernel perceptron learner, with a kernel
K : X × X → R and the corresponding RKHS feature
map Φ(·). For a target model θ∗ ∈ HK and ε > 0, we
define ε-TD(θ∗,Aopt) as the teaching dimension which
is the size of the smallest teaching set for ε-approximate
teaching of θ∗ wrt P.

According to Definition 2, exact teaching corresponds
to constructing a 0-approximate teaching set for a tar-
get classifier (e.g., the decision boundary of a kernel
perceptron). We study linear and polynomial kernel-
ized perceptrons in the exact teaching setting. Under
some mild assumptions on the smoothness of the data
distribution, we establish approximate teaching bound
on approximate teaching dimension for Gaussian ker-
nelized perceptron.

3 Teaching Dimension for Kernel
Perceptron

In this section, we study the generic problem of teach-
ing kernel perceptrons in three different settings: 1)
linear (in §3.1); 2) polynomial (in §3.2); and Gaus-
sian (in §3.4). Before establishing our main result for
Gaussian kernelized perceptrons, we first introduce two
important results for linear and polynomial perceptrons
inherently connected to the Gaussian perceptron. Our
proofs are inspired by ideas from linear algebra and
projective geometry as detailed in the supplemental
materials.
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3.1 Homogeneous Linear Perceptron

In this subsection, we study the problem of teaching a
linear perceptron. First, we consider an optimization
problem similar to Eq. (1) as shown in Liu & Zhu
(2016):

Aopt := arg min
θ∈Rd

n∑
i=1

`(θ · xi, yi) +
λ

2
||θ||2A (5)

where `(·, ·) is a convex loss function, A is a positive
semi-definite matrix, ||θ||A is defined as

√
θ>Aθ, and

λ > 0. For convex loss function `(·, ·), Theorem 1 (Liu
& Zhu, 2016) established a degree-of-freedom lower
bound on the number of training items to obtain a
unique solution θ∗. Since, the loss function for linear
perceptron is convex thus we immediately obtain a
lower bound on the teaching dimension as follows:
Corollary 1. If A = 0 and λ = 1, then Eq. (1) can
be solved as Eq. (5). Moreover, teaching dimension for
decision boundary corresponding to a target model θ∗
is lower-bounded by Ω (d).

Now, we would establish an upper bound on
TD(Aopt,θ

∗) for exact teaching of the decision bound-
ary of a target model θ∗. The key idea is to find a set
of points which span the orthogonal subspace of θ∗,
which we use to force a solution θ̂ ∈ Aopt such that it
has a component only along θ∗. Formally, we state the
claim of the result with proof as follows:
Theorem 1. Given any target model θ∗, for solving
Eq. (1) the teaching dimension for the decision bound-
ary corresponding to θ∗ is Θ (d). The following is a
teaching set:

xi = vi, yi = 1 ∀ i ∈ [d− 1];

xd = −
d−1∑
i=1

vi, yd = 1; xd+1 = θ∗, yd+1 = 1

where {vi}di=1 is an orthogonal basis for Rd which ex-
tends with vd = θ∗.

Proof. Using Corollary 1, the lower bound for solv-
ing Eq. (1) is immediate. Thus, if we show that the
mentioned labeled set of training points form a teach-
ing set, then we can show an upper bound which
would imply a tight bound of Θ (d) on the teach-
ing dimension for finding the decision boundary. De-
note the set of labeled data points as D. Denote by
p(θ) :=

∑d+1
i=1 max(−yi · θ · xi, 0). Since {vi}di=1 is an

orthogonal basis, thus ∀ i ∈ [d− 1] vi · θ∗ = 0, thus it
is not very difficult to show that p(tθ∗) = 0 for some
positive scalar t. Note, if θ̂ is a solution to Eq. (1) then:

θ̂ ∈ arg min
θ∈Rd

d+1∑
i=1

max(−yi · θ · xi, 0)

Also, p(θ̂) = 0 =⇒ xi · θ̂ ≥ 0 ∀ i ∈ [d] but then
xd = −∑d−1

i=1 xi =⇒ ∀ i ∈ [d] xi · θ̂ = 0. Note that,
θ̂ · θ∗ ≥ 0 forces θ̂ = tθ∗ for some positive constant t.
Thus, D is a teaching set for the decision boundary of
θ∗. This establishes the upper bound, and hence the
theorem follows.

Numerical example To illustrate Theorem 1, we
provide a numerical example for teaching a lin-
ear perceptron in R3, with θ∗ = (−3, 3, 5)>

(illustrated in Fig. 2a). To construct the
teaching set, we first obtain an orthogonal ba-
sis {(0.46, 0.86,−0.24)>, (0.76,−0.24, 0.6)>} for the
subspace orthogonal to θ∗, and add a vector
(−1.22,−0.62,−0.36)> which is in the exact opposite
direction of the first two combined. Finally we add to
T S an arbitrary vector which has a positive dot prod-
uct with the normal vector, e.g. (−0.46, 0.46, 0.76)>.
Labeling all examples positive, we obtain T S of size 4.

3.2 Homogeneous Polynomial Kernelized
Perceptron

In this subsection, we study the problem of teaching a
polynomial kernelized perceptron in realizable setting.
Similar to §3.1, we establish an exact teaching bound
on the teaching dimension under a mild condition on
the data distribution. We consider homogeneous poly-
nomial kernel K of degree k in which for any x,x′ ∈ Rd

K(x,x′) = (〈x,x′〉)k

If Φ(·) denotes the feature map for the corresponding
RKHS, then we know that the dimension of the map is(
d+k−1
k

)
where each component of the map can be repre-

sented by Φλ(x) =
√

k!∏d
i=1 λi!

xλ where λ ∈ (N ∪ {0})d

and
∑
i λi = k. Denote by HK the RKHS correspond-

ing to the polynomial kernel K. We use Hk := Hk(Rd)
to represent the linear space of homogeneous polyno-
mials of degree k over Rd. We mention an important
result which shows the RKHS for polynomial kernels is
isomorphic to the space of homogeneous polynomials
of degree k in d variables.

Proposition 1 (Chapter III.2, Proposition 6 (Cucker
& Smale, 2001)). Hk = HK as function spaces and
inner product spaces.

The dimension dim
(
Hk(Rd)

)
of the linear space of ho-

mogeneous polynomials of degree k over Rd is
(
d+k−1
k

)
.

Denote by r :=
(
d+k−1
k

)
. Since HK is a vector space for

polynomial kernel K, thus for exact teaching there is an
obvious lower bound of Ω

((
d+k−1
k

))
on the teaching

dimension.
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Before we establish the main result of this subsection
we state a mild assumption on the target model we
consider for exact teaching which is as follows:
Assumption 3.2.1 (Existence of orthogonal polyno-
mials). For the target model θ∗ ∈ HK, we assume that
there exist (r − 1) linearly independent polynomials
on the orthogonal subspace of θ∗ in HK of the form
{Φ(zi)}r−1i=1 where ∀i zi ∈ X .

Similar to Theorem 1, the key insight in having As-
sumption 3.2.1 is to find independent polynomial on
the orthogonal subspace defined by θ∗. We state the
claim here with proof established in the supplemental
materials.
Theorem 2. For all target models θ∗ ∈ HK for which
the Assumption 3.2.1 holds, for solving Eq. (3), the
exact teaching dimension for the decision boundary
corresponding to θ∗ is O

((
d+k−1
k

))
.

Numerical example For constructing T S in the
polynomial case, we follow a similar strategy in the
higher dimensional space that the original data is pro-
jected into. The only difference is that we need to
ensure the teaching examples have pre-images in the
original space. For that, we adopt a randomized al-
gorithm that solves for r − 1 boundary points in the
original space (i.e. solve for θ∗ ·Φ(x) = 0) , while check-
ing the images of these points are linearly independent.
Also, instead of adding a vector in the opposite direc-
tion of these points combined, we simply repeat the
r − 1 points in the teaching set, while assigning one
copy of them positive labels and the other copy nega-
tive labels. Finally, we need one last vector (label it
positive) whose image has a positive component in θ∗,
and we obtain T S of size 2r − 1.

Fig. 2b and Fig. 2c demonstrate the above constructive
procedure on a numerical example with d = 2, homoge-
neous polynomial kernel of degree 2, and θ∗ = (1, 4, 4)

>.
In Fig. 2b we show the decision boundary (red lines) and
the level sets (polynomial contours) of this quadratic
perceptron, as well as the teaching set identified via the
above algorithmic procedure. In Fig. 2b, we visualize
the decision boundary (grey plane) in the feature space
(after applying the feature map). The blue surface
corresponds to all the data points that have pre-images
in the original space R2.

3.3 Limitations in Exact Teaching of
Polynomial Kernel Perceptron

In the previous section §3.2, we imposed the Assump-
tion 3.2.1 on the target models θ∗. It turns out that
we couldn’t do better than this. More concretely, we
need to impose this assumption for exact teaching of
polynomial kernel perceptron learner. Further, there

are pathological cases where violation of the assump-
tion leads to models which couldn’t be approximately
taught.

Intuitively, solving Eq. (3) in the paradigm of exact
teaching reduces to nullifying the orthogonal subspace
of θ∗ i.e. any component of θ∗ along the subspace
is nullified. Since the information of the span of the
subspace has to be encoded into the datapoints chosen
for teaching, Assumption 3.2.1 is a natural step to make.
Interestingly, we show that the step is not so stringent.
In the realizable setting in which all the teaching points
are correctly classified, if we lift the assumption then
exact teaching is not possible.We state the claim in the
following lemma:
Lemma 1. Consider a target model θ∗ that doesn’t
satisfy Assumption 3.2.1. Then, there doesn’t exist a
teaching set T Sθ∗ which exactly teaches θ∗ i.e. for any
T Sθ∗ and any real t > 0

Aopt (T Sθ∗) 6= {tθ∗}.

Lemma 1 shows that for exact teaching θ∗ should
satisfy Assumption 3.2.1. Then, the natural question
that arises is whether we can achieve arbitrarily ε-close
approximate teaching for θ∗. In other words, we would
like to find θ̃∗ that satisfies Assumption 3.2.1 and is
in ε-neighbourhood of θ∗. We show a negative result
for this when k is even. For this we assume that,
the datapoints in the teaching set T S θ̃∗ have lower-
bounded norm, call it, δ > 0 i.e. if (xi, yi) ∈ T S θ̃∗ then
||Φ(xi)|| ≥ δ. We require this additional assumption
only for the purpose of analysis. We would show that
it wouldn’t lead to any pathological cases where the
constructed target model θ∗ incorporates approximate
teaching.
Lemma 2. Let X ⊆ Rd and HK be the reproducing
kernel Hilbert space such that kernel function K is of
degree k. If k has parity even then there exists a target
model θ∗ which violates Assumption 3.2.1 and can’t be
taught approximately.

The results are discussed in details with proofs in the
supplemental materials. Assumption 3.2.1 and the
stated lemmas provide insights into understanding the
problem of teaching for non-linear perceptron kernels.
In the next section, we study Gaussian kernel and
the ideas generated here would be useful in devising a
teaching set in the paradigm of approximate teaching.

3.4 Gaussian Kernelized Perceptron

In this subsection, we consider the Gaussian kernel.
Under mild assumptions inspired by the analysis of
teaching dimension for exact teaching of linear and
polynomial kernel perceptrons, we would establish as
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(a) Linear (T S) (b) Polynomial (T S) (c) Polynomial (feature space)

Figure 2: Numerical examples of exact teaching for linear and polynomial perceptrons. Cyan plus marks and red
dots correspond to positive and negative teaching examples respectively.

our main result an upper bound on the ε-approximate
teaching dimension of Gaussian kernel perceptrons us-
ing a construction of an ε-approximate teaching set.

Preliminaries of Gaussian kernel AGaussian ker-
nel K is a function of the form

K(x,x′) = e−
||x−x′||2

2σ2 (6)

for any x,x′ ∈ Rd and parameter σ. First, we would
try to understand the feature map before we find an
approximation to it. Notice:

e−
||x−x′||2

2σ2 = e−
||x||2

2σ2 e−
||x′||2

2σ2 e
〈x, x′〉
σ2

Consider the scalar term z = 〈x, x′〉 /σ2. We can ex-
pand the term of the product using the Taylor expan-
sion of ez near z = 0 as shown in Cotter et al. (2011),

which amounts to e
〈x, x′〉
σ2 =

∑∞
k=0

1
k!

(
〈x, x′〉
σ2

)k
. We

can further expand the previous sum as

e
〈x, x′〉
σ2 =

∞∑
k=0

1

k!

( 〈x, x′〉
σ2

)k

=

∞∑
k=0

1

k!σ2k

( d∑
l=1

xl · x′l
)k

=

∞∑
k=0

1

k!σ2k

∑
|λ|=k

Ckλ · xλ · (x′)λ (7)

where Ckλ = k!∏d
i=1 λi!

. Thus, we use Eq. (7) to obtain
explicit feature representation to the Gaussian kernel

in Eq. (6) as Φk,λ(x) = e−
||x||2

2σ2 ·
√
Ckλ√
k!σk
· xλ. We get

the explicit feature map Φ(·) for the Gaussian kernel
with coordinates as specified. Theorem 1 of Ha Quang
(2010) characterizes the RKHS of Gaussian kernel. It
establishes that dim(HK) =∞. Thus, we note that the
exact teaching for an arbitrary target classifier f∗ in
this setting has an infinite lower bound. This calls for
analysing the teaching problem of a Gaussian kernel in
the approximate teaching setting.

Definitions and notations for approximate
teaching For any classifier f ∈ HK, we define err(f)
= E(x,y)∼P(x,y)[max(−y · f(x), 0)]. Our goal is to find
a classifier f with the property that its expected true
loss err(f) is as small as possible. In the realizable
setting, we assume that there exists an optimal sep-
arator f∗ such that for any data instances sampled
from the data distribution the labels are consistent i.e.
P(y · f∗(x) ≤ 0) = 0. In addition, we also experiment
for the non-realizable setting. In the rest of the sub-
section, we would study the relationship between the
teaching complexity for an optimal Gaussian kernel
perceptron for Eq. (3) and |err(f∗) − err(f̂)| where
f∗ is the optimal separator and f̂ is the solution to
Aopt(T Sθ∗) for the constructed teaching set T Sθ∗ .

3.4.1 Gaussian Kernel Approximation

Now, we would talk about finite-dimensional polyno-
mial approximation Φ̃ to the Gaussian feature map Φ
via projection as shown in Cotter et al. (2011). Con-
sider

Φ̃ : Rd −→ Rq

K̃(x,x′) = Φ̃(x) · Φ̃(x′)

With these approximations, we consider classifiers of
the form f̃(x) = θ̃ · Φ̃(x) such that θ̃ ∈ Rq. Now,
assume that there is a projection map P such that
Φ̃ = PΦ. In Cotter et al. (2011), authors used the
following approximation to the Gaussian kernel:

K̃(x,x′) = e−
||x||2

2σ2 e−
||x′||2

2σ2

s∑
k=0

1

k!

( 〈x, x′〉
σ2

)k
(8)

This gives the following explicit feature representation
for the approximated kernel:

∀k ≤ s, Φ̃k,λ(x) = Φk,λ(x) = e−
||x||2

2σ2 ·

√
Ckλ√
k!σk

· xλ

(9)
where Φk,λ(x) is the coordinate for Gaussian feature
map. Note that the feature map Φ̃ defined by the
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explicit features in Eq. (9) has dimension
(
d+s
d

)
. Thus,

PΦ = Φ̃ where the first
(
d+s
d

)
coordinates are retained.

We denote the RKHS corresponding to K̃ as HK̃. A
simple property of the approximated kernel map is
stated in the following lemma which was proven in
Cotter et al. (2011).
Lemma 3 (Cotter et al. (2011)). For the approximated
map K̃, we obtain the following upper bound:∣∣∣K(x,x)− K̃(x,x)

∣∣∣ ≤ 1

(s+ 1)!

( ||x|| · ||x′||
σ2

)s+1

(10)

Note that if s is chosen large enough and the points
x,x′ are bounded wrt σ2, then RHS of Eq. (10) can
be bounded by any ε > 0. Since

∣∣∣K(x,x)− K̃(x,x)
∣∣∣ =∣∣∣∣P⊥Φ(x)

∣∣∣∣2, thus for a Gaussian kernel, information
theoretically, the first

(
d+s
s

)
coordinates are highly sen-

sitive. We would try to analyze this observation under
some mild assumptions on the data distribution to con-
struct an ε-approximate teaching set. As discussed in
the supplemental materials, we would find the value
of s as if the datapoints are coming from a ball of
radius R := max

{
log2 1

ε

e2 , d
}

in Rd i.e. ||x||2
σ2 ≤ R.

Thus, we wish to solve for the value of s such that
1

(s+1)! · (R)
s+1 ≤ ε.

To approximate s we use Sterling’s approximation,
which states that for all positive integers n, we have

√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n.

Using the bound stated in Lemma 3, we fix the value
for s as e2 ·R. We would assume that R =

log2 1
ε

e2 since
we wish to achieve arbitrarily small ε-approximate2
teaching set. We define r := r(θ∗, ε) =

(
d+s
s

)
.

3.4.2 Bounding the Error

In this subsection, we discuss our key results on approx-
imate teaching of a Gaussian kernel perceptron learner
under some mild assumptions on the target model θ∗.
In order to show

∣∣∣err(f∗)− err(f̂)
∣∣∣ ≤ ε via optimizing

to a solution θ̂ for Eq. (3), we would achieve a point-
wise ε-closeness between f∗ and f̂ . Specifically, we
show that

∣∣∣f∗(x)− f̂(x)
∣∣∣ ≤ ε universally which is simi-

lar in spirit to universal approximation theorems (Liang
& Srikant, 2017; Lu & Lu, 2020; Yarotsky, 2017) for
neural networks. We prove that this universal approxi-
mation could be achieved with dO(log2 1

ε ) size teaching
set.

We assume that the input space X is bounded such that
∀x ∈ X 〈x, x〉HK

σ2 ≤ 2
√
R. Since the motivation is to

2When R = d all the key results follow the same analysis.

find classifiers which are close to the optimal one point-
wise, thus we assume that target model θ∗ has unit
norm. As mentioned in Eq. (2), we can write the target
model θ∗ ∈ HK as θ∗ =

∑l
i=1 αi · K(ai, ·) for some

{ai}li=1 ⊂ X and αi ∈ R. The classifier corresponding
to θ∗ is represented by f∗. Eq. (3) can be rewritten
corresponding to a teaching set D := {(xi, yi)}ni=1 as:

Aopt := arg min
β∈Rl

n∑
i=1

max
(
−yi ·

l∑
j=1

βj · K(aj ,xi), 0
)

(11)

Similar to Assumption 3.2.1 (cf §3.2), to construct an
approximate teaching set we assume a target model θ∗
has the property that for some truncated polynomial
space HK̃ defined by feature map Φ̃ there are linearly
independent projections in the orthogonal complement
of Pθ∗ in HK̃. More formally, we state the property
as an assumption which is discussed in details in the
supplemental materials.
Assumption 3.4.1 (Existence of orthogonal classi-
fiers). For the target model θ∗ and some ε > 0, we
assume that there exists r = r(θ∗, ε) such that Pθ∗ has
r − 1 linear independent projections on the orthogonal
subspace of Pθ∗ in HK̃ of the form {Φ̃(zi)}r−1i=1 such
that ∀i zi ∈ X .

For the analysis of the key results, we impose a smooth-
ness condition on the linear independent projections
{Φ̃(zi)}r−1i=1 that they are oriented away by a factor of
1
r−1 . Concretely, for any i, j

∣∣∣Φ̃(zi) · Φ̃(zj)
∣∣∣ ≤ 1

2(r−1) .
This smoothness condition is discussed in the supple-
mental. Now, we consider the following reformulation
of the optimization problem in Eq. (11) as follows:

Aopt := arg min
β0∈R, γ∈Rr−1

2r−1∑
i=1

max (`(β0, γ,xi, yi), 0) (12)

where for any i ∈ [2r − 1]

`(β0, γ,xi, yi) = −yi·
(
β0 · K(a,xi) +

r−1∑
j=1

γj · K(zj ,xi)
)

and with respect to the teaching set

T Sθ∗ :=
{(

zi, 1
)
,
(
zi,−1

)}r−1
i=1
∪
{(

a, 1
)}

(13)

where a is chosen such that Pθ∗ ·PΦ(a) > 03 and Φ(a) ·
Φ(zi) ≤ Q·ε (where Q is a constant). a could be chosen
from a B(

√
2
√
Rσ2, 0) spherical ball in Rd. We index

the set T Sθ∗ as {(xi, yi)}2r−1i=1 . Eq. (12) is optimized
over θ̂ = β0 · K(a, ·) +

∑r−1
j=1 γj · K(zj , ·) such that

θ̂ · Φ(a) > 0 and {Φ(zi)}r−1i=1 satisfy Assumption 3.4.1
where

∣∣∣∣∣∣θ̂∣∣∣∣∣∣ = O (1).

3We assume θ∗ is non-degenerate in K̃ (as for polynomial
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(a) Optimal Gaussian boundary (b) Polynomial approximation (c) Taught Gaussian boundary

Figure 3: Approximate teaching for Gaussian kernel perceptron. (a) Teacher “receives” θ∗ by training from the
complete data set; (b) Teacher identifies a polynomial approximation of the Gaussian decision boundary and
generates the teaching set T Sθ∗ (marked by red dots and cyan crosses); (c) Learner learns a Gaussian kernel
perceptron from T Sθ∗ .

Note that any solution to Eq. (12) can have unbounded
norm and can extend in arbitrary directions, thus we
make an assumption on the learner which would be
essential to bound the error of optimal separator of
Eq. (12).

Assumption 3.4.2 (Bounded Cone). For the target
model θ∗ =

∑l
i=1 αi · K(ai, ·), the learner optimizes

to a solution θ̂ for Eq. (12) with bounded coefficients.
Alternatively, the sums

∑l
i=1 |αi| and |β0|+

∑r−1
j=1 |γj |

are bounded where θ̂ ∈ HK has the form θ̂ = β0 ·
K(aj , ·) +

∑r−1
j=1 γj · K(zj , ·).

This assumption is fairly mild or natural in the sense
that for θ̂ ∈ Aopt as a classifier approximates θ∗
point-wise then they shouldn’t be highly (or unbound-
edly) sensitive to datapoints involved in the classifiers.
It is discussed in greater details in the supplemen-
tal materials. We denote by Cε :=

∑l
i=1 |αi| and

Dε := |β0| +
∑r−1
j=1 |γj |. In the supplemental ma-

terials, we show that there exists a unique solution
(upto a positive scaling) to Eq. (12) which satisfies
Assumption 3.4.2. We would show that T Sθ∗ is an
ε-approximate teaching set with r = dO(log2 1

ε ) on
the ε-approximate teaching dimension. To achieve
this, we first establish the ε-closeness of f̂ (classifier
f̂(x) := θ̂ · Φ(x) where θ̂ ∈ Aopt) to f∗. Formally, we
state the result as follows:

Theorem 3. For any target θ∗ ∈ HK that satisfies As-
sumption 3.4.1-3.4.2 and ε > 0, the teaching set T Sθ∗
constructed for Eq. (12) satisfies

∣∣∣f∗(x)− f̂(x)
∣∣∣ ≤ ε

for any x ∈ X and any f̂ ∈ Aopt(T Sθ∗).

Using Theorem 3, we can obtain the main result of
the subsection which gives an dO(log2 1

ε ) bound on ε-
approximate teaching dimension. We detail the proofs
in the supplemental materials:

kernels in §3.2) i.e. has points a ∈ X such that Pθ∗·PΦ(a) >
0 (classified with label 1).

Theorem 4. For any target θ∗ ∈ HK that satisfies
Assumption 3.4.1-3.4.2 and ε > 0, the teaching set
T Sθ∗ constructed for Eq. (12) is an ε-approximate
teaching set with ε-TD(θ∗,Aopt) = dO(log2 1

ε ) i.e. for
any f̂ ∈ Aopt(T Sθ∗),∣∣∣err(f∗)− err(f̂)

∣∣∣ ≤ ε.
Numerical example Fig. 3 demonstrates the ap-
proximate teaching process for a Gaussian learner.
We aim to teach the optimal model θ∗ (infinite-
dimensional) trained on a pre-collected dataset with
Gaussian parameter σ = 0.9, whose corresponding
boundary is shown in Fig. 3a. Now, for approximate
teaching, the teacher calculates θ̃ using the polynomial
approximated kernel (i.e. K̃, and in this case, k=5) in
Eq. (8) and the corresponding feature map in Eq. (9).
To ensure Assumption 3.4.1 is met while generating
teaching examples for θ̃, we employ the randomized
algorithm (as was used in §3.2) with the key idea of en-
suring that the teaching examples on the boundary are
linearly independent in the approximated polynomial
feature space, i.e. K̃(zi, zj) = 0. Finally, the Gaus-
sian learner receives T Sθ∗ and learns the boundary
shown in Fig. 3c. Note the slight difference between
the boundaries in Fig. 3b and in Fig. 3c as the learner
learns with a Gaussian kernel.

4 Conclusion

We have studied and extended the notion of teaching
dimension for optimization-based perceptron learner.
We also studied a more general notion of approximate
teaching which encompasses the notion of exact teach-
ing. To the best of our knowledge, our exact teaching
dimension for linear and polynomial perceptron learner
is new; so is the upper bound on the approximate teach-
ing dimension of Gaussian kernel perceptron learner
and our analysis technique in general. There are many



Akash Kumar, Hanqi Zhang, Adish Singla, Yuxin Chen

possible extensions to the present work. For example,
one may extend our analysis to relaxing the assump-
tions imposed on the data distribution for polynomial
and Gaussian kernel perceptrons. This can potentially
be achieved by analysing the linear perceptron and
finding ways to nullify subspaces other than orthogo-
nal vectors. This could enhance the results for both
the exact teaching of polynomial perceptron learner to
more general case and a tighter bound on the approxi-
mate teaching dimension of Gaussian kernel perceptron
learner. On the other hand, a natural extension of our
work is to understand the approximate teaching com-
plexity for other types of ERM learners, e.g. kernel
SVM, kernel ridge, and kernel logistic regression. We
believe the current work and its extensions would en-
rich our understanding of optimal and approximate
teaching and enable novel applications.
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