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A More on the stopping criteria for Ṽ sn

t , Ũ sn

t , and B̃t in Algorithm 1

As discussed in Section 3, we control the simulation error introduced by the output of Algorithm 1 by applying a
stopping criterion based on the empirical Bernstein’s inequality (Theorem 4). In particular, for a user specified
precision ε > 0, the estimation of V sn is stopped when

ε ≥

√
2V̂ar(Ṽ sn

t )

t
+

7

3
· 2x

t− 1

is satisfied. Suppose that the simulation has stopped after Tε iterations. Then, the above guarantees w.p. at
least 1− e−x, x > 0 that |V sn − Ṽ sn

Tε
| ≤ ε. We note that this comes by a direct application of Theorem 4 where

the range C = 2, since V sn ≤ 2 a.s.

Similarly, we have a stopping criterion for U sn, that is we stop when

ε ≥

√
2V̂ar(Ũ sn

t )

t
+

7

3
· 2x

t− 1

is satisfied. This gives w.h.p |U sn − Ũ sn
Tε
| ≤ ε.

In case of B̃T , we control its simulation error indirectly through controlling an error |Z inv
Tε
− 1/Z| ≤ ε, i.e. stopping

when

ε ≥

√
2V̂ar(Z inv

t )

t
+

7

3
· Mx

t− 1
,

is satisfied, where M = 1/
∑
i mina∈[K]

π(a|Xi)
πb(a|Xi) (note that 1/Z ≤ M a.s. for fixed Xn

1 ). The reason for this

becomes clear by observing a simple lower bound on B:

B = min

(
1,

1

E
[
n
Z

∣∣ Xn
1

]) ≥ min

(
1,

1

E
[
n(Z inv

Tε
+ ε)

∣∣ Xn
1

]) .

Finally, we note that convergence of Ṽ sn
t , Ũ sn

t , and B̃t might take different number of steps and in practice one
would split Algorithm 1 into separate subroutines for estimation of respective quantities with different stopping
criteria. As mentioned before the sample variance can be easily computed online, for instance by using Welford’s
method.
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B Additional proofs

B.1 Proofs from Section 4

To prove Proposition 5 we will need the following statement:

Proposition 4. Let S = ((Wi, Ri))
n
i=1 be independent random variables distributed according to some probability

measure on Y1 × · · · × Yn, let f(S) =
∑n
i=1WiRi∑n
i=1Wi

, and fk(S(k)) =
∑
i6=kWiRi∑n
i6=kWi

. Let Ek = Rk − fk(S\k). Then for

all k ∈ [n],

f(S)− fk(S\k) =
WkEk∑n
i=1Wi

.

Proposition 5. Let f(S) =
∑n
i=1WiRi∑n
i=1Wi

. Then,

n∑
k=1

E
[
(f(S)− f(S(k)))2

∣∣∣W k
1 , X

n
1

]
≤ V sn =

n∑
k=1

E

( Wk∑n
i=1Wi

+
W ′k

W ′k +
∑
i 6=kWi

)2
∣∣∣∣∣∣W k

1 , X
n
1

 .

Proof. Denote

W̃k =
Wk∑n
i=1Wi

, Ũk =
W ′k

W ′k +
∑
i6=kWi

k ∈ [n] .

By Proposition 4

f(S)− f(S(k)) = f(S)− fk(S\k) + fk(S\k)− f(S(k))

=
WkEk∑n
i=1Wi

− W ′kE
′
k

W ′k +
∑
i 6=kWi

= W̃kEk − ŨkE′k

where E′k = R′k − fk(S\k). Taking square on both sides gives(
f(S)− f(S(k))

)2

= W̃ 2
kE

2
k + Ũ2

k (E′k)2 − 2W̃kŨkEkE
′
k

≤ W̃ 2
k + Ũ2

k + 2W̃kŨk (Since Ek, E
′
k ∈ [−1, 1] a.s.)

=
(
W̃k + Ũk

)2

.

Proof. From simple algebra (see Proposition 2 in (Kuzborskij and Szepesvári, 2019) discussion), we have

f(S)− fk(S\k) =
Wk(Rk − fk(S\k))∑n

i=1Wi
≤ Wk∑n

i=1Wi
k ∈ [n] .

Then, the desired result follows from an application of Proposition 4, with f = v̂sn and S =
((W1, R1), . . . , (Wn, Rn)), given the contexts.

B.2 Polynomial Bounds for Weighted Importance Sampling

Since the exact calculation of V sn could be prohibitive, we use a shortcut to lower bound the denominator
∑
iWi.

The promised lower bound is based on the following (more or less standard) result:

Lemma 1. Assume that the non-negative random variables W1,W2, . . . ,Wn are distributed independently from
each other given F0. Then, for any t ∈ [0,

∑n
k=1 E[Wk | F0]),

P

(
n∑
i=1

Wi ≤ t

∣∣∣∣∣ F0

)
≤ exp

(
−

(t−
∑n
k=1 E [Wk | F0])

2

2
∑n
k=1 E [W 2

k | F0]

)
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and in particular for any x > 0, with probability at least 1− e−x,

n∑
i=1

Wi >

n∑
k=1

E[Wk | F0]−

√√√√2x

n∑
k=1

E [W 2
k | F0] . (7)

Proof. We drop conditioning on F0 to simplify notation. Chernoff bound readily gives a bound on the lower tail

P

(
n∑
i=1

Xi ≤ t

)
≤ inf
λ>0

eλt E
[
e−λ

∑n
i=1Xi

]
.

By independence of Xi

n∏
i=1

E
[
e−λXi

]
≤

n∏
i=1

(
1− λE [Xi] +

λ2

2
E
[
X2
i

])
(e−x ≤ 1− x+ 1

2x
2 for x ≥ 0)

≤ e−λ
∑n
i=1 E[X1]+λ2

2

∑n
i=1 E[X2

i ] (1 + x ≤ ex for x ∈ R and i.i.d. assumption)

Getting back to the Chernoff bound gives,

λ = max

{∑n
i=1 E [Xi]− t∑n
i=1 E [X2

i ]
, 0

}
.

This proves the first result. The second result comes by inverting the bound and solving a quadratic equation.

Proposition 3 (restated). With probability at least 1− 3e−x for x > 0,

v(π) ≥ Nx
n

(
v̂sn(π)−

√∑n
k=1 E[W 2

k |Xk]

N2
x

ex

)
−
√

x

2n
.

where

Nx = n−

√√√√2x

n∑
k=1

E [W 2
k | Xn

1 ] .

Proof of Proposition 3. The decomposition into the bias and the concentration is as in the proof of Theorem 1,
where the concentration of contexts is handled once again through Hoeffding’s inequality. Hence, we’ll focus only
on the concentration.

Let Z = v̂sn(π)− E[v̂sn(π)]. Chebyshev’s inequality gives us:

P
(
|Z| ≥

√
tVar(v̂sn(π) | Xn

1 )

)
≤ 1

t
t > 0 .

This implies

|v̂sn(π)− E[v̂sn(π)]| ≤
√
ex Var(v̂sn(π) | Xn

1 ) (w.p. at least 1− e−x, x > 0)

≤

√√√√ ex

N2
x

n∑
k=1

E[W 2
k |Xk] (w.p. at least 1− 2e−x (union bound))

where by Efron-Stein’s inequality and Proposition 2 of Kuzborskij and Szepesvári (2019):

Var(v̂sn(π) | Xn
1 ) ≤ E

[
n∑
k=1

(
v̂snS (π)− v̂snS\k(π)

)2 ∣∣∣∣∣ Xn
1

]
≤ E

[ ∑n
k=1W

2
k

(
∑n
i=1Wi)2

∣∣∣∣ Xn
1

]
and a lower bound on the sum of weights comes from Lemma 1.
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B.3 Confidence Bound for λ-Corrected Importance Sampling Estimator

Recall the following empirical Bernstein bound given in Theorem 4.

Theorem 4 (Maurer and Pontil (2009)5). Let Z,Z1, . . . , Zn be i.i.d. random variables with values in [0, C] and
let x > 0. Then with probability at least 1− 2e−x,

1

n

n∑
i=1

Zi − E[Z] ≤
√

2Var(Z1, . . . , Zn)x

n
+

7Cx

3(n− 1)

where sample variance is defined as

Var(Z1, . . . , Zn) =
1

n(n− 1)

∑
1≤i<j≤n

(Zi − Zj)2
. (8)

The following proposition states a concentration bound for the value when using the λ-IW estimator.

Proposition 1 (restated). For the λ-IW estimator we have with probability at least 1− 3e−x, for x > 0,

v(π) ≥ v̂iw-λ(π)−
√

2x

n
Var(v̂iw-λ(π) | Xn

1 )− 7x

3λ(n− 1)

− 1

n

n∑
k=1

∑
a∈[K]

π(a|Xk)

∣∣∣∣ πb(a | Xk)

πb(a | Xk) + λ
− 1

∣∣∣∣−√ x

2n
.

and the variance of the estimator is defined as

Var(v̂iw-λ(π)) =
1

n(n− 1)

∑
1≤i<j≤n

(
Wλ
i Ri −Wλ

j Rj
)2

. (9)

Proof. We start with the decomposition

v(π)− v̂iw-λ(π) = v(π)− E
[
v̂iw-λ(π) | Xn

1

]︸ ︷︷ ︸
Bias

+E
[
v̂iw-λ(π) | Xn

1

]
− v̂iw-λ(π)︸ ︷︷ ︸

Concentration

.

Observing that Wλ
k ≤ 1/λ The concentration term is bounded by Theorem 4 with C = 1/λ, that is:

E
[
v̂iw-λ(π) | Xn

1

]
− v̂iw-λ(π) ≥

√
2x

n
Var(v̂iw-λ(π) | Xn

1 ) +
7x

3λ(n− 1)
.

Now we focus on the bias term which is further decomposed as follows:

v(π)− E
[
v̂iw-λ(π)|Xn

1

]
= v(π)− 1

n

n∑
k=1

v(π|Xk) +
1

n

n∑
k=1

v(π|Xk)− E
[
v̂iw-λ(π)|Xn

1

]
Since (v(π|Xk))k∈[n] are independent and they take values in the range [0, 1], by Hoeffding’s inequality we have
w.p. at least 1− e−x, x ≥ 0 that

1

n

n∑
k=1

v(π|Xk)− v(π) ≤
√

x

2n
.

5Maurer and Pontil (2009) stated inequality in another direction. However, we can show the one we stated by the
symmetry of Bernstein’s inequality.
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Finally,

E
[
v̂iw-λ(π)

∣∣ Xn
1

]
− 1

n

n∑
k=1

v(π|Xk) =
1

n

n∑
k=1

E
[(
Wλ
k −Wk

)
Rk
∣∣ Xk

]
=

1

n

n∑
k=1

E
[(

π(Ak | Xk)

πb(Ak | Xk) + λ
− π(Ak | Xk)

πb(Ak | Xk)

)
Rk

∣∣∣∣ Xk

]

=
1

n

n∑
k=1

∑
a∈[K]

π(a|Xk)

(
πb(a | Xk)

πb(a | Xk) + λ
− 1

)
r(Xk, a)

≤ 1

n

n∑
k=1

∑
a∈[K]

π(a|Xk)

∣∣∣∣ πb(a | Xk)

πb(a | Xk) + λ
− 1

∣∣∣∣ .
Putting all together and applying a union bound we get the statement w.p. at least 1− 3e−x.

B.4 Confidence Bound for λ-Corrected Doubly-Robust Estimator

Doubly-Robust (DR) estimators were introduced in the machine learning literature for off-policy evaluation by
Dud́ık et al. (2011), and refined in Farajtabar et al. (2018); Su et al. (2019b). They combine a direct model
estimator and IW, finding a compromise that should behave like IW with a reduced variance. To compute v̂dr, a
reward estimator η : X × [K]→ [0, 1] must be learned on a subset of the logged dataset. Then,

v̂dr(π) = V̂η(π) +
1

n

n∑
i=1

Wi(Ri − η(Xi, Ai)),

where V̂η(π) = (1/n)
∑n
i=1

∑
a∈[K] π(a|Xi)η(Xi, a) is the expected reward of π given η.6 Now we prove a very

similar bound for the λ-Corrected Doubly-Robust estimator.

Proposition 2 (restated). For the λ-DR estimator defined w.r.t. a fixed η : X × [K]→ [0, 1] we have with
probability at least 1− 3e−x, for x > 0,

v(π) ≥ v̂dr-λ(π)−
√

2x

n
Var(v̂dr-λ(π) | Xn

1 )− 7

3

(
1 +

1

λ

)
x

n− 1

− 1

n

n∑
k=1

∑
a∈[K]

π(a|Xk)

(∣∣∣∣ πb(a | Xk)

πb(a | Xk) + λ
− 1

∣∣∣∣+ η(a|Xk)

(
1− π(a | Xk)

πb(a | Xk) + λ

))
−
√

x

2n
.

and the variance of the estimator is defined as

Var(v̂dr-λ(π)) =
1

n(n− 1)

∑
1≤i<j≤n

(Zi − Zj)2
(10)

where Zi = Wλ
i (Ri − η(Xi, Ai)) +

∑
a∈[K] π(a|Xi)η(a,Xi).

Proof. We follow the path in as in the proof of Proposition 1 with minor modifications. Once again, considering
the decomposition

v(π)− v̂dr-λ(π) = v(π)− E
[
v̂dr-λ(π) | Xn

1

]︸ ︷︷ ︸
Bias

+E
[
v̂dr-λ(π) | Xn

1

]
− v̂dr-λ(π)︸ ︷︷ ︸

Concentration

.

and observing that Wλ
k ≤ 1/λ, the concentration term is bounded by Theorem 4 with C = 1 + 1/λ assuming that

‖η‖∞ ≤ 1, that is:

E
[
v̂dr-λ(π) | Xn

1

]
− v̂dr-λ(π) ≥

√
2x

n
Var(v̂dr-λ(π) | Xn

1 ) +
7

3

(
1 +

1

λ

)
x

n− 1
.

6Note that since rewards can be negative, it is not clear how to incorporate DR estimation into our Theorem 1 due to
use of Harris’ inequality in Eq. (6).
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Now we focus on the bias term which is further decomposed as follows:

v(π)− E
[
v̂dr-λ(π)|Xn

1

]
= v(π)− 1

n

n∑
k=1

v(π|Xk) +
1

n

n∑
k=1

v(π|Xk)− E
[
v̂dr-λ(π)|Xn

1

]
As in the proof of Proposition 1 w.p. at least 1− e−x, x ≥ 0 we have

1

n

n∑
k=1

v(π|Xk)− v(π) ≤
√

x

2n
.

Finally,

E
[
v̂dr-λ(π)

∣∣ Xn
1

]
− 1

n

n∑
k=1

v(π|Xk)

=
1

n

n∑
k=1

E
[
Wλ
k (Rk − η(Xk, Ak))−WkRk

∣∣ Xk

]
+
∑
a∈[K]

π(a|Xk)η(a,Xk)


=

1

n

n∑
k=1

E
[
(Wλ

k −Wk)Rk −Wλ
k η(Xk, Ak)

∣∣ Xk

]
+
∑
a∈[K]

π(a|Xk)η(a,Xk)


=

1

n

n∑
k=1

∑
a∈[K]

π(a|Xk)

(
πb(a | Xk)

πb(a | Xk) + λ
− 1

)
r(Xk, a)

+
1

n

n∑
k=1

∑
a∈[K]

π(a|Xk)η(a|Xk)

(
1− π(a | Xk)

πb(a | Xk) + λ

)

≤ 1

n

n∑
k=1

∑
a∈[K]

π(a|Xk)

(∣∣∣∣ πb(a | Xk)

πb(a | Xk) + λ
− 1

∣∣∣∣+ η(a|Xk)

(
1− π(a | Xk)

πb(a | Xk) + λ

))

Putting all together and applying a union bound we get the statement w.p. at least 1− 3e−x.

C Additional Experimental Details

C.1 Policies.

Parametrized oracle-based policies. For a given dataset ((xi, yi))
n
i=1 ⊂ (X × Y)n, we assume we have

access to an oracle ρ : X → Y that maps contexts to their true label7. We define an ideal Gibbs policy as
πideal(y | x) ∝ e

1
τ I{y=ρ(x)} and τ > 0 is a temperature parameter. The smaller τ is, the more peaky is the

distribution on the predicted label. To create mismatching policies, we consider a faulty policy type for which
the peak is shifted to another, wrong action for a set of faulty actions F ⊂ [K] (i.e., if ρ(x) ∈ F , the peak is
shifted by 1 cyclically), that is, a faulty policy πfaulty(F ) is the same as the ideal policy when ρ(x) 6∈ F , and it

has distribution πfaulty(F )(y | x) ∝ e 1
τ I{y−1=ρ(x) mod K}.

In the following we consider faulty behavior policies, while one among the target policies is ideal.

Learnt policies. There is an important literature on off-policy learning (Swaminathan and Joachims, 2015a,c;
Joachims et al., 2018) that considers the problem of directly learning a policy from logged bandit feedback. These
algorithms minimize a loss defined by either IW or SN on a parametrized family of policy. We implements those

two type of parametrized policies as follows: we introduce πΘ(y = k | x) ∝ e 1
τ x
>θk with two choices of parameters

given by the optimization problems: Θ̂iw ∈ arg maxΘ∈Rd×K v̂
iw(πΘ) , Θ̂sn ∈ arg maxΘ∈Rd×K v̂

sn(πΘ). In practice
we obtain these by running gradient descent with step size 0.01 for 105 steps. In all cases the temperature is set
to τ = 0.1.

7In general, this oracle has to be learnt, see discussions on datasets below.
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C.2 Datasets and oracles

Synthetic dataset. To allow for a precise control of the distribution of the contexts, as well as of the
sample size, we generate an underlying multiclass classification problem through the scikit-learn function
make_classification() 8. Then we obtain a ground truth oracle by training a classifier r̂ with a regularized
logistic regression (with hyperparameter tuned on the validation set).

Real Datasets. The chosen 8 datasets (see Table 3 in Appendix C) are loaded from OpenML (Dua and
Graff, 2017), using scikit-learn (Pedregosa et al., 2011). To simplify and stabilize the Gibbs policy construction
process, we use the true labels as the peaks of the Gibbs oracle. In the literature on off-policy evaluation, some
experimental settings rely on a ground truth function, which is a multi-class classifier learned on a held-out
full-information dataset. This ground truth then replaces the true labels in the policies. Depending on the
accuracy of the learnt function, this might naturally induce noise in the policies by having them make mistakes
due to a relatively bad oracle. Note that in the case of synthetic datasets, it is easy and costless to generate a
large train set, get a highly accurate classifier, and discard this data. However, for real datasets, the more data is
used for training the oracle, the less is available to generate a logged dataset and perform the actual off-policy
evaluation experiments.

While this moves the process away from practice, it has the advantage of allowing a precise control of the values
of the policies we create. This is a key point to design stable and reproducible experiments. Learning perfectly
interpolating classifiers would lead to the same results, except for the time spent and the data used to do so.

Baselines. In addition to the confidence bound discussed in Section 5 we consider the standard DR estimator
and the recent estimation algorithm of Karampatziakis et al. (2019) based on Empirical Likelihood (EL). For
DR (and λ-DR), rewards are modeled by a ridge regressor (one per class) where a hyperparameter is tuned by a
10-fold cross-validation (leave-one-out cross-validation for sample size ≤ 100). For both λ-IW and λ-DR, λ is set
to 1/

√
n.

name Yeast PageBlok OptDigits SatImage isolet PenDigits Letter kropt
OpenML ID 181 30 28 182 300 32 6 184

Size 1484 5473 5620 6435 7797 10,992 20,000 28,056

Table 3: Real Datasets used in experiments

Empirical coverage analysis: the case of the Empirical Likelihood estimator. We run the same
experiment as that presented in Figure 2 to study the tightness of the returned lower bound for each estimator:
the Gibbs temperature is τ = 0.3 and the sample size is N = 1000 (new dataset for each run), so that the Effective
Sample Size is on average 650± 10. Results are shown on Figure 3. These simulations highlight two interesting
facts that make EL a slightly different solution to our problem than all other state-of-the-art estimators. First,
the returned lower bound is always very close to the true value, and on average just slightly under it. But while
this should be a perfect property for our task, the returned value also suffers from quite a large variance such
that in many runs the lower bound is larger than the true value (the confidence interval is violated). This seems
to indicate that our setting has not yet reached the asymptotic regime in which the confidence interval should
have a coverage probability close to 1− δ. We conjecture that this may explain the bad performance of EL in our
experiments on data (see Section 6).

D Implementation of Algorithm 1

In this section we provide a code listing in Python for computing the bound of Theorem 1. In particular, the function
eslb(...) implements computation of the bound through the Monte-Carlo simulation described in Algorithm 1.
The function eslb(t_probs, b_probs, weights, rewards, delta, n_iterations, n_batch_size) takes 7
arguments: t_prob and b_prob are [0, 1]n×K matrices where the i-th row corresponds to π(·|Xi) and πb(·|Xi)
respectively. Next, weights is an vector of importance weights belonging to Rn+, similarly rewards is a reward
vector in [0, 1]n, and δ ∈ (0, 1) is an error probability (recall that the lower bound holds with probability at least

8See scikit-learn documentation

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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Figure 4: Left:Empirical tightness of the EL lower bound estimator. The returned value is on average very close
to the true value. Right: Average rate of violated confidence interval: the empirical coverage is much worse than
the true one (δ). Results averaged over 50 runs

1−δ). Finally, n_iterations and n_batch_size are Monte-Carlo iterations and the sample size (batch size) used
in the simulation (larger n_batch_size requires more memory but ensures faster convergence of the simulation).
eslb(...) returns a Python dictionary holding 5 enries: entry lower_bound corresponds to the actual lower
bound computed according to Theorem 1; est_value is v̂(π), concentration is a concentration term denoted
by ε in Theorem 1, mult_bias is a multiplicative bias denoted by B, and concentration_of_contexts is a√
x/(2n) term.
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Listing 1: Computation of the bound of Theorem 1: “eslb(...)” function.

# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from math import sqrt, log as ln
import numpy as np

def sample_from_simplices_m_times(p, m):
       """ Sample from n probability simplices m times.

       p -- n times K (matrix where earch row describes a probability simplex)
       m -- number of times to sample

       Returns n-times-m matrix of indices of simplex corners.
       """
       axis = 1
       r = np.expand_dims(np.random.rand(p.shape[1-axis], m), axis=axis)
       p_ = np.expand_dims(p.cumsum(axis=axis), axis=2)
       return (np.repeat(p_, m, axis=2) > r).argmax(axis=1)

def eslb(t_probs, b_probs, weights, rewards, delta, n_iterations, n_batch_size):
       """ Computes Efron-Stein lower bound of Theorem 1 as described in Algorithm 1.
       Here n is a sample size, while K is a number actions.

       t_probs -- n-times-K matrix, where $i$-th row correponds to $\pi(\cdot | X_i)$
       b_probs -- n-times-K matrix, where $i$-th row correponds to $\pi_b(\cdot | X_i)$
       weights -- n-sized vector of importance weights
       rewards -- n-sized reward vector
       delta -- error probability in (0,1)
       n_iterations -- Monte-Carlo simulation iterations
       n_batch_size -- Monte-Carlo simulation batch size

       Returns dictionary with 5 enries: lower_bound corresponds to the actual lower bound;
       est_value is an empirical value, concentration is a concentration term, mult_bias
       is a multiplicative bias, and while concentration_of_contexts is a term responsible
       for concentration of contexts.
       """
       conf = ln(2.0/delta)
       n = len(weights)
       ix_1_n = np.arange(n)
       W_cumsum = weights.cumsum()
       W_cumsum = np.repeat(np.expand_dims(W_cumsum, axis=1), n_batch_size, axis=1)
       W = np.repeat(np.expand_dims(weights, axis=1), n_batch_size, axis=1)

       weight_table = t_probs / b_probs

       V_unsumed = np.zeros((n,))
       E_V_unsumed = np.zeros((n,))
       Ehat_recip_W = 0.0

       for i in range(n_iterations):
               A_sampled = sample_from_simplices_m_times(b_probs, n_batch_size)
               W_sampled = weight_table[ix_1_n, A_sampled.T].T
               W_sampled_cumsum = W_sampled[::-1, :].cumsum(axis=0)[::-1, :]
               Z = np.copy(W_cumsum)
               Z[:-1, :] += W_sampled_cumsum[1:, :]

               A_sampled_for_U = sample_from_simplices_m_times(b_probs, n_batch_size)
               W_sampled_for_U = weight_table[ix_1_n, A_sampled_for_U.T].T
               A_sampled_for_B = sample_from_simplices_m_times(b_probs, n_batch_size)
               W_sampled_for_B = weight_table[ix_1_n, A_sampled_for_B.T].T

               Z_repk = Z - W + W_sampled
               W_tilde = W / Z
               U_tilde = W_sampled_for_U / Z_repk
               V_t = (W_tilde + U_tilde)**2

               E_V_new_item = ((W_sampled / W_sampled.sum(axis=0))**2).mean(axis=1)
               V_new_item = V_t.mean(axis=1)
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               E_V_unsumed += (E_V_new_item - E_V_unsumed) / (i+1)
               V_unsumed += (V_new_item - V_unsumed) / (i+1)

               B_t = (1.0/W_sampled_for_B.sum(axis=0)).mean()
               Ehat_recip_W += (B_t - Ehat_recip_W) / (i+1)

       V = V_unsumed.sum()
       E_V = E_V_unsumed.sum()

       eff_N = 1.0 / Ehat_recip_W

       mult_bias = min(1.0, eff_N / n)
       concentration = sqrt(2.0 * (V + E_V) * (conf + 0.5 * ln(1 + V/E_V)))
       concentration_of_contexts = sqrt(conf / (2*n))
       est_value = weights.dot(rewards) / weights.sum()
       lower_bound = mult_bias * (est_value - concentration ) - concentration_of_contexts

       return dict(lower_bound=max(0, lower_bound), est_value=est_value, concentration=concentration,
                               mult_bias=mult_bias, concentration_of_contexts=concentration_of_contexts)

E Value Bound Decomposition

In this section we present the decomposition of each confidence bound on the value for various estimators evaluated
in Section 6. In particular, the decomposition is done w.r.t. the respective lower bounds on the concentration,
bias, and concentration of contexts terms:

v(π)− v̂(π) = v(π)− E [v(π) |Xn
1 ]︸ ︷︷ ︸

Concentration of contexts

+E [v(π) |Xn
1 ]− E [v̂(π) | Xn

1 ]︸ ︷︷ ︸
Bias

+E [v̂(π) | Xn
1 ]− v̂(π)︸ ︷︷ ︸

Concentration

.

In the following tables each term is presented w.r.t. three target policies discussed in Section 6.1: That is Ideal

is πideal, while Gibbs-fitted-IW is πΘ̂iw , and Gibbs-fitted-SN is πΘ̂sn .

E.1 Synthetic Dataset

Table 4: Concentration term ε for different confidence intervals and target policies.
Concentration 5000 10000 20000
ESLB: Ideal 0.680 ± 0.061 0.497 ± 0.019 0.346 ± 0.013

ESLB: Gibbs-fitted-IW 0.650 ± 0.079 0.498 ± 0.018 0.363 ± 0.011
ESLB: Gibbs-fitted-SN 0.770 ± 0.068 0.561 ± 0.029 0.378 ± 0.017

λ-IW: Ideal 0.346 ± 0.023 0.271 ± 0.008 0.206 ± 0.007
λ-IW: Gibbs-fitted-IW 0.350 ± 0.024 0.274 ± 0.008 0.208 ± 0.007
λ-IW: Gibbs-fitted-SN 0.348 ± 0.024 0.273 ± 0.008 0.207 ± 0.007

Cheb-SN: Ideal 5.437 ± 0.000 3.242 ± 0.000 2.030 ± 0.000
Cheb-SN: Gibbs-fitted-IW 4.006 ± 0.438 2.969 ± 0.086 2.034 ± 0.026
Cheb-SN: Gibbs-fitted-SN 6.991 ± 0.227 3.982 ± 0.122 2.344 ± 0.027

DR: Ideal - - -
DR: Gibbs-fitted-IW - - -
DR: Gibbs-fitted-SN - - -

λ-DR: Ideal 0.412 ± 0.018 0.305 ± 0.018 0.218 ± 0.009
λ-DR: Gibbs-fitted-IW 0.435 ± 0.017 0.310 ± 0.023 0.228 ± 0.006
λ-DR: Gibbs-fitted-SN 0.416 ± 0.030 0.310 ± 0.013 0.210 ± 0.010

Emp.Lik. Ideal - - -
Emp.Lik. Gibbs-fitted-IW - - -
Emp.Lik. Gibbs-fitted-SN - - -
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Table 5: Bias term B for different confidence intervals and target policies.
Bias (multiplicative for SN-based CIs) 5000 10000 20000

ESLB: Ideal 0.988 ± 0.000 0.994 ± 0.000 0.997 ± 0.000
ESLB: Gibbs-fitted-IW 0.992 ± 0.001 0.995 ± 0.000 0.997 ± 0.000
ESLB: Gibbs-fitted-SN 0.984 ± 0.001 0.992 ± 0.001 0.996 ± 0.000

λ-IW: Ideal 0.293 ± 0.000 0.261 ± 0.000 0.219 ± 0.000
λ-IW: Gibbs-fitted-IW 0.212 ± 0.025 0.232 ± 0.008 0.217 ± 0.004
λ-IW: Gibbs-fitted-SN 0.393 ± 0.011 0.347 ± 0.014 0.272 ± 0.005

Cheb-SN: Ideal 0.599 ± 0.000 0.715 ± 0.000 0.800 ± 0.000
Cheb-SN: Gibbs-fitted-IW 0.671 ± 0.024 0.733 ± 0.006 0.800 ± 0.002
Cheb-SN: Gibbs-fitted-SN 0.538 ± 0.008 0.671 ± 0.007 0.776 ± 0.002

DR: Ideal - - -
DR: Gibbs-fitted-IW - - -
DR: Gibbs-fitted-SN - - -

λ-DR: Ideal 0.515 ± 0.059 0.540 ± 0.064 0.590 ± 0.046
λ-DR: Gibbs-fitted-IW 0.430 ± 0.095 0.570 ± 0.063 0.679 ± 0.045
λ-DR: Gibbs-fitted-SN 0.767 ± 0.113 0.744 ± 0.086 0.790 ± 0.038

Emp.Lik. Ideal - - -
Emp.Lik. Gibbs-fitted-IW - - -
Emp.Lik. Gibbs-fitted-SN - - -

Table 6: Concentration of contexts term for different confidence intervals and target policies.
Concentration of contexts 5000 10000 20000

ESLB: Ideal 0.025 ± 0.000 0.018 ± 0.000 0.013 ± 0.000
ESLB: Gibbs-fitted-IW 0.025 ± 0.000 0.018 ± 0.000 0.013 ± 0.000
ESLB: Gibbs-fitted-SN 0.025 ± 0.000 0.018 ± 0.000 0.013 ± 0.000

λ-IW: Ideal 0.026 ± 0.000 0.018 ± 0.000 0.013 ± 0.000
λ-IW: Gibbs-fitted-IW 0.026 ± 0.000 0.018 ± 0.000 0.013 ± 0.000
λ-IW: Gibbs-fitted-SN 0.026 ± 0.000 0.018 ± 0.000 0.013 ± 0.000

Cheb-SN: Ideal 0.300 ± 0.000 0.212 ± 0.000 0.150 ± 0.000
Cheb-SN: Gibbs-fitted-IW 0.300 ± 0.000 0.212 ± 0.000 0.150 ± 0.000
Cheb-SN: Gibbs-fitted-SN 0.300 ± 0.000 0.212 ± 0.000 0.150 ± 0.000

DR: Ideal - - -
DR: Gibbs-fitted-IW - - -
DR: Gibbs-fitted-SN - - -

λ-DR: Ideal 0.037 ± 0.000 0.026 ± 0.000 0.018 ± 0.000
λ-DR: Gibbs-fitted-IW 0.037 ± 0.000 0.026 ± 0.000 0.018 ± 0.000
λ-DR: Gibbs-fitted-SN 0.037 ± 0.000 0.026 ± 0.000 0.018 ± 0.000

Emp.Lik. Ideal - - -
Emp.Lik. Gibbs-fitted-IW - - -
Emp.Lik. Gibbs-fitted-SN - - -
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Table 7: Empirical value v̂ for different estimators and target policies.
v̂(π) 5000 10000 20000

ESLB: Ideal 0.973 ± 0.005 0.974 ± 0.002 0.974 ± 0.002
ESLB: Gibbs-fitted-IW 0.822 ± 0.059 0.901 ± 0.033 0.901 ± 0.016
ESLB: Gibbs-fitted-SN 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000

λ-IW: Ideal 0.691 ± 0.044 0.727 ± 0.021 0.760 ± 0.026
λ-IW: Gibbs-fitted-IW 0.689 ± 0.045 0.732 ± 0.022 0.745 ± 0.027
λ-IW: Gibbs-fitted-SN 0.546 ± 0.040 0.587 ± 0.020 0.659 ± 0.024

Cheb-SN: Ideal 0.973 ± 0.005 0.974 ± 0.002 0.974 ± 0.002
Cheb-SN: Gibbs-fitted-IW 0.822 ± 0.059 0.901 ± 0.033 0.901 ± 0.016
Cheb-SN: Gibbs-fitted-SN 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000

DR: Ideal - - -
DR: Gibbs-fitted-IW - - -
DR: Gibbs-fitted-SN - - -

λ-DR: Ideal 0.771 ± 0.052 0.828 ± 0.039 0.879 ± 0.030
λ-DR: Gibbs-fitted-IW 0.769 ± 0.049 0.837 ± 0.038 0.867 ± 0.032
λ-DR: Gibbs-fitted-SN 0.780 ± 0.066 0.791 ± 0.042 0.882 ± 0.025

Emp.Lik. Ideal - - -
Emp.Lik. Gibbs-fitted-IW - - -
Emp.Lik. Gibbs-fitted-SN - - -

E.2 UCI Datasets

Table 8: Concentration term for different confidence intervals and target policies.
Concentration / Name Yeast PageBlok OptDigits SatImage isolet PenDigits Letter kropt

Size 1484 5473 5620 6435 7797 10992 20000 28056
ESLB: Ideal 0.424 ± 0.003 0.384 ± 0.038 0.672 ± 0.052 0.778 ± 0.020 0.402 ± 0.041 0.494 ± 0.018 0.241 ± 0.018 0.279 ± 0.006

ESLB: Gibbs-fitted-IW 2.056 ± 0.082 0.839 ± 0.054 0.858 ± 0.025 0.810 ± 0.088 0.827 ± 0.006 0.676 ± 0.047 0.665 ± 0.013 0.595 ± 0.009
ESLB: Gibbs-fitted-SN 3.060 ± 0.496 0.993 ± 0.154 1.640 ± 0.204 1.242 ± 0.144 1.229 ± 0.033 0.996 ± 0.148 0.833 ± 0.035 0.709 ± 0.023

λ-IW: Ideal 0.633 ± 0.001 0.352 ± 0.020 0.385 ± 0.029 0.400 ± 0.016 0.321 ± 0.021 0.301 ± 0.015 0.208 ± 0.012 0.196 ± 0.006
λ-IW: Gibbs-fitted-IW 0.821 ± 0.071 0.418 ± 0.022 0.501 ± 0.015 0.435 ± 0.022 0.570 ± 0.015 0.366 ± 0.009 0.347 ± 0.003 0.263 ± 0.004
λ-IW: Gibbs-fitted-SN 0.782 ± 0.056 0.393 ± 0.017 0.466 ± 0.015 0.428 ± 0.024 0.483 ± 0.023 0.337 ± 0.014 0.303 ± 0.006 0.243 ± 0.005

λ-DR: Ideal 0.927 ± 0.004 0.484 ± 0.025 0.524 ± 0.031 0.486 ± 0.017 0.430 ± 0.023 0.370 ± 0.017 0.263 ± 0.015 0.242 ± 0.013
λ-DR: Gibbs-fitted-IW 1.179 ± 0.051 0.550 ± 0.034 0.665 ± 0.027 0.555 ± 0.035 0.755 ± 0.015 0.451 ± 0.019 0.427 ± 0.017 0.344 ± 0.009
λ-DR: Gibbs-fitted-SN 0.985 ± 0.048 0.516 ± 0.024 0.544 ± 0.035 0.487 ± 0.023 0.527 ± 0.037 0.378 ± 0.024 0.304 ± 0.016 0.265 ± 0.010

Cheb-SN: Ideal 3.133 ± 0 2.464 ± 0 5.450 ± 0 6.852 ± 0 2.405 ± 0 3.258 ± 0 1.268 ± 0 1.541 ± 0
Cheb-SN: Gibbs-fitted-IW −∞ 6.275 ± 0.994 3.720 ± 0.561 5.665 ± 2.055 2.629 ± 0.305 4.375 ± 0.727 5.652 ± 0.242 4.668 ± 0.126
Cheb-SN: Gibbs-fitted-SN −∞ 11.510 ± 3.473 33.712 ± 4.930 17.818 ± 5.089 21.090 ± 0.994 8.806 ± 1.524 6.555 ± 0.139 4.779 ± 0.085

DR: Ideal - - - - - - - -
DR: Gibbs-fitted-IW - - - - - - - -
DR: Gibbs-fitted-SN - - - - - - - -

Emp.Lik. Ideal - - - - - - - -
Emp.Lik. Gibbs-fitted-IW - - - - - - - -
Emp.Lik. Gibbs-fitted-SN - - - - - - - -

Table 9: Bias term for different confidence intervals and target policies.
Bias (multiplicative for SN-based CIs) / Name Yeast PageBlok OptDigits SatImage isolet PenDigits Letter kropt

Size 1484 5473 5620 6435 7797 10992 20000 28056
ESLB: Ideal 0.996 ± 0.001 0.997 ± 0 0.989 ± 0.001 0.985 ± 0.001 0.997 ± 0.001 0.994 ± 0.001 0.999 ± 0 0.998 ± 0

ESLB: Gibbs-fitted-IW 0.892 ± 0.018 0.987 ± 0.003 0.993 ± 0.002 0.989 ± 0.005 0.996 ± 0.001 0.992 ± 0.002 0.988 ± 0.001 0.990 ± 0.001
ESLB: Gibbs-fitted-SN 0.789 ± 0.030 0.976 ± 0.005 0.951 ± 0.004 0.965 ± 0.008 0.962 ± 0.003 0.979 ± 0.004 0.985 ± 0.001 0.990 ± 0.001

λ-IW: Ideal 0.054 ± 0 0.067 ± 0 0.170 ± 0 0.244 ± 0 0.076 ± 0 0.151 ± 0 0.056 ± 0 0.097 ± 0
λ-IW: Gibbs-fitted-IW 0.487 ± 0.067 0.218 ± 0.033 0.118 ± 0.021 0.210 ± 0.079 0.091 ± 0.015 0.238 ± 0.047 0.509 ± 0.024 0.516 ± 0.016
λ-IW: Gibbs-fitted-SN 0.789 ± 0.058 0.361 ± 0.076 0.718 ± 0.052 0.554 ± 0.095 0.725 ± 0.007 0.506 ± 0.079 0.602 ± 0.015 0.528 ± 0.012

λ-DR: Ideal 0.123 ± 0.013 0.115 ± 0.011 0.319 ± 0.035 0.478 ± 0.040 0.313 ± 0.009 0.343 ± 0.033 0.306 ± 0.007 0.294 ± 0.006
λ-DR: Gibbs-fitted-IW 1.127 ± 0.174 0.439 ± 0.074 0.488 ± 0.099 0.557 ± 0.165 1.220 ± 0.077 0.706 ± 0.132 1.762 ± 0.101 1.533 ± 0.070
λ-DR: Gibbs-fitted-SN 1.443 ± 0.182 0.582 ± 0.119 1.305 ± 0.103 1.154 ± 0.205 1.439 ± 0.070 1.097 ± 0.157 1.395 ± 0.049 1.256 ± 0.032

Cheb-SN: Ideal 0.722 ± 0 0.767 ± 0 0.599 ± 0 0.543 ± 0 0.772 ± 0 0.714 ± 0 0.865 ± 0 0.841 ± 0
Cheb-SN: Gibbs-fitted-IW 0 ± 0 0.567 ± 0.043 0.688 ± 0.031 0.601 ± 0.080 0.756 ± 0.021 0.652 ± 0.038 0.590 ± 0.010 0.635 ± 0.006
Cheb-SN: Gibbs-fitted-SN 0 ± 0 0.426 ± 0.066 0.198 ± 0.033 0.325 ± 0.062 0.279 ± 0.010 0.484 ± 0.043 0.554 ± 0.005 0.630 ± 0.004

DR: Ideal - - - - - - - -
DR: Gibbs-fitted-IW - - - - - - - -
DR: Gibbs-fitted-SN - - - - - - - -

Emp.Lik. Ideal - - - - - - - -
Emp.Lik. Gibbs-fitted-IW - - - - - - - -
Emp.Lik. Gibbs-fitted-SN - - - - - - - -



Confident Off-Policy Evaluation and Selection through Self-Normalized Importance Weighting

Table 10: Concentration of contexts term for different confidence intervals and target policies.
Concentration of contexts / Name Yeast PageBlok OptDigits SatImage isolet PenDigits Letter kropt

Size 1484 5473 5620 6435 7797 10992 20000 28056
ESLB: Ideal 0.066 ± 0 0.034 ± 0 0.034 ± 0 0.032 ± 0 0.029 ± 0 0.024 ± 0 0.018 ± 0 0.015 ± 0

ESLB: Gibbs-fitted-IW 0.066 ± 0 0.034 ± 0 0.034 ± 0 0.032 ± 0 0.029 ± 0 0.024 ± 0 0.018 ± 0 0.015 ± 0
ESLB: Gibbs-fitted-SN 0.066 ± 0 0.034 ± 0 0.034 ± 0 0.032 ± 0 0.029 ± 0 0.024 ± 0 0.018 ± 0 0.015 ± 0

λ-IW: Ideal 0.068 ± 0 0.035 ± 0 0.035 ± 0 0.033 ± 0 0.030 ± 0 0.025 ± 0 0.018 ± 0 0.016 ± 0
λ-IW: Gibbs-fitted-IW 0.068 ± 0 0.035 ± 0 0.035 ± 0 0.033 ± 0 0.030 ± 0 0.025 ± 0 0.018 ± 0 0.016 ± 0
λ-IW: Gibbs-fitted-SN 0.068 ± 0 0.035 ± 0 0.035 ± 0 0.033 ± 0 0.030 ± 0 0.025 ± 0 0.018 ± 0 0.016 ± 0

λ-DR: Ideal 0.096 ± 0 0.050 ± 0 0.049 ± 0 0.046 ± 0 0.042 ± 0 0.035 ± 0 0.026 ± 0 0.022 ± 0
λ-DR: Gibbs-fitted-IW 0.096 ± 0 0.050 ± 0 0.049 ± 0 0.046 ± 0 0.042 ± 0 0.035 ± 0 0.026 ± 0 0.022 ± 0
λ-DR: Gibbs-fitted-SN 0.096 ± 0 0.050 ± 0 0.049 ± 0 0.046 ± 0 0.042 ± 0 0.035 ± 0 0.026 ± 0 0.022 ± 0

Cheb-SN: Ideal 0.068 ± 0 0.035 ± 0 0.035 ± 0 0.033 ± 0 0.030 ± 0 0.025 ± 0 0.018 ± 0 0.016 ± 0
Cheb-SN: Gibbs-fitted-IW 0.068 ± 0 0.035 ± 0 0.035 ± 0 0.033 ± 0 0.030 ± 0 0.025 ± 0 0.018 ± 0 0.016 ± 0
Cheb-SN: Gibbs-fitted-SN 0.068 ± 0 0.035 ± 0 0.035 ± 0 0.033 ± 0 0.030 ± 0 0.025 ± 0 0.018 ± 0 0.016 ± 0

DR: Ideal - - - - - - - -
DR: Gibbs-fitted-IW - - - - - - - -
DR: Gibbs-fitted-SN - - - - - - - -

Emp.Lik. Ideal - - - - - - - -
Emp.Lik. Gibbs-fitted-IW - - - - - - - -
Emp.Lik. Gibbs-fitted-SN - - - - - - - -

Table 11: Empirical value v̂ for different estimators and target policies.
v̂(π) / Name Yeast PageBlok OptDigits SatImage isolet PenDigits Letter kropt

Size 1484 5473 5620 6435 7797 10992 20000 28056
ESLB: Gibbs-fitted-IW 0.367 ± 0.068 0.612 ± 0.075 0.510 ± 0.057 0.593 ± 0.070 0.349 ± 0.019 0.604 ± 0.066 0.425 ± 0.035 0.411 ± 0.023
ESLB: Gibbs-fitted-SN 0.997 ± 0.004 0.919 ± 0.028 0.999 ± 0.002 0.964 ± 0.035 1.000 ± 0 0.969 ± 0.017 0.984 ± 0.013 0.840 ± 0.053

ESLB: Ideal 0.903 ± 0.013 0.916 ± 0.007 0.907 ± 0.023 0.921 ± 0.024 0.918 ± 0.005 0.908 ± 0.021 0.912 ± 0.007 0.908 ± 0.010
λ-IW: Gibbs-fitted-IW 0.585 ± 0.041 0.725 ± 0.040 0.963 ± 0.023 0.700 ± 0.038 1.680 ± 0.068 0.772 ± 0.049 0.679 ± 0.027 0.400 ± 0.019
λ-IW: Gibbs-fitted-SN 0.175 ± 0.055 0.514 ± 0.103 0.192 ± 0.070 0.352 ± 0.100 0.381 ± 0.058 0.361 ± 0.101 0.297 ± 0.032 0.267 ± 0.019

λ-IW: Ideal 0.851 ± 0.013 0.848 ± 0.013 0.750 ± 0.033 0.691 ± 0.024 0.849 ± 0.014 0.772 ± 0.024 0.862 ± 0.016 0.820 ± 0.010
λ-DR: Ideal 0.877 ± 0.019 0.870 ± 0.013 0.820 ± 0.046 0.800 ± 0.038 0.875 ± 0.016 0.835 ± 0.029 0.883 ± 0.013 0.834 ± 0.016

λ-DR: Gibbs-fitted-IW 0.682 ± 0.098 0.770 ± 0.052 0.730 ± 0.082 0.710 ± 0.069 0.528 ± 0.125 0.734 ± 0.054 0.477 ± 0.064 0.530 ± 0.044
λ-DR: Gibbs-fitted-SN 0.683 ± 0.086 0.671 ± 0.102 0.583 ± 0.061 0.752 ± 0.069 0.722 ± 0.071 0.743 ± 0.073 0.718 ± 0.048 0.687 ± 0.039

Cheb-SN: Ideal 0.903 ± 0.013 0.916 ± 0.007 0.907 ± 0.023 0.921 ± 0.024 0.918 ± 0.005 0.908 ± 0.021 0.912 ± 0.007 0.908 ± 0.010
Cheb-SN: Gibbs-fitted-IW 0.367 ± 0.068 0.612 ± 0.075 0.510 ± 0.057 0.593 ± 0.070 0.349 ± 0.019 0.604 ± 0.066 0.425 ± 0.035 0.411 ± 0.023
Cheb-SN: Gibbs-fitted-SN 0.997 ± 0.004 0.919 ± 0.028 0.999 ± 0.002 0.964 ± 0.035 1.000 ± 0 0.969 ± 0.017 0.984 ± 0.013 0.840 ± 0.053

DR: Ideal - - - - - - - -
DR: Gibbs-fitted-IW - - - - - - - -
DR: Gibbs-fitted-SN - - - - - - - -

Emp.Lik. Ideal - - - - - - - -
Emp.Lik. Gibbs-fitted-IW - - - - - - - -
Emp.Lik. Gibbs-fitted-SN - - - - - - - -


