
Appendix: Efficient Computation and Analysis of Distributional
Shapley Values

1 Proofs

1.1 Proof of Proposition 1

Proof of Proposition 1. To this end, we fix S and γ. The ridge estimator based on S and S ∪ {(x∗, y∗)} are given
by

β̂S,γ = A−1
S,γX

T
S YS ,

and

β̂S∪{(x∗,y∗)},γ = (XT
S∪{(x∗,y∗)}XS∪{(x∗,y∗)} + γIp)

−1XT
S∪{(x∗,y∗)}YS∪{(x∗,y∗)},

respectively. By Sherman-Morrison formula,

(x∗x∗T +AS,γ)−1 = A−1
S,γ −

A−1
S,γx

∗x∗TA−1
S,γ

1 + x∗TA−1
S,γx

∗
,

and

β̂S∪{(x∗,y∗)},γ = β̂S,γ +A−1
S,γx

∗y∗ −
A−1
S,γx

∗x∗T β̂S,γ

1 + x∗TA−1
S,γx

∗
−
A−1
S,γx

∗x∗TA−1
S,γx

∗y∗

1 + x∗TA−1
S,γx

∗

= β̂S,γ +
A−1
S,γx

∗(y∗ − x∗T β̂S,γ)

1 + x∗TA−1
S,γx

∗︸ ︷︷ ︸
=:fγ(XS)

.

Since Uq,γ(S) = (Clin−
∫

(y−xT β̂S,γ)2dPX,Y (x, y))1(|S| ≥ q) = (Clin−σ2− (β̂S,γ −β)TΣX(β̂S,γ −β))1(|S| ≥ q),
for j − 1 ≥ q, we have

ES∼P j−1
X,Y

[Uq,γ(S ∪ {(x∗, y∗)})]

= Clin − σ2 − ES∼P j−1
X,Y

[(β̂S∪{(x∗,y∗)},γ − β)TΣX(β̂S∪{(x∗,y∗)},γ − β)]

= ES∼P j−1
X,Y

[Uq,γ(S)]− ES∼P j−1
X,Y

[fγ(XS)TΣXfγ(XS)]− 2ES∼P j−1
X,Y

[fγ(XS)TΣX(β̂S,γ − β)].

Therefore,

ES∼P j−1
X,Y

[Uq,γ(S ∪ {(x∗, y∗)})− Uq,γ(S)]

= −(ES∼P j−1
X,Y

[fγ(XS)TΣXfγ(XS)] + 2ES∼P j−1
X,Y

[fγ(XS)TΣX(β̂S,γ − β)]),

and thus for q ≥ p+ 1, DShapley is

ν((x∗, y∗);Uq,γ , PX,Y ,m)

=
1

m

m∑
j=1

ES∼P j−1
X,Y

[Uq,γ(S ∪ {(x∗, y∗)})− Uq,γ(S)]
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= (Clin − σ2 − ES∼P q−1
X,Y

[(β̂S,γ − β)TΣX(β̂S,γ − β)])

− 1

m

m∑
j=q

(
ES∼P j−1

X,Y
[fγ(XS)TΣXfγ(XS)] + 2ES∼P j−1

X,Y
[fγ(XS)TΣX(β̂S,γ − β)]

)
.

[Step 1] Computation of E[fγ(XS)TΣXfγ(XS) | XS ].

We set e∗S,γ = y∗ − x∗TE[β̂S,γ | XS ] = y∗ − x∗TA−1
S,γ(XT

SXS)β, then

E[fγ(XS) | XS ] =
A−1
S,γx

∗e∗S,γ

1 + x∗TA−1
S,γx

∗
,

and Cov[β̂S,γ | XS ] = A−1
S,γ(XT

SXS)A−1
S,γσ

2 = A−1
S,γ(AS,γ−γIp)A−1

S,γσ
2 = A−1

S,γ(Ip−γA−1
S,γ)σ2 = (A−1

S,γ−γA
−2
S,γ)σ2 =:

MS,γσ
2 gives

Cov[fγ(XS) | XS ] =
A−1
S,γx

∗x∗TMS,γx
∗x∗TA−1

S,γ

(1 + x∗TA−1
S,γx

∗)2
σ2.

Thus,

E[fγ(XS)TΣXfγ(XS) | XS ] =
x∗TA−1

S,γΣXA
−1
S,γx

∗

(1 + x∗TA−1
S,γx

∗)2
e∗2S,γ +

x∗TA−1
S,γΣXA

−1
S,γx

∗

(1 + x∗TA−1
S,γx

∗)2
x∗TMS,γx

∗σ2.

Since

e∗S,γ = e∗ + x∗T (β −A−1
S,γ(XT

SXS)β) = e∗ + γx∗TA−1
S,γβ,

and MS,γ = A−1
S,γ − γA

−2
S,γ , we have

E[fγ(XS)TΣXfγ(XS) | XS ] =
x∗TA−1

S,γΣXA
−1
S,γx

∗

(1 + x∗TA−1
S,γx

∗)2
(
e∗2

σ2
+ x∗TA−1

S,γx
∗)σ2 + h1(γ),

where h1(γ) is some explicit term such that limγ→0+ h1(γ)/(γ log(γ)) and h1(0) = 0.

[Step 2] Computation of E[fγ(XS)TΣX(β̂S,γ − β) | XS ].

E[fγ(XS)TΣX(β̂S,γ − β) | XS ]

= E[
(y∗ − x∗T β̂S,γ)x∗TA−1

S,γΣX(β̂S,γ − β)

1 + x∗TA−1
S,γx

∗
| XS ]

= −γ
e∗x∗TA−1

S,γΣXA
−1
S,γβ

1 + x∗TA−1
S,γx

∗
− ES [

(β̂S,γ − β)Tx∗x∗TA−1
S,γΣX(β̂S,γ − β)

1 + x∗TA−1
S,γx

∗
| XS ]

= −γ
e∗x∗TA−1

S,γΣXA
−1
S,γβ

1 + x∗TA−1
S,γx

∗
− γ2

βTA−1
S,γx

∗x∗TA−1
S,γΣXA

−1
S,γβ

1 + x∗TA−1
S,γx

∗
−
x∗TA−1

S,γΣXMS,γx
∗

1 + x∗TA−1
S,γx

∗
σ2

= −
x∗TA−1

S,γΣXA
−1
S,γx

∗

1 + x∗TA−1
S,γx

∗
σ2 + h2(γ).

where h2(γ) is some explicit term such that limγ→0+ h2(γ)/(γ log(γ)) = 0 and h2(0) = 0.

Hence, by setting Clin = σ2 + ES∼P q−1
X,Y

[(β̂S,γ − β)TΣX(β̂S,γ − β)], we have

ν((x∗, y∗);Uq,γ , PX,Y ,m)



= Clin − σ2 − ES∼P q−1
X,Y

[(β̂S,γ − β)TΣX(β̂S,γ − β)]

− 1

m

m∑
j=q

EXS∼P j−1
X

[
x∗TA−1

S,γΣXA
−1
S,γx

∗

(1 + x∗TA−1
S,γx

∗)2
(e∗2 − (2 + x∗TA−1

S,γx
∗)σ2)

]
+ h(γ), (9)

= − 1

m

m∑
j=q

EXS∼P j−1
X

[
x∗TA−1

S,γΣXA
−1
S,γx

∗

(1 + x∗TA−1
S,γx

∗)2
(e∗2 − (2 + x∗TA−1

S,γx
∗)σ2)

]
+ h(γ),

=
1

m

m∑
j=q

EXS∼P j−1
X

[
x∗TA−1

S,γΣXA
−1
S,γx

∗

(1 + x∗TA−1
S,γx

∗)2
((2 + x∗TA−1

S,γx
∗)σ2 − e∗2)

]
+ h(γ),

for some h(γ) such that limγ→0+ h(γ)/(γ log(γ)) = 0 and h(0) = 0.

1.2 Proof of Theorem 2

Proof of Theorem 2. By plugging γ = 0 into Equation (9), for q ≥ p+ 3, DShapley is given by

ν((x∗, y∗);Uq,0, PX,Y ,m)

= Clin − σ2 − ES∼P q−1
X,Y

[(β̂S,γ − β)TΣX(β̂S,γ − β)]

+
σ2

m

m∑
j=q

(
(1− e∗2

σ2
)EXS∼P j−1

X

[
x̃∗T (X̃T

S X̃S)−2x̃∗

(1 + x̃∗T (X̃T
S X̃S)−1x̃∗)2

]
+ EXS∼P j−1

X

[
x̃∗T (X̃T

S X̃S)−2x̃∗

1 + x̃∗T (X̃T
S X̃S)−1x̃∗

])
, (10)

where X̃S = XSΣ
−1/2
X and x̃∗ = Σ

−1/2
X x∗, i.e., a normalized version. Note that (X̃T

S X̃S)−1 follows an inverse-
Wishart distribution and its mean is Ip/(q − 1− p− 1). Therefore,

−σ
2

m
tr(EXS∼P q−1

X
[(X̃T

S X̃S)−1]) = −σ
2

m

p

q − p− 2
.

Now it is enough to compute the following expectations:

EXS∼P j−1
X

[
x̃∗T (X̃T

S X̃S)−2x̃∗

(1 + x̃∗T (X̃T
S X̃S)−1x̃∗)2

] and EXS∼P j−1
X

[
x̃∗T (X̃T

S X̃S)−2x̃∗

1 + x̃∗T (X̃T
S X̃S)−1x̃∗

].

[Step 1] For any p × p orthogonal matrix Γ, we have Γ(X̃T
S X̃S)ΓT ∼ Wp(|S|, Ip) due to X̃T

S X̃S ∼ Wp(|S|, Ip).
We choose an orthogonal matrix Γ with the first column is (x̃∗T x̃∗)−1/2x̃∗ and let V := Γ(X̃T

S X̃S)ΓT . Then,
x̃∗T (X̃T

S X̃S)−1x̃∗ = (Γx̃∗)TV −1(Γx̃∗) = x̃∗T x̃∗v11 where V −1 = (vij). Similarly, we obtain x̃∗T (X̃T
S X̃S)−2x̃∗ =

x̃∗T x̃∗
∑p
j=1(v1j)2.

Now we let V = TTT where T is an upper triangular matrix with positive diagonal elements as

T =

(
t11 tT

0 T22

)
.

Then,

T−1 =

(
t−1
11 −t−1

11 tTT−1
22

0 T−1
22

)
, V −1 =

(
t−2
11 −t−2

11 tTT−1
22

−t−2
11 (TT22)−1t (T22T

T
22)−1 + t−2

11 (TT22)−1ttTT−1
22

)
.

Therefore,

x̃∗T (X̃T
S X̃S)−2x̃∗

(1 + x̃∗T (X̃T
S X̃S)−1x̃∗)2

=
x̃∗T x̃∗(t−4

11 + t−4
11 tT (TT22T22)−1t)

(1 + x̃∗T x̃∗t−2
11 )2

=
x̃∗T x̃∗(1 + tT (TT22T22)−1t)

(x̃∗T x̃∗ + t211)2
.

Due to Gupta and Nagar (1999, Theorem 3.3.5), t211 is independent to tT (TT22T22)−1t with t211 ∼ χ2
|S|−p+1.

Furthermore, by Gupta and Nagar (1999, Theorem 3.3.28), tT (TT22T22)−1t ∼ p−1
|S|−p+2Fp−1,|S|−p+2. That is,

EXS∼P j−1
X

[
x̃∗T (X̃T

S X̃S)−2x̃∗

(1 + x̃∗T (X̃T
S X̃S)−1x̃∗)2

] = x̃∗T x̃∗E[(1 + tT (TT22T22)−1t)]E[
1

(x̃∗T x̃∗ + t211)2
]
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= x̃∗T x̃∗
|S| − 1

|S| − p
E[

1

(x̃∗T x̃∗ + t211)2
].

[Step 2] Similarly, we have

x̃∗T (X̃T
S X̃S)−2x̃∗

1 + x̃∗T (X̃T
S X̃S)−1x̃∗

=
x̃∗T x̃∗(t−4

11 + t−4
11 tT (TT22T22)−1t)

1 + x̃∗T x̃∗t−2
11

= (1 + tT (TT22T22)−1t)

(
1

t211

− 1

t211 + x̃∗T x̃∗

)
,

and

EXS∼P j−1
X

[
x̃∗T (X̃T

S X̃S)−2x̃∗

1 + x̃∗T (X̃T
S X̃S)−1x̃∗

] =
|S| − 1

|S| − p
E[

(
1

t211

− 1

t211 + x̃∗T x̃∗

)
]

=
|S| − 1

|S| − p

(
1

|S| − p− 1
− E[

1

t211 + x̃∗T x̃∗
]

)
.

[Step 3] Therefore, for any q ≥ p + 3 and Chi-squared distributions Tj ∼ χ2
j−p+1 (or equivalently Gamma

distributions Tj ∼ Gamma((j − p+ 1)/2, 1/2)), we have

ν((x∗, y∗);Uq,0, PX,Y ,m)

= Clin − σ2 − ES∼P q−1
X,Y

[(β̂S,γ − β)TΣX(β̂S,γ − β)]

+
σ2

m

m∑
j=q

(
(1− e∗2

σ2
)
j − 1

j − p
E[

x̃∗T x̃∗

(x̃∗T x̃∗ + Tj)2
] +

j − 1

j − p

(
1

j − p− 1
− E[

1

x̃∗T x̃∗ + Tj
]

))
By setting

Clin = σ2 + ES∼P q−1
X,Y

[(β̂S,γ − β)TΣX(β̂S,γ − β)]− σ2

m

m∑
j=q

j − 1

j − p
1

j − p− 1
,

we have

ν((x∗, y∗);Uq,0, PX,Y ,m)

=
σ2

m

m∑
j=q

(
(1− e∗2

σ2
)
j − 1

j − p
E[

x̃∗T x̃∗

(x̃∗T x̃∗ + Tj)2
]− j − 1

j − p
E[

1

x̃∗T x̃∗ + Tj
]

)

= − 1

m

m∑
j=q

E

j − 1

j − p

(
x∗TΣ−1

X x∗e∗2 + Tjσ
2
)

(x∗TΣ−1
X x∗ + Tj)2

 .

1.3 Proof of Theorem 3

To begin, we first define some notations and a useful lemma. Let λmin(A) and λmax(A) be the smallest and
largest singular values of a matrix A. For a sub-Gaussian random variable X, we denote its sub-Gaussian norm
by ‖X‖ψ2

:= supp≥1 p
−1/2(E|X|p)1/p. For a sub-Gaussian random vector X, we denote its sub-Gaussian norm

by ‖X‖ψ2
:= supxT x=1

∥∥〈X,x〉∥∥
ψ2

. Lastly, we quote the non-asymptotic eigenvalue bounds by Vershynin (2010,

Theorem 5.39).

Lemma 6. Suppose that X̃S is a matrix whose rows are independent sub-Gaussian isotropic random vectors in
Rp, then for every t ≥ 0, with probability at least 1− 2 exp(−ct2) one has√

|S|(1− δ|S|) =
√
|S| − C√p− t ≤ λmin(X̃S) ≤ λmax(X̃S) ≤

√
|S|+ C

√
p+ t =

√
|S|(1 + δ|S|),

where δ|S| = (C
√
p+ t)/

√
|S| and C, c are two constants depending only on the sub-Gaussian norm.



Proof of Theorem 3. [Step 1] We provide a proof for the upper bound only, but the similar procedure can show

the lower bound. To this end, we fix S and let X̃S = XSΣ
−1/2
X , x̃∗ = Σ

−1/2
X x∗, and Ãγ = (X̃T

S X̃S + γΣ−1
X ). Then,

we have

x∗TA−1
γ ΣXA

−1
γ x∗

1 + x∗TA−1
γ x∗

(2 + x∗TA−1
γ x∗)σ2 − e∗2

1 + x∗TA−1
γ x∗

=
(x̃∗T Ã−2

γ x̃∗)(2 + x̃∗T Ã−1
γ x̃∗)σ2 − e∗2

(1 + x̃∗T Ã−1
γ x̃∗)2

. (11)

Due to λmax(AB) ≤ λmax(A)λmax(B), we have

(x̃∗T Ã−2
γ x̃∗)(2 + x̃∗T Ã−1

γ x̃∗)σ2 − e∗2

(1 + x̃∗T Ã−1
γ x̃∗)2

≤
x̃∗T x̃∗λmax(Ã−2

γ )(2 + x̃∗T x̃∗λmax(Ã−1
γ ))

(1 + x̃∗T x̃∗λmin(Ã−1
γ ))2

σ2 − 1

(1 + x̃∗T x̃∗λmax(Ã−1
γ ))2

e∗2.

Since |yi| ≤ BY and β̂R
S = argminβ(YS − XSβ)T (YS − XSβ) + γ‖β‖22, we obtain boundedness of

∥∥∥β̂R
S

∥∥∥2

2
, i.e.,∥∥∥β̂R

S

∥∥∥2

2
≤ γ−1Y TS YS ≤ γ−1mB2

Y for any S ⊆ X × Y. That means, UR
q (S) is bounded, and thus Equation (11) is

bounded as well. Let say the bound is Cbdd.

[Step 2] Using Lemma 6 with t|S| =

√
log(|S|m1/2)

c , the following holds with probability at least 1− 2/(|S|m1/2).√
|S|(1− δ|S|) =

√
|S| − C√p− t ≤ λmin(X̃S) ≤ λmax(X̃S) ≤

√
|S|+ C

√
p+ t =

√
|S|(1 + δ|S|),

where δ|S| = (C
√
p+

√
log(|S|m)

2c )/
√
|S|. We denote the set where the inequalities hold by Ω|S| and we obtain the

following bounds.

EXS∼P j−1
X

[
(x̃∗T Ã−2

γ x̃∗)(2 + x̃∗T Ã−1
γ x̃∗)σ2 − e∗2

(1 + x̃∗T Ã−1
γ x̃∗)2

]

≤
∫

Ω|S|

x̃∗T x̃∗λmax(Ã−2
γ )(2 + x̃∗T x̃∗λmax(Ã−1

γ ))

(1 + x̃∗T x̃∗λmin(Ã−1
γ ))2

σ2dP −
∫

Ω|S|

1

(1 + x̃∗T x̃∗λmax(Ã−1
γ ))2

e∗2dP

+

∫
Ωc
CbdddP

≤
x̃∗T x̃∗(|S|(1− δ|S|)2 + γλmin(Σ−1

X ))−2

(1 + x̃∗T x̃∗(|S|(1 + δ|S|)2 + γλmax(Σ−1
X ))−1)2

(
2 + x̃∗T x̃∗(|S|(1− δ|S|)2 + γλmin(Σ−1

X ))−1
)
σ2

− e∗2

(1 + x̃∗T x̃∗(|S|(1− δ|S|)2 + γλmin(Σ−1
X ))−1)2

+ CbddP (Ωc|S|),

where the second inequality is due to λmin(A+B) ≥ λmin(A) + λmin(B) and λmax(A+B) ≤ λmax(A) + λmax(B).
Hence,

ν((x∗, y∗);Uq,γ , PX,Y ,m)

≤ 1

m

m−1∑
j=q−1

x̃∗T x̃∗(j(1− δj)2 + γλmin(Σ−1
X ))−2

(1 + x̃∗T x̃∗(j(1 + δj)2 + γλmax(Σ−1
X ))−1)2

(
2 + x̃∗T x̃∗(j(1− δj)2 + γλmin(Σ−1

X ))−1
)
σ2

− 1

m

m−1∑
j=q−1

e∗2

(1 + x̃∗T x̃∗(j(1− δj)2 + γλmin(Σ−1
X ))−1)2

+
Cbdd

m

m−1∑
j=q−1

P (Ωcj) + h(γ)

=
1

m

m−1∑
j=q−1

x̃∗T x̃∗Λ2
upper(j)

(1 + x̃∗T x̃∗Λlower(j))2

(
2 + x̃∗T x̃∗Λupper(j)

)
σ2

− 1

m

m−1∑
j=q−1

e∗2

(1 + x̃∗T x̃∗Λupper(j))2
+
Cbdd

m

m−1∑
j=q−1

P (Ωcj) + h(γ),
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where Λupper(j) := (j(1− δj)2 + γλmin(Σ−1
X ))−1 and Λlower(j) := (j(1 + δj)

2 + γλmax(Σ−1
X ))−1 for j ∈ N. Lastly,

1
m

∑m−1
j=q−1 P (Ωcj) = 1

m

∑m−1
j=q−1

2
j
√
m
≤ 4 log(m)

m3/2 concludes a proof.

Remark 1. It is noteworthy that the eigenvalues of A−1
S,γ are contained in [Λlower(j), and Λupper(j)] with high

probability. By Lemma 6, on Ωj, we have

j(1− δj)2 + γλmin(Σ−1
X ) ≤ λmin(AS,γ) ≤ λmax(AS,γ) ≤ j(1 + δj)

2 + γλmax(Σ−1
X ),

and thus

Λlower(j) ≤ λmin(A−1
S,γ) ≤ λmax(A−1

S,γ) ≤ Λupper(j).

1.4 Proof of Corollary 4

We first provide a detailed version of Corollary 4.

Corollary 7 (DShapley in binary classification; a detailed version). Assume E[Y | X] = logit−1(XTβ) and X
are sub-Gaussian in Rp with E(XXT ) = ΣX . For a point (x∗, y∗), let π∗ = logit−1(x∗Tβ), w∗ = π∗(1 − π∗),
and z∗ = x∗Tβ + (y∗ − π∗)/w∗. Then, for any q ≥ p + 3 and some fixed constant Clin, DShapley of a point(

(w∗)1/2x∗, (w∗)1/2z∗
)

has the following upper and lower bounds.

1

m

m−1∑
j=q−1

w∗x∗T Σ̃−1
X x∗Λ̃2

lower(j)

(1 + w∗x∗T Σ̃−1
X x∗Λ̃upper(j))2

(
(2 + w∗x∗T Σ̃−1

X x∗Λ̃lower(j))− Λ̃−1
ratio(j)e∗2b

)
≤ ν

((
(w∗)1/2x∗, (w∗)1/2z∗

)
;Uq,0, PX̃,Z̃ ,m

)
+ o

(
1

m

)
≤ 1

m

m−1∑
j=q−1

w∗x∗T Σ̃−1
X x∗Λ̃2

upper(j)

(1 + w∗x∗T Σ̃−1
X x∗Λ̃lower(j))2

(
(2 + w∗x∗T Σ̃−1

X x∗Λ̃upper(j))− Λ̃ratio(j)e∗2b

)
,

where e∗2b := (w∗)−1(y∗ − π∗)2, the function h is defined in Proposition 1, Σ̃X := E[wXXT ], Λ̃upper(j) :=

(j(1− δj)2)−1, Λ̃lower(j) := (j(1 + δj)
2)−1, and δj = (C

√
p+

√
log(jm)

2c )/
√
j for j ∈ N and certain constants c, C

as in the proof of Theorem 3. Lastly,

Λ̃ratio(j) =

(
1 + w∗x∗T Σ̃−1

X x∗Λ̃lower(j)

1 + w∗x∗T Σ̃−1
X x∗Λ̃upper(j)

)2

.

Proof of Corollary 4. Since E[Y | X] = logit−1(XTβ) = π, we have E[w1/2Z | w1/2X] = w1/2XTβ and
Var[w1/2Z | w1/2X] = 1. Furthermore, by the definition of sub-Gaussian, w1/2X is also sub-Gaussian with Σ̃X
because w ≤ 1 and X are sub-Gaussian with E(XXT ) = ΣX . With the notations, Theorem 3 with γ = 0 gives
the upper and lower bounds.

1.5 Proof of Theorem 5

Proof of Theorem 5. Let S∗ = {z∗1 , . . . , z∗n}. A simple algebra gives p̂S∪S∗(z) = 1
|S|+n (

∑n
j=1 k(z, z∗j )+ |S|p̂S(z)) =

1
|S|+n

∑n
j=1 k(z, z∗j ) + |S|

|S|+n p̂S(z) = p̂S(z) + n
|S|+n ( 1

n

∑n
j=1 k(z, z∗j )− p̂S(z)). Note that 1

n

∑n
j=1 k(z, z∗j ) = p̂S∗(z).

For |S| ≥ 1, we have

U(S ∪ S∗)− U(S)

= −
∫

(p(z)− p̂S∪S∗(z))2 − (p(z)− p̂S(z))2dz

= −
∫ (

p(z)− p̂S(z)− n

|S|+ n

(
p̂S∗(z)− p̂S(z)

))2

− (p(z)− p̂S(z))2dz



= −
∫

n2

(|S|+ n)2

(
p̂S∗(z)− p̂S(z)

)2 − 2n

|S|+ n

{
(p(z)− p̂S(z))

(
p̂S∗(z)− p̂S(z)

)}
dz.

Furthermore,

(p̂S∗(z)− p̂S(z))2 = (p̂S∗(z)− p(z) + p(z)− p̂S(z))2

= (p̂S∗(z)− p(z))2 + (p(z)− p̂S(z))2 + 2(p̂S∗(z)− p(z))(p(z)− p̂S(z)), (12)

and

(p(z)− p̂S(z))(p̂S∗(z)− p̂S(z)) = (p(z)− p̂S(z))(p̂S∗(z)− p(z) + p(z)− p̂S(z))

= (p(z)− p̂S(z))(p̂S∗(z)− p(z)) + (p(z)− p̂S(z))2. (13)

Equations (12) and (13) give

E[U(S ∪ S∗)− U(S)] = − n2

(|S|+ n)2

∫
(p̂S∗(z)− p(z))2dz

+
n2 + 2n|S|
(|S|+ n)2

∫
E[(p(z)− p̂S(z))2]dz

+
2n|S|

(|S|+ n)2

∫
(p̂S∗(z)− p(z))E[p(z)− p̂S(z)]dz.

We can decompose E[U(S ∪S∗)−U(S)] into two terms by dependency of S∗. To be more specific, E[U(S ∪S∗)−
U(S)] = h1(S∗, |S|) + h2(|S|∗, |S|) where

h1(S∗, |S|) = − n2

(|S|+ n)2

∫
(p̂S∗(z)− p(z))2dz +

2n|S|
(|S|+ n)2

∫
p̂S∗(z)E[p(z)− p̂S(z)]dz.

Also,

h2(n, |S|) =
n2 + 2n|S|
(|S|+ n)2

∫
E[(p(z)− p̂S(z))2]dz − 2n|S|

(|S|+ n)2

∫
p(z)E[p(z)− p̂S(z)]dz

=
n2 + 2n|S|
(|S|+ n)2

∫
E[(p(z)− p̂S(z))2]dz − 2n|S|

(|S|+ n)2

∫
p(z)(p(z)− E[k(z, Z)])dz.

Therefore, by Ghorbani et al. (2020, Theorem 2.3), we have

ν(S∗;U,P,m) =
1

m

m∑
j=1

ES∼P j−1 [U(S ∪ S∗)− U(S)]

= − 1

m

m∑
j=1

n2

(j + n− 1)2

∫
(p̂S∗(z)− p(z))2dz

+
1

m

m∑
j=2

2n(j − 1)

(j + n− 1)2

∫
p̂S∗(z)(p(z)− E[k(z, Z)])dz + C0(n,m)

= −A(n,m)

∫
(p̂S∗(z)− p(z))2dz +B(n,m)g(S∗) + C0(n,m), (14)

and

C0(n,m) =
1

m
Cden +

1

m

m∑
j=2

h2(n, j − 1). (15)

Hence, it concludes a proof by choosing the constant Cden as follows.

Cden = −
m∑
j=2

h2(n, j − 1). (16)
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2 Details for Examples in Section 4

2.1 Details for Example 1

Proof of Example 1. A key idea is to develop Equation (14).

[Step 1] In this step we compute

h2(n, |S|) =
n2 + 2n|S|
(|S|+ n)2

∫
E[(p(z)− p̂S(z))2]dz − 2n|S|

(|S|+ n)2

∫
p(z)(p(z)− E[k(z, Z)])dz.

We first compute the term
∫
E[(p(z) − p̂S(z))2]dz. Note that p̂2

S(z) = 1
|S|2 (

∑
zi∈S k(z, zi)

2 +∑
i 6=j:zi,zj∈S k(z, zi)k(z, zj)). We have

E[p̂S(z)] = E[k(z, Z)] =


1
2 + z

h 0 ≤ z ≤ h/2,
1 h/2 ≤ z ≤ 1− h/2,
1
2 + 1−z

h 1− h/2 ≤ z ≤ 1,

and due to p(z) = 1,

p(z)− E[k(z, Z)] =


1
2 −

z
h 0 ≤ z ≤ h/2,

0 h/2 ≤ z ≤ 1− h/2,
1
2 −

1−z
h 1− h/2 ≤ z ≤ 1.

Since S are randomly sampled, we have

E[p̂2
S(z)] =

|S|E[k(z, Z)]/h+ |S|(|S| − 1)E[k(z, Z)]2

|S|2
=

E[k(z, Z)]

|S|h
+
|S| − 1

|S|
E[k(z, Z)]2.

Furthermore, we have
∫
E[k(z, Z)]dz = 1 − h/4 and

∫
E[k(z, Z)]2dz = 1 − 5h/12. Hence,

∫
E[p̂2

S(z)]dz =
1
|S|h −

1
4|S| + |S|−1

|S| (1− 5h
12 ) and we have∫

E[(p(z)− p̂S(z))2]dz = 1 +

(
1

|S|h
− 1

4|S|
+
|S| − 1

|S|
(1− 5h

12
)

)
− 2

(
1− h

4

)
=

1

|S|h
− 5

4|S|
+

(5 + |S|)h
12|S|

=
12− 15h+ (5 + |S|)h2

12|S|h
.

Lastly,
∫
p(z)(p(z)− E[k(z, Z)])dz = h/4 gives

h2(n, |S|) =
n2 + 2n|S|
(|S|+ n)2

12− 15h+ (5 + |S|)h2

12|S|h
− 2n|S|

(|S|+ n)2

h

4
.

[Step 2] By construction of h, g(S∗) = 0. If ∆ ≥ h, since z∗1 and z∗2 are apart at least h,

−
∫

(p(z)− p̂S∗(z))2dz = −
∫

(1− p̂S∗(z))2dz

= −

(
|S∗|h

(
1− 1

|S∗|h

)2

+ (1− |S∗|h)

)

= 1− 1

|S∗|h
.

Therefore, by aggregating all the results in [Step 1] and [Step 2], we have

ν(S∗;U,P,m) = A(2,m)

(
1− 1

2h

)
+ C0(2,m).



Figure 3: The synergy threshold (red dashed) and the corresponding synergy probability (blue solid) as a function
of bandwidth.

Note that by Equation (15),

C0(2,m) =
1

m
Cden +

1

m

m∑
j=2

h2(2, j − 1).

Note that we set Cset = C0(2,m) in the manuscript.

[Step 3] We now consider the case ∆ < h. To this end, without loss of generality, we assume that z∗1 ≤ z∗2 . Then
there is overlap between (z∗1 − h/2, z∗1 + h/2) and (z∗2 − h/2, z∗2 + h/2).

p̂S∗(z) =


1

2h z∗1 − h/2 ≤ z ≤ z∗2 − h/2,
1
h z∗2 − h/2 ≤ z ≤ z∗1 + h/2,
1

2h z∗1 + h/2 ≤ z ≤ z∗2 + h/2,

0 otherwise.

Therefore,
∫

(p(z)− p̂S∗(z))2dz = −1 + 1
h −

∆
2h2 . Hence, we have

ν(S∗;U,P,m) = A(2,m)

(
1− 1

h
+

∆

2h2

)
+ C0(2,m).

2.2 Details for Example 2

A similar analysis used in Example 1 gives

ν(z∗1 ;U,PZ ,m) = A(1,m)(1− 1

h
) + C0(1,m),

where C0(1,m) = 1
mCden + 1

m

∑m
j=2 h2(1, j − 1) by Equation (15). Since it is difficult to solve (8) analytically, we

numerically examine when (8) holds when Cden = 0.2 and m = 100. For fixed bandwidth h, we randomly draw
S∗ 5000 times and observe if there is a synergy. We empirically find that the synergy is determined by ∆, so we
define the synergy threshold as the smallest ∆ when the synergy happens, i.e, if ∆ is greater than the synergy
threshold, the inequality ν({z∗1 , z∗2};U,PZ ,m) ≥ ν(z∗1 ;U,PZ ,m) + ν(z∗2 ;U,PZ ,m) holds. Also, among the 5000
random sampled sets S∗, we estimate probability that the synergy happens. Figure 3 shows that the synergy
threshold and the corresponding synergy probability as a function of h. As h increases, the synergy threshold
(in red dashed) increases and the synergy probability (in blue solid) decreases, meaning that in all bandwidths
h ∈ (0, 0.35), the synergy happens when the two points in S∗ is far apart to some extent.
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3 Implementation details

In this section, we provide implementation details including comprehensive information for algorithms, datasets,
and experiment settings. Our implementation codes are available at https://github.com/ykwon0407/fast_

dist_shapley.

3.1 The proposed algorithms

In order to estimate DShapley, we implicitly assume that we have a set of random samples {(x̃i, ỹi)}Ni=1 (resp.
{z̃1, . . . , z̃N}) from the data distribution PX,Y (resp. PZ). This set is used to estimate unknown quantities. For
example, the covariance matrix of inputs Σ−1

X and the squared error e∗2 for Alg. 1 and Alg. 2, and the optimal
bandwidth in kernel for density estimation problem.

Linear regression DShapley in Theorem 2 can be viewed as a cumulative sum of decreasing elements, so the
computation of every element would be computationally inefficient. Instead of computing the cumulative sum, we
consider the partial sum by ignoring negligible expectation terms. We present a detailed version of Alg. 1.

Algorithm 3 (Detailed) DShapley for the least squares estimator under Gaussian inputs

Require: True value or estimates for x∗TΣ−1
X x∗, e∗2, and σ2. Thresholds ρ1 = 0.01, ρ2 = 0.005. The maximum

number of Monte Carlo samples T = 10000. A constant q ≥ p+ 3.
procedure

Initialize ν̂old ← 0
for j ∈ {q, . . . ,m} do

Initialize Aold
j ← 0

for i ∈ {1, . . . , T} do
Sample t[i] from the χ2

j−p+1.

Anew
j ←

(
(i− 1)Aold

j + j−1
j−p

x∗TΣ−1
X x∗e∗2+t[i]σ

2

(x∗TΣ−1
X x∗+t[i])2

)
/i . Based on Theorem 2

if |Anew
j /Aold

j − 1| ≤ ρ1 then
break

end if
Aold
j ← Anew

j

end for
ν̂new ← ν̂old −Anew

j /m

if |ν̂old/ν̂new − 1| ≤ ρ2 then
break

end if
ν̂old ← ν̂new

end for
ν̂((x∗, y∗);Uq, PX,Y ,m)← ν̂new . Estimates for DShapley

end procedure

Binary classification Likewise Alg. 3, the lower bound in Corollary 4 can be viewed as a cumulative sum of
decreasing elements, so we again consider the partial sum. A detailed version of Alg. 2 is presented in Alg. 4.

Non-parametric density estimation DShapley in Theorem 5 consists of the two integral terms,
∫

(p(z)−
p̂S∗,k(z))2dz and g(S∗). Our approach is to use the MC approximation and to estimate the integrals. Since the
first term includes a constant term

∫
{p(z)}2dz, we ignore the term as in Ghosh (2018, Equation (1.183)). We

present a practical example of estimation in Alg. 5.

Accuracy of the proposed algorithms Our algorithms use the Monte-Carlo (MC) method to provide
unbiased approximation. When this MC converges, then it guarantees to converge to the true value. In our
experiments, we stop the MC when the new increment is small enough compared to the current DShapley estimate

https://github.com/ykwon0407/fast_dist_shapley
https://github.com/ykwon0407/fast_dist_shapley


Algorithm 4 (Detailed) DShapley for binary classification

Require: A datum to be valued (x∗, y∗). A set of random samples {(Xi, Yi)}Bi=1 from PX,Y .
procedure Transform data

while until a convergent condition is met do
πi ← logit−1(XT

i β̂IRLS)
Update wi and Zi based on Equation (5) and set W and Z
β̂IRLS ← (XTWX)−1XTWZ

end while
π∗ ← logit−1(x∗T β̂IRLS)

z∗ ← x∗T β̂IRLS + (y∗ − π∗)/(π∗(1− π∗))
w∗ ← π∗(1− π∗)
Compute a lower bound of DShapley of

(
(w∗)1/2x∗, (w∗)1/2z∗

)
.

end procedure
Require: A datum to be valued ((w∗)1/2x∗, (w∗)1/2z∗). A set of random samples {((wi)1/2Xi, (wi)

1/2Zi)}Bi=1.
Hyperparameters c = C = 1 and ρ = 0.005.
procedure Compute lower bound

Initialize ν̂old ← 0 and estimate Σ̃X with {(w1)1/2X1, . . . , (wB)1/2XB}
e∗2b ← (w∗)−1(y∗ − π∗)2

for j ∈ {q − 1, . . . ,m− 1} do

δj ← (C
√
p+

√
log(jm)

2c )/
√
j

Λ̃upper(j), Λ̃lower(j)← (j(1− δj)2)−1, (j(1 + δj)
2)−1

Λ̃ratio(j)←
(

1+w∗x∗T Σ̃−1
X x∗Λ̃lower(j)

1+w∗x∗T Σ̃−1
X x∗Λ̃upper(j)

)2

Aj ←
w∗x∗T Σ̃−1

X x∗Λ̃2
lower(j)

(1+w∗x∗T Σ̃−1
X x∗Λ̃upper(j))2

(
(2 + w∗x∗T Σ̃−1

X x∗Λ̃lower(j))− Λ̃−1
ratio(j)e∗2b

)
. Based on Corollary 7

ν̂new ← ν̂old +Anew
j /m

if |ν̂old/ν̂new − 1| ≤ ρ then
break

end if
ν̂old ← ν̂new

end for
end procedure

to ensure good convergence to the true values. For example, we stop iterations when the new increment is within
0.5% of the current estimates in Alg. 3 or we use large samples (B = 2000) in Alg. 5.

3.2 Datasets

Datasets used in time comparison experiment We use the two synthetic datasets for the time comparison
experiment (Figure 1) as follows.

• Linear regression: Given (m, p) and β ∼ N (0, Ip), we generate yi = xTi β + εi for all i ∈ [m]. Here,
xi ∼ N (0, Ip) and εi ∼ N (0, 1) for all i ∈ [m]. We call this data distribution Gaussian-R.

• Binary classification: Given (m, p), we generate yi = Bern(0.5) and xi ∼ N ([2 × yi, 0, . . . , 0]T , Ip) for all
i ∈ [m].

Datasets used in point addition experiment We use the two synthetic datasets and eight real datasets
for the point addition experiment in Sec. 5. For the synthetic datasets, we generate the two types of datasets,
Gaussian-R and Gaussian-C for regression and classification, respectively. Gaussian-R is described above. As
for the Gaussian-C, we first fix p = 3 and set β = (2, 0, 0). Then, we generate xi ∼ N (0, Ip) and yi = Bern(πi)
for all i ∈ [m]. Here πi := exp(xTi β)/(1 + exp(xTi β)). For the real datasets, we collect datasets from multiple
sources. For instance, abalone, airfoil, and whitewine are from UCI Machine Learning Repository (Dua
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Algorithm 5 DShapley for non-parametric density estimation

Require: A set to be valued S∗. A Gaussian kernel kh. B = 2000. A given bandwidth grid H := {h1, . . . , hG}.
A set of random samples {z̃1, . . . , z̃B} from PZ .
procedure

Find optimal bandwidth h∗ ∈ H which minimizes the five-fold cross-validation error
Set k ← kh∗

Sample {z̃∗1 , . . . , z̃∗B} from p̂S∗,k

ν̂(S∗;Uk, PZ ,m)← −A(|S∗|,m)
B

∑B
i=1

(
p̂S∗,k(z̃∗i )− 2p̂S∗,k(z̃i)

)
+ B(|S∗|,m)

B

∑B
i=1

(
p̂S∗,k(z̃i)− k(z̃∗i − z̃i)

)
end procedure

and Graff, 2017) and diabetes is from Efron et al. (2004). A comprehensive list of datasets and details on sample
size are provided in Table 3.

For the image datasets Fashion-MNIST, MNIST and CIFAR10, we follow the common procedure in prior works
(Ghorbani et al., 2020; Koh and Liang, 2017): we first extract the penultimate layer outputs from the ResNet18
(He et al., 2016) pre-trained with the ImageNet dataset (Russakovsky et al., 2015). After the extraction, we fit
the principal component analysis model and extract the first 32 principal components.

Table 3: A summary of datasets for point addition experiment.

Dataset # of random samples # of held-out test data Input dimension ML problem Source

Gaussian-R 49000 1000 10 Regression Synthetic dataset
abalone 3177 1000 10 Regression UCI Repository
airfoil 1003 500 5 Regression UCI Repository
whitewine 3898 1000 11 Regression UCI Repository

Gaussian-C 49000 1000 3 Classification Synthetic dataset
skin-nonskin 244057 1000 3 Classification Chang and Lin (2011)
MNIST 60000 5000 32 Classification LeCun et al. (2010)

diabetes 342 100 10 Density estimation Efron et al. (2004)
australian 349 100 12 Density estimation Chang and Lin (2011)
Fashion-MNIST 60000 5000 32 Density estimation Xiao et al. (2017)

CIFAR10 50000 5000 32
Classification

Krizhevsky et al. (2009)
Density estimation

3.3 Experiment settings

Point addition experiment As for the point addition experiment, we use datasets summarized in Table 3.
Throughout the experiments, for each dataset, we first randomly select 200 data points to be valued from datasets.
For regression and classification problems, all other data points are used to estimate the DShapley, but for the
density estimation problem, we randomly pick 2000 samples. Please note that all the proposed methods, namely
Alg. 3, Alg. 4, and Alg. 5, require some data points to estimate unknown-quantities (Σ−1

X , e∗2, or bandwidth)
Every time point we add a data point given order, we evaluate the test accuracy using the held-out dataset. The
held-out dataset sizes are provided in Table 3.

For linear regression cases, we use the utility function constant Clin = 2σ̂2, where σ̂ := 1
m−p

∑m−p
i=1 (yi − xTi β̂)2

and β̂ is the least squares estimator. For classification, the utility function is classification accuracy. Lastly, for
density estimation, we considered

Cden = mA(n,m)

∫
{p(z)}2dz −

m∑
j=2

h2(n, j − 1),

which corresponds to the sum of mA(n,m)
∫
{p(z)}2dz and (16), in order to avoid computing

∫
{p(z)}2dz. As for

finding the optimal bandwidth, we select one from {10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5, 101} using the five-fold
cross-validation error.



4 Additional numerical experiments

4.1 Illustration of DShapley

To see how DShapley changes with respect to x∗TΣ−1
X x∗ and e∗2, we estimate DShapley using Algorithm 3. We

consider m ∈ {100, 300, 500}, e∗2 ∈ {0, 1, 2, 4, 8}, the Gaussian input distribution X ∼ Np(0, Ip) with p ∈ {10, 30}.
Here, we assume that Σ−1

X and e∗2 are known. Figure 4 illustrates DShapley as a function of x∗TΣ−1
X x∗. As

anticipated, for a fixed x∗TΣ−1
X x∗, DShapley decreases as e∗2 increases. Moreover, DShapley exhibits different

behavior depending on the error level. When e∗2 is small, DShapley increases as x∗TΣ−1
X x∗ increases. However,

when e∗2 is big enough, DShapley shows non-monotonic curves in x∗TΣ−1
X x∗. This is because of its form (4). The

fraction in (4) has a form of a weighted sum of e∗2 and σ2, so it mainly relies on e∗2 for small values of x∗TΣ−1
X x∗.

Lastly, the absolute magnitude of DShapley gets smaller as m increases.

Figure 4: Illustration of DShapley as a function of the Mahalanobis distance x∗TΣ−1
X x∗ when the input dimension

p is either (top) 10 or (bottom) 30. Different colors indicate different error levels.

4.2 Point addition experiment with the upper and lower bounds of DShapley

We additionally conduct the point addition experiment with the upper and lower bounds in 3. Although the
specific algorithm is not presented, it is straightforward from the ‘COMPUTE LOWER BOUND’ procedure in
Alg. 4. We use the same constants C, c, and ρ defined in Alg. 4, but we here set γ = 1/200.

Figure 5 and Figure 6 show the upper and lower bounds of DShapley when ML problems are regression and
classification, respectively. Note that D-SHAPLEY shows the same plots. In our experiments, although the upper
bound curves tend to show poor performance, the lower bound curves show promising results. The approximation
of DShapley provides computationally efficient solutions, yet this phenomena shows one should be careful when
using the approximation based on Theorem 3.

5 A review of Shapley value and its uniqueness

We briefly review the Shapley axioms: symmetry, null player, and additivity. Under the axioms, we describe
a fair valuation function (Shapley, 1953). Let U be a utility function and B be a dataset. The three Shapley
axioms are symmetry, null player, and additivity defined as follows.

• Symmetry : Let zi, zj ∈ B. For all S ⊆ B\{zi, zj}, if U(S ∪ {zi}) = U(S ∪ {zj}), then

φ(zi;U,B) = φ(zi;U,B).
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Figure 5: Relative utility and its standard error bar (in %) as a function of the number of data added in linear
regression settings. We examine the state-of-the-art D-SHAPLEY (blue), random order (gray), and our proposed
algorithms (green). As for the proposed algorithms, the exact DShapley based on Theorem 2 (left), the upper
(center), and the lower bounds based on Theorem 3 (right). The solid and dashed curves correspond to adding
points with the largest and smallest values first, respectively. The results are based on 50 repetitions.

• Null player : Let zi ∈ B. For all S ⊆ B\{zi}, if U(S ∪ {zi}) = U(S), then

φ(zi;U,B) = 0.

• Additivity : Let U1, U2 be two utility functions. For all z ∈ B,

φ(z;U1 + U2, B) = φ(z;U1, B) + φ(z;U2, B).

Under the axioms, we provide the following uniqueness theorem quote from Osborne and Rubinstein (1994,
Proposition 293.1).

Theorem 8. Under the three Shapley axioms, the Shapley value is the unique valuation.
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