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Supplement to “On the Minimax Optimality of the EM Algorithm for
Learning Two-Component Mixed Linear Regression”

In the supplementary material, we collect proofs and results deferred from the main text. In Appendix A, we
denote key notation used in the proofs. We provide proof for Theorem 1 in Appendix B while the proof for
Theorem 2 is presented in Appendix C. The proofs of auxiliary lemmas used to prove the main theorems are
in Appendices D and E. Finally, in Appendix F, we provide a result justifying the initialization with spectral
methods in Theorem 1, the proof for super-linear convergence of population EM operator under very high SNR
regime, and the proof for the convergence rate of EM algorithm when the variance of regression noise is unknown.

A Additional Notations

We sometimes use the transformed coordinate where the first two coordinate spans θ and θ∗. That is, let
{v1, ..., vd} be standard basis in the transformed coordinate such that v1 = θ/‖θ‖, and span(v1, v2) = span(θ, θ∗).
Since Gaussian distribution is invariant to rotation, we often work on the transformed space in the proofs. Let
α = ∠(θ, θ∗), η = ‖θ∗‖/σ∗, and σ2

2 = 1 + ‖θ∗‖2 sin2 α.

We define a few more quantities to simplify the notations throughout the proofs. Let x1, x2 be X>v1, X
>v2

respectively. Following the notation in Kwon et al. (2019), we denote b∗1 = θ∗>v1 = ‖θ∗‖ cos∠(θ, θ∗), and
b∗2 = θ∗>v2 = ‖θ∗‖ sin∠(θ, θ∗). Note that in this transformed coordinate, due to the symmetry of the distribution,
Mmlr(θ)

>vj = 0 for all j ≥ 3. Hence we focus on bounding the values in first two coordinates.

Using the coordinate transformation and new notations defined here, we can write the population operator in
new coordinate as:

Mmlr(θ) = EX,Y
[
tanh(Y X>θ)Y X

]
= Ex1,x2,y [tanh(yx1‖θ‖)x1y] v1 + Ex1,x2,y [tanh(yx1‖θ‖)x2y] v2, (10)

where y|(x1, x2) ∼ N (x1b
∗
1 + x2b

∗
2, 1). Note that we simplify y as a single Gaussian due to the symmetry in the

signs of y and Gaussian noise.

B Proof of Theorem 1

We first consider middle-to-high SNR regimes and then we consider low SNR regimes. In middle-to-high SNR
regimes, we assume that we start from the initialization where cosα ≥ 0.95. We note that the additional
requirement ‖θ0

n‖ ≥ 0.9‖θ∗‖ is to prevent the analysis to become over-complicated (see Appendix C.3 for the
arguments for starting from well-aligned small estimators).

We will frequently use the fact that ‖θ∗‖ sinα ≤ ‖θ− θ∗‖. We can check that θ remains in this good initialization
region using the convergence property of angles (see the arguments for sine values in Appendix C.3). Before
getting into the detailed proof, we state some useful lemmas from previous work. We need the following lemma
for the contraction rate of the population EM operator (5):

Lemma 3 (Theorem 4 in Kwon et al. (2019)). Assume α < π/8. Then, we have

‖Mmlr(θ)− θ∗‖ ≤ max{κ, 0.6}‖θ − θ∗‖+ κ(16 sin3 α)‖θ∗‖ η2

1 + η2
, (11)

where κ =
(√

1 + min{σ2
2‖θ‖, ‖θ∗‖ cosα}2/σ2

2

)−1

.
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B.1 High SNR Regime

First, we arrange the sample operator as the following:

Mn,mlr(θ)− θ∗ =

(
1

n

∑
i

XiX
>
i

)−1(
1

n

∑
i

XiYi tanh(YiX
>
i θ)

)
− θ∗

=

(
1

n

∑
i

XiX
>
i

)−1(
1

n

∑
i

XiYi tanh(YiX
>
i θ)−

1

n

∑
i

XiYi tanh(YiX
>
i θ
∗)

+
1

n

∑
i

XiYi tanh(YiX
>
i θ
∗)− 1

n

∑
i

XiX
>
i θ
∗
)

=

(
1

n

∑
i

XiX
>
i

)−1(
EX,Y [XY∆(X,Y )(θ)]︸ ︷︷ ︸

:=A1

+
1

n

∑
i

XiYi∆(Xi,Yi)(θ)− EX,Y [XY∆(X,Y )(θ)]︸ ︷︷ ︸
:=A2

+
1

n

∑
i

XiYi tanh(YiX
>
i θ
∗)− EYi|Xi

[
1

n

∑
i

XiYi tanh(YiX
>
i θ
∗)

]
︸ ︷︷ ︸

:=A3

)
, (12)

where ∆(X,Y )(θ) := tanh(Y X>θ) − tanh(Y X>θ∗). In the term A3, the expectation is taken over Yi|Xi ∼
1
2N (X>i θ

∗, 1) + 1
2N (−X>i θ∗, 1), letting Xi fixed. Note that the true parameters are fixed points of the EM

operators, and it is easy to check that the expectation in A3 is equivalent to 1
n

∑
iXiX

>
i θ
∗.

Now, we claim the following bounds with A1, A2, and A3 in equation (12):

A1 < 0.9‖θ − θ∗‖, (13)

A2 ≤ (‖θ − θ∗‖+ 1)

√
d log2(n‖θ∗‖/δ)/n, (14)

A3 ≤ C
√
d log(1/δ)/n, (15)

with probability at least 1− 5δ. Here, C is some universal constant.

Assume that the above claims are given at the moment, we proceed to finish the proof of the convergence of
EM algorithm under high SNR regime. In fact, plugging the results from equations (13), (14), and (15) into
equation (12), we find that

‖Mn,mlr(θ)− θ∗‖ ≤
(

0.9 +

√
d log2(n‖θ∗‖/δ)/n)

)
‖θ − θ∗‖+ C1

√
d log2(n‖θ∗‖/δ)/n

≤ γ‖θ − θ∗‖+ C1

√
d log2(n‖θ∗‖/δ)/n,

for some γ < 1. From here, let εn := C1

√
d log2(n‖θ∗‖/δ)/n and we iterate over t to bound the estimation error

in tth step:

‖θt+1
n − θ∗‖ ≤ γ‖θtn − θ∗‖+ εn ≤ γ2‖θt−1

n − θ∗‖+ (1 + γ)εn

≤ ... ≤ γt‖θ0
n − θ∗‖+

1

1− γ
εn.

After t ≥ c1 log(n‖θ∗‖/d) iterations, we have ‖θtn − θ∗‖ ≤ c2
√
d/n where c1 and c2 are universal constants. As a

consequence, we reach the conclusion of the theorem for high SNR regime.

Proof of claim (13): In order to bound A1, we can use the result of Corollary 1 in Appendix B.2. Observe that

E
[
XY tanh(Y X>θ∗)

]
= θ∗,
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E
[
XY tanh(Y X>θ)

]
= Mmlr(θ).

From Corollary 1, we conclude that

A1 = EX,Y [XY∆(X,Y )(θ)] < 0.9‖θ − θ∗‖.

Therefore, we reach the conclusion of claim (13).

Proof of claim (14): Next, we bound A2. We first discretize the parameter space for θ as the following:

P
(

sup
θ∈B(θ∗,r)

‖ 1

n

n∑
i=1

XiYi∆i(θ)− E[XY∆(θ)]‖ ≥ t
)

= P

(
sup
j∈[Nε]

‖ 1

n

n∑
i=1

XiYi∆i(θj)− E[XiYi∆i(θj)]‖ ≥ t/2

)
︸ ︷︷ ︸

finite-sample error

+ P

(
sup

‖θ−θ′‖≤ε
‖ 1

n

n∑
i=1

XiYi(∆i(θ)−∆i(θ
′)‖+ ‖E [XY (∆(θ)−∆(θ′))] ‖ ≥ t/2

)
︸ ︷︷ ︸

discretization error

,

where ∆i(θ) is a shorthand for ∆i(θ) := tanh(YiX
>
i θ) − tanh(YiX

>
i θ
∗), ∆(θ) is a shorthand for ∆(θ) =

tanh(Y X>θ) − tanh(Y X>θ∗), Nε is ε-covering number of B(θ∗, r), and {θj , j ∈ [Nε]} is the corresponding
ε-covering set.

The discretization error can be bounded by the Lipschitz continuity of the function ∆i, namely, |∆i(θ)−∆i(θ
′)| ≤

|Yi||X>θ −X>θ′| for all θ, θ′. It follows that

‖ 1

n

n∑
i=1

XiYi(∆i(θ)−∆i(θ
′)‖ ≤ ‖ 1

n

n∑
i=1

Y 2
i XiX

>
i (θ − θ′)‖

≤ ε||| 1
n

n∑
i=1

Y 2
i XiX

>
i |||op.

Note that E[Y 2XX>] = I + 2θ∗θ∗>, hence |||E[Y 2XX>]|||op ≤ 2‖θ∗‖2 + 1. Furthermore, from Lemma 10, we have
||| 1n
∑n
i=1 Y

2
i XiX

>
i |||op ≤ 3‖θ∗‖2 with probability at least 1− δ. We conclude that

discretization error ≤ 6ε‖θ∗‖2

with probability at least 1− δ.

In order to bound the finite-sample error for each fixed θj , we adopt the per-sample decomposition argument used
in the previous works (Kwon and Caramanis, 2020b) and (Kwon and Caramanis, 2020a). In order to simplify the
notation, let Zi be the noise such that Yi = νiX

>
i θ
∗ + Zi where νi is an independent Rademacher variable. We

define good events as follows:

E1 = {2|X>(θ∗ − θ)| ≤ |X>θ∗|},
E2 = {|X>θ∗| ≥ 2τ},
E3 = {|Z| ≤ τ},

where we decide τ later. Let the good event Egood := E1 ∩ E2 ∩ E3. Then we have a following lemma:
Lemma 4. Under the event Egood, we have

|∆(X,Y )(θ)| ≤ exp(−τ2).

Proof. Without loss of generality, let ν = +1. We can check that

Y X>θ = (νX>θ∗ + Z)(X>θ∗) + (νX>θ∗ + Z)(X>(θ − θ∗))
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= (νX>θ∗ + Z)(X>θ∗ +X>(θ − θ∗))
≥ τ · τ = τ2.

Since tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) ≥ 1 − exp(−x) for x ≥ 0, we have tanh(Y X>θ) ≥ 1 − exp(−τ2). Similarly,

tanh(Y X>θ∗) ≥ 1 − exp(−τ2). On the other hand, tanh(x) ≤ 1 for all x. We can conclude that ∆(X,Y )(θ) ≤
exp(−τ2). For the other sign ν = −1, we can show it similarly.

To simplify the notation, we denote Wi := νiXiX
>
i θ
∗∆i(θ). Then, we can decompose A2 as follows:

A2 =

(
1

n

n∑
i=1

XiZi∆i(θ)− E[XZ∆(θ)]

)
︸ ︷︷ ︸

:=T1

+

(
1

n

n∑
i=1

Wi − E[W ]

)
︸ ︷︷ ︸

:=T2

. (16)

We first claim the following high probability bound with T1:

P (‖T1‖ ≥ t) ≤ exp

(
−nt

2

K0
+K ′0d

)
, (17)

for some universal constants K0,K
′
0 > 0, where we assumed n� d to ignore sub-exponential tail part. The proof

of claim (17) is deferred to the end of the proof of high SNR regime.

For the term T2 in equation (16), we apply per-sample decomposition.

1

n

∑
i

Wi − E[W ] =
1

n

∑
i

(Wi1Egood − E[W1Egood ]) +
1

n

∑
i

(Wi1Ec1 − E[W1Ec1 ])

+
1

n

∑
i

(Wi1E1∩Ec2 − E[W1E1∩Ec2 ]) +
1

n

∑
i

(Wi1E1∩E2∩Ec3 − E[W1E1∩E2∩Ec3 ]).

In the sequel, we will show that

P

(
‖ 1

n

∑
i

(Wi1Egood − E[W1Egood ])‖ ≥ t

)
≤ exp

(
− nt2

K1‖θ∗‖2 exp(−2τ2)
+K ′1d

)
, (18)

P

(
‖ 1

n

∑
i

(Wi1Ec1 − E[W1Ec1 ])‖ ≥ t

)
≤ exp

(
− nt2

K2‖θ − θ∗‖2
+K ′2d

)
, (19)

P

(
‖ 1

n

∑
i

(Wi1E1∩Ec2 − E[W1E1∩Ec2 ])‖ ≥ t

)
≤ exp

(
− nt2

K3τ2
+K ′3d

)
, (20)

P
(

sup
θ∈B(θ∗,r)

‖ 1

n

∑
i

(Wi1E1∩E2∩Ec3 − E[W1E1∩E2∩Ec3 ])‖ = 0

)
≥ 1− δ, (21)

where K(·) are all some universal constants. The last probability is due to our choice τ = Θ(
√

log(n‖θ∗‖/δ)) such
that no sample fall in the event Ec3 with probability at least 1− δ. We set t and ε as follows:

t = O

(
(‖θ − θ∗‖+ 1)

√
d log2(n‖θ∗‖/δ)/n

)
,

ε = O

(
‖θ∗‖−2

√
d log2(n‖θ∗‖/δ)/n

)
.

The overall finite-sample error term is bounded by taking union bound over ε-covering set. Note that log(Nε) ≤
c · d log(‖θ∗‖) for some universal constant c. Hence the total probability of ‖T2‖ ≥ t is dominated by

exp

(
− nt2

K2‖θ − θ∗‖2
+K ′2d log(n‖θ∗‖/d)

)
+ exp

(
− nt2

K3τ2
+K ′3d log(n‖θ∗‖/d)

)
,

for some (new) constants K2,K
′
2,K3,K

′
3 > 0. Our choice of t gives 5δ total probability bound for the finite-sample

error. We can conclude that A2 ≤ t ≤ (‖θ − θ∗‖+ 1)
√
d log2(n‖θ∗‖/δ)/n with probability at least 1− 5δ. Hence,

we reach the conclusion of claim (14).
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Proof of claim (15): Finally, for bounding A3, we use Proposition 11 in Kwon et al. (2019) that exactly targets
to bound this quantity.

Lemma 5 (Proposition 11 in Kwon et al. (2019)). For each fixed θ, with probability at least 1 − exp(−cn) −
6d exp(−nt2/72),

‖ 1

n

∑
i

XiYi tanh(YiX
>
i θ)−

1

n

∑
i

EYi|Xi
[
YiXi tanh(YiX

>
i θ)

]
‖ ≤ t, (22)

for some absolute constant c > 0.

Applying the above lemma for θ = θ∗, we can show that A3 ≤ C
√
d log(1/δ)/n with probability at least 1− δ.

As a consequence, we obtain claim (15).

Proof of Equation (17). We use the notion of sub-exponential Orcliz norm to bound (17). It is easy to see
that XiZi∆i is a sub-exponential random vector with Orcliz norm O(1). Using the standard concentration result
in Vershynin (2010), we get the result.

Proof of Equation (18). Similarly to the previous case, we need to bound the sub-exponential norm of the
quantity: ∥∥Wi1Egood

∥∥
ψ1

= sup
u∈Sd−1

sup
p≥1

p−1E
[
|(X>i u)(X>i θ

∗)∆i1Egood |p
]1/p

≤ exp(−τ2) sup
u∈Sd−1

sup
p≥1

p−1E
[
|(X>i u)(X>i θ

∗)|p
]1/p

≤ exp(−τ2) sup
u∈Sd−1

sup
p≥1

p−1
√

E[(X>u)2p]E
[
(X>i θ

∗)2p
]1/p

≤ K0‖θ∗‖ exp(−τ2).

We use the fact that |∆i(θ)| ≤ exp(−τ2) under the good event, Cauchy-Schwartz inequality, and pth-order
moments of Gaussian is O((2p)p/2). Similarly using the result in Vershynin (2010), we have the equation (18).

Proof of Equation (19). We check the sub-exponential ψ1-Orcliz norm again.∥∥Wi1Ec1
∥∥
ψ1

= sup
u∈Sd−1

sup
p≥1

p−1E
[
|(X>i u)(X>i θ

∗)∆i1Ec1 |
p
]1/p

≤ sup
u∈Sd−1

sup
p≥1

p−1E
[
|(X>i u)(X>i (θ∗ − θ))|p

]1/p
≤ K1‖θ∗ − θ‖,

from which we again use the standard result to get (19).

Proof of Equation (20).∥∥Wi1E1∩Ec2
∥∥
ψ1

= sup
u∈Sd−1

sup
p≥1

p−1E
[
|(X>i u)(X>i θ

∗)∆i1E1∩Ec2 |
p
]1/p

≤ sup
u∈Sd−1

sup
p≥1

p−1Eτ
[
|(X>i u)|p

]1/p
≤ K2τ,

getting the desired result.

Proof of Equation (21). For this quantity, note that

P (∀i ∈ [n], |Zi| . log(n/δ)) ≥ 1− n exp(−τ2).
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Hence it is very likely that no sample falls into this category. Meanwhile, we can bound the expectation term:

sup
u∈Sd−1

E[W>u1E1∩E2∩Ec3 ] ≤ sup
u∈Sd−1

E[(W>u)1E1∩E2 |Ec3 ]P (∩Ec3)

≤ sup
u∈Sd−1

E[|(X>i u)(X>i θ
∗)1E1∩E2 ||Ec3 ]P (Ec3)

≤ sup
u∈Sd−1

E[|(X>i u)(X>i θ
∗)|]P (Ec3)

≤ K4‖θ∗‖ exp(−τ2).

Since τ = Θ(log(n‖θ∗‖/δ)), we have the result.

B.2 Middle SNR Regime

We consider two cases, when ‖θ∗‖ ≥ 1 and ‖θ∗‖ ≤ 1.

Case (i) 1 ≤ ‖θ∗‖ ≤ C: Given the initialization conditions in Theorem 1, we can get the following corollary of
Lemma 3.
Corollary 1. When ‖θ∗‖ ≥ 1 and sinα < 0.1, we have

‖Mmlr(θ)− θ∗‖ < 0.9‖θ − θ∗‖.

The proof of Corollary 1 is in Appendix D.2.1. Furthermore, from the uniform concentration Lemma 11 in
Appendix E, for all θ : ‖θ − θ∗‖ ≤ O(‖θ∗‖), we have

‖Mn,mlr(θ)−Mmlr(θ)‖ ≤ C
√
d log2(n/δ)/n

with probability 1− δ. From here, we can check that

‖θtn − θ∗‖ . (0.9)
t ‖θ − θ∗‖+O

(√
d log2(n/δ)/n

)
.

Case (ii) C0(d log2(n/δ)/n)1/4 ≤ ‖θ∗‖ ≤ 1: In this case, the result of Lemma 3 shows that:
Corollary 2. When ‖θ∗‖ ≤ 1 and sinα < 0.1, we have

‖Mmlr(θ)− θ∗‖ ≤
(

1− 1

8
‖θ∗‖2

)
‖θ − θ∗‖. (23)

In order to analyze the convergence of finite-sample EM operator, we first divide the iterations into several epochs.
Let C̄0 = ‖θ0

n − θ∗‖. We consider that in each lth epoch, θ satisfies C̄02−l−1 ≤ ‖θ − θ∗‖ ≤ C̄02−l. Note that such
consideration of dividing into several epochs is only conceptual, and does not affect the implementation of the
EM algorithm.

Consider we are in lth epoch such that C̄02−l−1 ≤ ‖θ − θ∗‖ ≤ C̄02−l. The key idea is that in each epoch, EM
makes a progress toward the ground truth as long as the improvement in population operator overcomes the
statistical error, i.e.,

1

8
‖θ∗‖2‖θ − θ∗‖ ≥ 2cr

√
d log2(n/δ)/n,

where c is a constant in Lemma 2. Here, since ‖θ‖ ≤ ‖θ∗‖+ ‖θ − θ∗‖, we can set r = ‖θ∗‖+ C̄02−l. This in turn
implies that in lth epoch, if the following is true:

1

8
‖θ∗‖2C̄02−l−1 ≥ 2cr

√
d log2(n/δ)/n ≥ 4c(‖θ∗‖+ C̄02−l)

√
d log2(n/δ)/n,

then we have

‖Mn,mlr(θ)− θ∗‖ ≤
(

1− 1

16
‖θ∗‖2

)
‖θ − θ∗‖.
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Arranging the terms, we require that

C̄02−l
(
‖θ∗‖2 − c1

√
d log2(n/δ)/n

)
≥ c2‖θ∗‖

√
d log2(n/δ)/n,

for some universal constants c1, c2 > 0. Recall that we are in middle SNR regime where (with appropriately set
constants)

‖θ∗‖2 ≥ (c1 + 1)

√
d log2(n/δ)/n.

Therefore, θ is guaranteed to move closer to θ∗ as long as C̄02−l ≤ c2‖θ∗‖−1
√
d log2(n/δ)/n. Note that each

epoch takes O(‖θ∗‖−2) iterations to enter the next epoch. We can conclude that after l = O(log(n/d)) epochs,

we enter the region where ‖θ − θ∗‖ ≤ c2‖θ∗‖−1
√
d log2(n/δ)/n for some absolute constant c2 > 0.

For δ probability bound, we can replace δ with δ/ log(n/d) and take a union bound of the uniform deviation of
finite-sample EM operators given in Lemma 11 for all epochs. This does not change the complexity in the final
statistical error.

Finally, the required number of iterations in each epoch is O(‖θ∗‖−2) to make ‖θ − θ∗‖ a half. Since the
total number of epoch we require is O(log(n/d)), the total number of iterations is at most O(‖θ∗‖−2 log(n/d)),
concluding the proof in middle-high SNR regime.
Remark 1. After O(log(n/d)) epochs, studying on the property of the Hessian in a very close neighborhood of
‖θ∗‖ may lead to a guarantee that EM indeed converges to the empirical MLE, see Section 6 in Wu and Zhou
(2019) for example.

B.3 Low SNR Regime

As mentioned in the main text, the core idea of the low SNR regime is that EM essentially cannot distinguish the
cases between θ∗ = 0 and θ∗ 6= 0. Therefore, instead of studying the contraction of population EM operator to θ∗,
we study its contraction to 0. Given that insight, we have the following result with the norm of population EM
operator:
Lemma 6. There exists some universal constants cu > 0 such that,

‖θ‖(1− 4‖θ‖2 − cu‖θ∗‖2) ≤ ‖Mmlr(θ)‖ ≤ ‖θ‖(1− ‖θ‖2 + cu‖θ∗‖2).

The proof of the Lemma 6 is in Section D.1.1. The result of Lemma 6 shows that the contraction coefficient of the
population operator Mmlr consists of two terms: the non-expansive term, which is at the order of 1−O(‖θ‖2), and
the quadratic term ‖θ∗‖2 (up to some constant). Since we are in low SNR regime, the contraction coefficient gets
close to 1. It demonstrates that the updates from population EM operator suffers from sub-linear convergence
rate, instead of geometric convergence rate as that in high SNR regime.

From Lemma 2, we immediately have that

sup
‖θ‖≤r

‖Mn,mlr(θ)−Mmlr(θ)‖ ≤ cr
√
d log2(n/δ)/n,

for some universal constant c > 0.

Given the contraction of population EM operator and the deviation bound between the sample and population
EM operators, we are ready to study the convergence behaviors of EM algorithm under the low SNR regime. Our
proof argument follows the localization argument used in Case (ii) of middle SNR regime. In particular, let the

target error be εn := C
√
d log2(n/δ)/n with some absolute constant C > 0. We assume that we start from the

initialization region where ‖θ‖ ≤ εα0
n for some α0 ∈ [0, 1/2).

The localization argument proceeds as the following: suppose that εαl+1
n ≤ ‖θ‖ ≤ εαln at the lth epoch for l ≥ 0.

We let C > 0 sufficiently large such that

εn ≥ 4cu‖θ∗‖2 + 4 sup
θ∈B(θ∗,rl)

‖Mn,ind(θ)−Mind(θ)‖/rl,



Minimax Optimality of EM for Two-Component Mixed Linear Regressions

with rl = εαln . During this period, from Lemma 6 on contraction of population EM, and Lemma 2 concentration
of finite sample EM, we can check that

‖Mn,ind(θ)‖ ≤ ‖θ‖ − 0.5‖θ‖3 + cu‖θ‖‖θ∗‖2 + sup
θ∈B(θ∗,r)

‖Mn,ind(θ)−Mind(θ)‖

≤ ‖θ‖ − 1

2
ε3αl+1
n +

1

4
εαl+1
n .

Note that this inequality is valid as long as εαl+1
n ≤ ‖θ‖ ≤ εαln . Now we define a sequence αl using the following

recursion:

αl+1 =
1

3
(αl + 1). (24)

The limit point of this recursion is 1/2, which will give εα∞n ≈ (d/n)1/4 as argued in the main text. Hence during
the lth epoch, we have

‖Mn,ind(θ)‖ ≤ ‖θ‖ − 1

4
εαl+1
n .

Furthermore, the number of iterations required in lth epoch is

tl := (εαln − εαl+1
n )/εαl+1

n ≤ ε−1
n .

After getting out of lth epoch, it gets into (l + 1)th epoch which can be analyzed in the same way. From this,
we can conclude that after going through l epochs in total, we have ‖θ‖ ≤ εαl+1

n . Note that the number of EM
iterations taken up to this point is lε−1

n .

It is easy to check αl = (1/3)l(α0 − 1/2) + 1/2 from (24). We can set l = C log(1/β) for some universal constant
C such that αl is 1/2− β for arbitrarily small β > 0. In conclusion, ‖θtn‖ ≤ ε

1/2−β
n ≤ c · (d ln2(n/δ)/n)1/4−β/2

with high probability as long as t ≥ ε−1
n l &

√
d/n log(1/β) where c is some universal constant. Hence we can set

β = C/ log(d/n) to get a desired result ‖θtn‖ ≤ c · (d ln2(n/δ)/n)1/4. Since ‖θ∗‖ ≤ C0(d ln2(n/δ)/n)1/4, it implies
‖θtn − θ∗‖ ≤ c1(d ln2(n/δ)/n)1/4 where c1 is some universal constant.

Note that we need the union bound of the concentration of sample EM operators for all l = 1, ..., C log(1/β), such
that the argument holds for all epochs. For this purpose, we can replace δ by δ/ log(1/β). This does not change
the order of εn, hence the proof is complete.

C Global Convergence of the (Easy) EM

This appendix gives a full proof of Theorem 2. We prove the result for bounded instances with {θ∗ : ‖θ∗‖ ≤ C}
for some universal constant C > 0. The global convergence property of the (Easy)-EM algorithm will be used for
the initialization for Theorem 1, hence we will focus on the iterations that the estimator stays outside of the
initialization region. While we start with Easy-EM when cos∠(θ0

n, θ
∗) is in order O(1/

√
d), note that we can

safely go back to the standard EM algorithm as soon as cos∠(θtn, θ
∗) becomes Θ(1) (see Section 4 in Kwon et al.

(2019) for more details).

C.1 Decreasing Norm with Large Initialization in Low SNR Regime

In low SNR regime, we require that ‖θ0
n‖ ≤ 0.2. Here, when we initialize with large norm such that ‖θ0

n‖ ≥ 0.2,
we show that in a finite number of steps it becomes that ‖θ0

n‖ ≤ 0.2. We remark that in low SNR regime we
consider when ‖θ∗‖ � 1.

First, suppose ‖θ‖ ≥ 2/3. Then,

‖Mmlr(θ)‖ ≤ sup
u∈Sd−1

E[(X>θ∗)(X>u) tanh(Y X>θ)] + E[Z(X>u) tanh(Y X>θ)]

≤ sup
u∈Sd−1

√
E[(X>θ∗)2]E[(X>u)2] + E[|Z(X>u)|],
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≤ ‖θ∗‖+ E[|Z(X>u)|] ≤ ‖θ∗‖+ 2/π.

where Z ∼ N (0, 1) such that Y = X>θ∗ + Z. Since the uniform deviation in Easy-EM is given by Lemma 11 as√
d log2(n/δ)/n, we can conclude that

‖Mn,mlr(θ)‖ ≤ ‖Mmlr(θ)‖+O

(√
d log2(n/δ)/n

)
≤ ‖θ∗‖+ 2/π +O

(√
d log2(n/δ)/n

)
≤ 2/3.

Next, suppose 0.2 ≤ ‖θ‖ ≤ 2/3. Following the notation in Appendix A, we recall equation (10),

Mmlr(θ) = E[yx1 tanh(yx1‖θ‖)]v1 + E[yx2 tanh(yx1‖θ‖)]v2,

where y = X>θ∗ + z where z ∼ N (0, 1), x1 = X>v1 and x2 = X>v2. We will see in Appendix D.1.1 that

Mmlr(θ)
>v2 ≤ 1

2‖θ‖‖θ
∗‖2 ≤ c0

√
d log2(n/δ)/n for some absolute constant c0 > 0. Therefore, we focus on

bounding the first term.

Let a = 4, and define event E := {x2
1 + z2 ≤ a}. We expand Mmlr(θ) as follows:

Mmlr(θ)
>v1 ≤ ‖θ‖E[y2x2

11E ] + E[|yx1|1Ec ]
≤ ‖θ‖E[z2x2

11E ] + E[|zx1|1Ec ] +O(‖θ∗‖).

By converting the above expression to Rayleigh distribution with x1 = r cosw, z = r sinw, we can more explicitly
find the values of the expectations in the above equation. That is,

E[z2x2
11E ] =

1

2π

∫ 2π

0

cos2 w sin2 wdw

∫ 4

0

r5 exp(−r2/2)dr ≈ 1− 0.013,

and

E[|zx1|1Ec ] =
1

2π

∫ 2π

0

| cosw sinw|dw
∫ ∞

4

r3 exp(−r2/2)dr ≤ 0.002,

Now using the condition that ‖θ‖ ≤ 0.2, we have

Mmlr(θ)
>v1 ≤ ‖θ‖(1− 0.003) +O(‖θ∗‖) ≤ γ‖θ‖+O(‖θ∗‖),

where γ = 0.997 < 1. Since the deviation of finite-sample EM operator is in order
√
d log2(n/δ)/n, we can

conclude that

‖Mmlr(θ)‖ ≤ γ‖θ‖+O

(√
d log2(n/δ)/n+ ‖θ∗‖

)
.

Hence we can conclude that after t = O(1) iterations, ‖θtn‖ ≤ 0.2.

C.2 Angle Convergence in Middle-to-High SNR Regime

Now we work in the regime where ‖θ∗‖ = η ≥ cη(d log(n/δ)2/n)1/4 for some sufficiently large constant cη > 0.
We first focus on the convergence of angle from random initialization.

Let us denote αt := ∠(θtn, θ
∗). Note that since we initialize with a random vector sampled uniformly from the

unit sphere, cosα0 = O(1/
√
d). We bring the following lemma for the change in angles for a fixed estimator θtn

given in Kwon et al. (2019):
Lemma 7 (Theorem 8 in Kwon et al. (2019)). Let εf := c0 max(1, η−1)

√
d/n be the statistical fluctuation with

some universal constant c0 > 0 in one-step iteration of Easy-EM. Suppose the norm of the current estimator
‖θtn‖ is larger than ‖θ∗‖/10. Then we have,

cosαt+1 ≥ κt(1− 10εf ) cosαt −
εf√
d
, (25)
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sin2 αt+1 ≤ κ′t sin2 αt + εf , (26)

where κt =
√

1 + sin2 αt
cos2 αt+

1
2 (1+η−2)

≥ 1, and κ′t =
(

1 + 2η2

1+η2 cos2 αt

)−1

< 1.

Here, the κt comes from Theorem 2 in Kwon et al. (2019) for the convergence rate of the cosine values of the
population EM operator. The key idea in the above lemma is that when we bound the statistical error of cosine
value, we need to bound an error in one fixed direction u := θ∗/‖θ∗‖ instead of all directions in Rd to bound l2
norm. More specifically, they show that(

1

n

∑
i

(X>i u)Yi tanh(YiX
>
i θ)−Mmlr(θ)

>u

)
. (1 + ‖θ∗‖)

√
1/n . (1 + ‖θ∗‖)εf/

√
d.

Remark 2. Kwon et al. (2019) requires the sample-splitting scheme in which we draw a new batch of samples at
every step. The main challenge when we try to remove the sample-splitting is to show that the above argument
holds for all θ : ‖θ‖ ≤ r where r = O(max{1, ‖θ∗‖}). For large ‖θ∗‖, getting a right order of uniform statistical
error is challenging: discretization of θ results in extra

√
d factor, while the Ledoux-Talagrand type approach as in

Lemma 11 results in extra O(‖θ∗‖) factor. Therefore, here we show only for bounded instances with ‖θ∗‖ ≤ C,
and leave the analysis for arbitrarily large ‖θ∗‖ as future work.

Now we adopt their approach to work without sample-splitting, and get a right order of sample complexity. First,
when we work with bounded θ∗, we follow the steps in Lemma 11, while we can skip the procedure in which we
take a union bound over 1/2-covering set of the unit sphere to bound l2 norm of a random vector. This yields that

sup
‖θ‖≤r

∣∣∣∣∣ 1n∑
i

(X>i u)Yi tanh(YiX
>
i θ)−Mmlr(θ)

>u

∣∣∣∣∣ ≤ cr
√

log2(n/δ)/n, (27)

for the absolute constant c > 0 given by Lemma 11. Let εf := c
√
d log2(n/δ)/n. The cosine value can be bounded

as follows:

cosαt+1 =
(θ∗)>θt+1

n

‖θt+1
n ‖‖θ∗‖

=
u>(Mind(θtn)− θt+1

n )

‖θt+1
n ‖

+
u>Mind(θtn)

‖Mind(θtn)‖
‖Mind(θtn)‖
‖θt+1
n ‖

,

≥ − εf√
d

r

‖θt+1
n ‖

+
u>Mind(θtn)

‖Mind(θtn)‖
‖Mind(θtn)‖

‖Mind(θtn)‖+ rεf

≥ κt cosαt

(
1− rεf
‖Mind(θtn)‖

)
− εf√

d

r

‖Mmlr(θtn)‖ − rεf
,

where the last inequality comes from Theorem 2 in Kwon et al. (2019).

Finally, we need to show that r/‖Mmlr(θ
t
n)‖ = O(1) such that we can set εf as some sufficiently small absolute

constant (that does not depend on η). We first need the following lemma on the norm of the next estimator:
Lemma 8. If ‖θ‖ ≤ ‖θ∗‖/10, then

‖Mmlr(θ)‖ ≥ ‖θ‖(1 + d1 ·min{1, ‖θ‖2}).

Otherwise, if ‖θ‖ ≥ ‖θ∗‖/10, we have

‖Mmlr(θ)‖ ≥
‖θ∗‖
10

(1 + d2 ·min{1, ‖θ∗‖2}).

for some universal constants d1, d2 > 0.

We defer the proof of this lemma to Appendix D.4.

We need the uniform concentration (27) for several values of r = C0, C02−1, ..., C02−l+1, C02−l where C0 = 3C
and l = O(log(n/d)). We can replace δ by δ/ log(n/d) for union bound, which does not change the order of
statistical error. Pick k such that C02−k ≤ ‖θtn‖ ≤ C02−k+1 = r.
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When ‖θtn‖ ≤ ‖θ∗‖/10, we can apply the Lemma 8 to see

r/‖Mmlr(θ
t
n)‖ ≤ C02−k+1/(C02−k) = 2,

where we used r = 2−k+1. Therefore, r/Mmlr(θ
t
n) = O(1). On the other hand, if ‖θtn‖ ≥ ‖θ∗‖/10, then we divide

the cases when ‖θ∗‖ ≥ 1/max(3, c2) where c2 > 0 satisfies the lower bound given in equation (32):

‖Mmlr(θ)‖ ≥ ‖θ‖(1− 3‖θ‖2)− c2‖θ‖‖θ∗‖2.

When ‖θ∗‖ ≥ 1/max(3, c2) and ‖θtn‖ ≥ ‖θ∗‖/10, by Lemma 8 we have r/Mmlr(θ) ≤ C0 max(3, c2) = O(1) since
all parameters here are universal constants. On the other hand, if ‖θ∗‖ ≤ 1/max(3, c2) and ‖θtn‖ ≥ ‖θ∗‖/10, then
from equation (32) we have

‖Mmlr(θ)‖ ≥ ‖θ‖(1− 3‖θ‖2)− c2‖θ‖‖θ∗‖2 ≥ ‖θ‖/2.

Therefore, r/‖Mmlr(θ
t
n)‖ ≤ C02−k+1/(C02−k−1) = 4 = O(1).

From the above case study, we have that

cosαt+1 ≥ κt cosαt(1− c4εf )− c5
εf√
d
,

for some absolute constants c4, c5 > 0. Now observe that as long as sinαt > cα, κt = 1 + c6 min{1, η2} for some
sufficiently small constant cα, c6 > 0. Also, recall that we are considering the middle-to-high SNR regime when

η2 ≥ cη

√
d log2(n/δ)/n for some sufficiently large constant cη > 0, whereas εf ≤ c

√
d log2(n/δ)/n for another

fixed constant c > 0. Therefore, there exists a universal constant c7 > 0 such that for all cosαt ≥ 1/
√
d, we have

cosαt+1 ≥ (1 + c7 min(1, η2)) cosαt.

After t = O(η−2 log(d)) iterations starting from cosα0 = 1/
√
d, we have cosαt ≥ 0.95 or sinαt ≤ 0.1.

C.3 Stability and Convergence in Middle-to-High SNR Regime after Alignment

In this subsection, we see how the alignment is stabilized and the norm increases in case we start from small
initialization.

Sine stays below some threshold. Once θtn and θ∗ are well-aligned, using sin2 αt = 1 − cos2 αt, similar
arguments can be applied for sin values:

sin2 αt+1 ≤ (1− c1 min(1, η2)) sin2 αt, if sin2 αt ≥ c2
sin2 αt+1 ≤ c2, else sin2 αt ≤ c2,

for some absolute constants c1 > 0 and sufficiently small 0 < c2 < 0.01 given that cosαt > 0.95.

Initialization from small estimators after alignment. After the angle is aligned such that sinαt ≤ c2.
We see how fast ‖θtn‖ enters the desired initialization region that Theorem 1 requires, when ‖θtn‖ ≤ 0.9‖θ∗‖.

Let us first consider the case 0.1‖θ∗‖ ≤ ‖θtn‖ ≤ 0.9‖θ∗‖. We recall Lemma 3 such that

‖θ∗ −Mmlr(θ
t
n)‖ ≤ κ‖θtn − θ∗‖+ κ16 sin2 α‖θtn − θ∗‖

η2

1 + η2

≤ κ(1 + (16 sin2 α)η2)‖θtn − θ∗‖,

where κ < 1− c3η2 for some absolute constant c3. By appropriately setting c2 and c3, we have

‖θ∗ −Mmlr(θ
t
n)‖ ≤ (1− c4 min(1, η2))‖θ − θ∗‖,

for some constant c4 > 0. Since we are in the regime η2 ≥ cη

√
d log2(n/δ)/n for sufficiently large cη, by

appropriately setting the constants we have ‖Mn,mlr(θ
t
n)− θ∗‖ ≤ (1− c5 min(1, η2))‖θ − θ∗‖ for some absolute
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constant c5 > 0, as long as we are in the region 0.1‖θ∗‖ ≤ ‖θtn‖ ≤ 0.9‖θ∗‖. Hence after O(max(1, η−2)) iterations,
we reach to the desired initialization region.

Now we consider the case ‖θ‖ ≤ 0.1‖θ∗‖. In this case, by Lemma 8, we can show that

‖Mmlr(θ)‖ ≥ ‖θ‖(1 + c6 min{1, ‖θ‖2, ‖θ∗‖2}),

for some universal constant c6 > 0. After O(max{‖θ‖−2, ‖θ∗‖−2}) iterations, we enter ‖θ‖ ≥ ‖θ∗‖/10. Note
that when we start with ‖θ0

n‖ = Ω(1), ‖θtn‖ will stay above min{Ω(1), ‖θ∗‖/10} throughout all iterations due to
Lemma 8 and Lemma 8.

D Deferred Lemmas

In this appendix, we collect proofs for auxiliary lemmas which were postponed in the proof of main theorems:
the contraction of population EM operators under both middle and low SNR regimes, uniform deviation of
finite-sample EM operators, and the lower bounds on the norms of population EM operators.

D.1 Contraction of the Population EM Operator under Low SNR Regime

D.1.1 Proof of Lemma 6

We use notations and definitions stated in A.

Upper Bound: We first bound the first coordinate of the population operator from equation (10):

Mmlr(θ)
>v1 = Ex1,x2,y [tanh(yx1‖θ‖)x1y] ,

We will expand the above equation using Taylor series bound of x tanh(x):

x2 − x4

3
≤ xtanh(x) ≤ x2 − x4

3
+

2x6

15
. (28)

Now we unfold the equation above, we have

Mmlr(θ)
>v1 =

1

‖θ‖
Ex1,x2,y [tanh(yx1‖θ‖)yx1‖θ‖]

≤ 1

‖θ‖
Ex1,x2,y

[
(yx1‖θ‖)2 − (yx1‖θ‖)4

3
+

2(yx1‖θ‖)6

15

]
≤ 1

‖θ‖
Ex1,z

[
(x1‖θ‖(z + x1b

∗
1 + x2b

∗
2))2 − (x1‖θ‖(z + x1b

∗
1 + x2b

∗
2))4

3

+
2(x1‖θ‖(z + x1b

∗
1 + x2b

∗
2))6

15

]
,

where z ∼ N (0, 1). Note here that, any (constantly) higher order terms of Gaussian distribution is constant.
Hence instead of computing all coefficients explicitly for all monomials, we can simplify the argument as

Mmlr(θ)
>v1 ≤

1

‖θ‖
Ex1,z

[
(x1‖θ‖z)2 − (x1‖θ‖z)4

3
+

2(x1‖θ‖z)6

15

]
+ c1‖θ‖‖θ∗‖2,

= ‖θ‖(1− 3‖θ‖2 + 30‖θ‖4) + c1‖θ‖‖θ∗‖2, (29)

for some universal constant c1 > 0. Since we assumed ‖θ‖ < 0.2, we have 3‖θ‖2 − 30‖θ‖4 ≥ ‖θ‖2. We conclude
that

Mmlr(θ)
>v1 ≤ ‖θ‖(1− ‖θ‖2 + c1‖θ∗‖2).

Then we bound the value in the second coordinate of the population operator:

Mmlr(θ)
>v2 = Ex1,x2,y [tanh(yx1‖θ‖)yx2] ,
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where y|(x1, x2) ∼ N (x1b
∗
1 + x2b

∗
2, 1). In order to derive an upper bound for the above equation, we rely on the

following equation which we defer the proof to the end of this section:

E [tanh(yx1‖θ‖)yx2] = b∗2 E
[
x2

1 tanh(x1‖θ‖(z + x1b
∗
1))− ‖θ‖b∗1x2

1 tanh′(x1‖θ‖(z + x1b
∗
1))
]
, (30)

where z ∼ N (0, 1 + b∗2
2) with subsuming x2 from the equation. From (30), we can check that

E [tanh(yx1‖θ‖)yx2] ≤ b∗2 E
[
x2

1 tanh(x1‖θ‖(z + x1b
∗
1))
]

=
b∗2
2
E
[
x2

1 tanh(x1‖θ‖(z + x1b
∗
1)) + x2

1 tanh(x1‖θ‖(−z + x1b
∗
1))
]

≤ b∗2E
[
x2

1 tanh(x2
1‖θ‖b∗1)

]
,

≤ ‖θ‖b∗1b∗2E
[
x4

1

]
≤ 1

2
‖θ‖‖θ∗‖2,

where we used tanh(a+ x) + tanh(a− x) ≤ 2 tanh(a) for any a > 0 and x ∈ R.

From the above results, we have shown that

‖Mmlr(θ)‖ ≤ |Mmlr(θ)
>v1|+ |Mmlr(θ)

>v2| ≤ ‖θ‖
(
1− ‖θ‖2 + c‖θ∗‖2

)
, (31)

for some universal constant c > 0.

Lower Bound: To prove the lower bound of the population EM operator, we again expand the equation using
Taylor series (28):

‖Mmlr(θ)‖ ≥ |Mmlr(θ)
>v1| ≥ ‖θ‖(1− 3‖θ‖2)− c2‖θ‖‖θ∗‖2. (32)

The result follows immediately with some absolute constant c2 > 0.

Proof of equation (30): For the left hand side, we apply the Stein’s lemma with respect to x2. It gives that

E[tanh(‖θ‖x1y)yx2] = E
[
d

dx2
tanh(‖θ‖x1y)y

]
= E

[
d

dx2
tanh(‖θ‖x1(z̄ + x1b

∗
1 + x2b

∗
2))(z̄ + x1b

∗
1 + x2b

∗
2)

]
= E[b∗2 tanh(‖θ‖x1(z̄ + x1b

∗
1 + x2b

∗
2))

+ (‖θ‖x1b
∗
2)(z̄ + x1b

∗
1 + x2b

∗
2) tanh′(‖θ‖x1(z̄ + x1b

∗
1 + x2b

∗
2)]

= b∗2 E[tanh(‖θ‖x1(z + x1b
∗
1)) + ‖θ‖x1(z + x1b

∗
1) tanh′(‖θ‖x1(z + x1b

∗
1)))]

where z̄ ∼ N (0, 1) and z ∼ N (0, 1 + b∗2
2). For the right hand side, we apply the Stein’s lemma with respect to x1.

First, we check the first term in the right hand side that

E[x2
1 tanh(‖θ‖x1(z + x1b

∗
1))]

= E
[
d

dx1
(x1 tanh(‖θ‖x1(z + x1b

∗
1)))

]
= E

[
tanh(‖θ‖x1(z + x1b

∗
1)) + x1

d

dx1
tanh(‖θ‖x1(z + x1b

∗
1)

]
= E

[
tanh(‖θ‖x1(z + x1b

∗
1)) + ‖θ‖x1(z + 2x1b

∗
1) tanh′(‖θ‖x1(z + x1b

∗
1)
]
.

Plugging this into (30) and subtracting the remaining term gives the result that matches to the left hand side.

D.2 Contraction of the Population EM Operator under Middle SNR Regime

In this appendix, we provide the proofs for contraction of the population EM operator under middle SNR regime.
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D.2.1 Proof of Corollary 1

In Lemma 3, note that κ ≤ 1− 1
2 min{‖θ‖2, ‖θ

∗‖2
‖θ∗‖2+1} and (‖θ∗‖ sinα) < ‖θ − θ∗‖ where sinα < 1/10. Therefore,

whenever ‖θ∗‖ ≥ 1, with the initialization condition ‖θ‖ ≥ 0.9‖θ∗‖

‖Mmlr(θ)− θ∗‖ ≤ (1− 1/4) ‖θ − θ∗‖+ κ16(sin2 α)‖θ − θ∗‖ ≤ 0.9‖θ − θ∗‖,

which completes the proof.

D.2.2 Proof of Corollary 2

From Lemma 3, note that η2

1+η2 ≤ η
2 = ‖θ∗‖2. Using κ ≤ 1− 1

2 min{‖θ‖2, ‖θ
∗‖2

‖θ∗‖2+1}, (‖θ∗‖ sinα) < ‖θ − θ∗‖ and
sinα < 1/10. With the initialization condition ‖θ‖ ≥ 0.9‖θ∗‖, we have

‖Mmlr(θ)− θ∗‖ ≤
(

1− 1

4
‖θ∗‖2

)
‖θ − θ∗‖+

1

8
‖θ∗‖2‖θ − θ∗‖ ≤

(
1− 1

8
‖θ∗‖2

)
‖θ − θ∗‖.

D.3 Uniform deviation of finite-sample EM operator: Proof of Lemma 2

Proof. Let us assume that n ≥ Cd for sufficiently large constant C > 0. To simplify the notation, we use
Σ̂n = 1

n

∑
iXiX

>
i . Observe that

‖Mn,mlr(θ)−Mmlr(θ)‖ ≤ |||Σ̂−1
n |||op‖

1

n

n∑
i=1

YiXi tanh(YiX
>
i θ)−Mmlr(θ)‖

+ |||Σ̂−1
n − I|||op‖Mmlr(θ)‖.

The first term can be bounded by c1r
√
d log2(n/δ)/n with some absolute constant c1 > 0 using the results of (8)

and Lemma 9 in Appendix E.

For the second term, we first know from Lemma 9 that |||Σ̂−1
n − I|||op = |||Σ̂−1

n |||op|||Σ̂n − I|||op ≤ c2
√
d/n) for some

universal constant c2 > 0. If we can show that ‖Mmlr(θ)‖ ≤ O(r), then we are done. To see this, first we check
that

‖Mmlr(θ)‖ = ‖E[Y X tanh(Y X>θ)]‖ ≤ ‖θ‖|||E[Y 2XX>]|||op.

It is easy to check that E[Y 2XX>] = I + 2θ∗θ∗>, hence |||E[Y 2XX>]|||op = 1 + 2‖θ∗‖2 ≤ 1 + 2C2 = O(1).
Therefore, ‖Mmlr(θ)‖ ≤ c3‖θ‖ ≤ c3r with a constant c3 = (1 + 2C2). This completes the proof of Lemma 2.

D.4 Lower Bound on the Norm: Proof of Lemma 8

This Lemma is in fact a more refined statement of Lemma 23 in Kwon et al. (2019) where they give a lower
bound on the norms for the same purpose. We give a more refined result here.

Let α = ∠(θ, θ∗). We use the notations defined in Appendix A. We recall here that b∗1 = θ∗ cosα, b∗2 = θ∗ sinα.
We consider three cases as in Kwon et al. (2019).

Case (i): cosα ≤ 0.2. This case we essentially give a norm bound for cosα = 0. Suppose that ‖θ‖ ≤ ‖θ∗‖/10.
We can first check that

‖Mmlr(θ)‖ ≥ |Mmlr(θ)
>v1| = Ex1,x2,y[tanh(yx1‖θ‖)yx1]

= Ex1,x2,z[tanh((x1b
∗
1 + x2b

∗
2 + z)x1‖θ‖)(x1b

∗
1 + x2b

∗
2 + z)x1],

where x1, x2, z ∼ N (0, 1). From the argument in Kwon et al. (2019), the above quantity is larger than the
following b∗1 = 0 case (see Lemma 23 in Kwon et al. (2019) for details):

Ex1,x2,z[tanh((x2b
∗
2 + z)x1‖θ‖)(x2b

∗
2 + z)x1] = Ex1,z̄[tanh(z̄x1‖θ‖)z̄x1],
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where z̄ ∼ N (0, 1 + (b∗2)2) = N (0, σ2
2). We can lower bound the following quantity such that

Ex1,z̄[tanh(z̄x1‖θ‖)z̄x1] ≥ σ2Ex1,z[tanh(σ2zx1‖θ‖)zx1]

≥ σ2Ex1,z[tanh(zx1‖θ‖)zx1].

If ‖θ‖ > 0.5, then through the numerical integration we can check that Ex1,z[tanh(0.5zx1)zx1] > 1/π. Hence, we
immediately have that

|Mmlr(θ)
>v1| ≥

1

π
σ2 ≥

sinα

π
‖θ∗‖ ≥ 1

5
‖θ∗‖,

since sinα > 0.9 in this case. Since we are considering the case when ‖θ‖ ≤ ‖θ∗‖/10, clearly we have

‖Mmlr(θ)‖ ≥ ‖θ‖(1 + 1 ·min(1, ‖θ‖2)).

If ‖θ‖ < 0.5, then we get a lower bound using Taylor expansion:

Ex1,z̄[tanh(z̄x1‖θ‖)z̄x1] ≥ σ2

(
Ex1,z[‖θ‖(zx1)2]− 1

3
Ex1,z[‖θ‖3(zx1)4]

)
= σ2‖θ‖(1− 3‖θ‖2) = ‖θ‖

√
1 + 0.96η2(1− 3‖θ‖2),

where ‖θ∗‖ = η. Here, we consider three cases when η ≥ 5, 5 ≥ η ≥ 1, 1 ≥ η. When η ≥ 5, then we immediately
have |Mmlr(θ)

>v1| ≥ 1.25‖θ‖. In case 5 ≥ η ≥ 1, we first note that since ‖θ‖ ≤ ‖θ∗‖/10, we check the value of

‖θ‖
√

1 + 0.96η2(1− 0.03η2).

We can again, numerically check that
√

1 + 0.96η2(1− 0.03η2) ≤ 1.25 for 1 ≤ η ≤ 5. Finally, when η ≤ 1, then a
simple algebra shows that

‖θ‖
√

1 + 0.96η2(1− 0.03η2) ≥ ‖θ‖(1 + 0.3η2).

Combining all, we can conclude that when ‖θ‖ ≤ ‖θ
∗‖

10

‖Mmlr(θ)‖ ≥ ‖θ‖(1 + 0.25 ·min(1, ‖θ∗‖2)) ≥ ‖θ‖(1 + 0.25 ·min(1, ‖θ‖2)).

Now note that Mmlr(θ)
>v1 increases in ‖θ‖, hence for all ‖θ‖ ≥ ‖θ∗‖/10, it holds that

‖Mmlr(θ)‖ ≥
‖θ∗‖
10

(1 + 0.25 ·min(1, ‖θ∗‖2)).

Case (ii): cosα ≥ 0.2. Again, we can only consider when ‖θ‖ ≤ ‖θ∗‖/10 since the other case will immediately
follow. Their claim in this case is that |Mmlr(θ)

>v1| ≥ min
(
σ2

2‖θ‖, b∗1
)
. Hence we consider two cases when

σ2
2‖θ‖ = (1 + η2 sin2 α)‖θ‖ ≤ b∗1 = ‖θ∗‖ cosα and the other case.

In the first case when σ2
2‖θ‖ ≤ b∗1, it can be shown that (see equation (50) in Kwon et al. (2019) for details)

b∗1 −Mmlr(θ)
>v1 ≤ κ3(b∗1 − σ2

2‖θ‖),

where κ ≤
√

1 + b21
−1

. Rearranging this inequality, we have

Mmlr(θ)
>v1 ≥ ‖θ∗‖(1− κ3) cosα+ κ3(1 + η2 sin2 α)‖θ‖
≥ ‖θ‖2(1− κ3) + κ3(1 + η2 sin2 α)‖θ‖
≥ ‖θ‖+ (1− κ3)‖θ‖.

Note that 1− κ3 ≥ c1 min(1, b21) for some constant c1 > 0. On the other side, if σ2
2‖θ‖ ≥ b∗1, then we immediately

have

Mmlr(θ)
>v1 ≥ ‖θ∗‖/5 ≥

‖θ∗‖
10

(1 + 1 ·min(1, ‖θ∗‖2)) ≥ ‖θ‖(1 + 1 ·min(1, ‖θ‖2)).
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Combining two cases, we have that

‖Mmlr(θ)‖ ≥ ‖θ‖(1 + c1 ·min(1, ‖θ‖2)).

Now similarly to Case (i), since Mmlr(θ)
>v1 is increasing in ‖θ‖, when ‖θ‖ ≥ ‖θ∗‖/10, we have

‖Mmlr(θ)‖ ≥
‖θ∗‖
10

(1 + c2 ·min(1, ‖θ∗‖2)),

where c2 = c1/100.

Collecting all results in two cases, we have Lemma 8.

E Concentration of Measures in Finite-Sample EM

In all lemmas that follow, we assume that n ≥ Cd for sufficiently large constant C > 0, such that the tail
probability of the sum of n independent sub-exponential random variables are in sub-Gaussian decaying rate.
Lemma 9. Suppose X ∼ N (0, I) and Y |X ∼ 1

2N (X>θ∗, 1) + 1
2N (−X>θ∗, 1). Then, with probability at least

1− δ,

1

n

n∑
i=1

Y 2
i − 1 = O

(
(‖θ∗‖+ 1)2

√
ln(1/δ)

n

)
, (33)

||| 1
n

n∑
i=1

XiX
>
i − I|||op = O

(√
d ln(1/δ)

n

)
. (34)

The above lemma is standard concentration lemmas for standard Gaussian distributions.
Lemma 10. Let X,Y be the random variables as in Lemma 9. With probability at least 1− δ, we have

||| 1
n

n∑
i=1

Y 2
i XiX

>
i − I|||op = O

(‖θ∗‖+ 1)2

√
d ln2(n/δ)

n

 , (35)

Proof. Let νi be an independent Rademacher variable and Zi = N (0, 1). We can write Yi = νiX
>
i θ
∗ + Zi. We

use the truncation argument for the of concentration of higher order moments. First define the good event
E := {∀i ∈ [n], |Zi| ≤ τ, |X>i θ∗| ≤ τ2|}. We will decide the order of τ later such that P (E) ≥ 1 − δ. Let
Ỹ ∼ Y |E , X̃ ∼ X|E and (Ỹi, X̃i) be independent samples of (Ỹ , X̃). It is easy to check that Ỹ X̃ is a sub-Gaussian
vector with Orlicz norm O(τ + τ2) (Vershynin, 2010). To see this,∥∥∥Ỹ X̃∥∥∥

ψ2

= sup
u∈Sd−1

sup
p≥1

p−1/2E
[
|Y (X>u)|p|E

]1/p
(36)

≤ (τ + τ2) sup
u∈Sd−1

sup
p≥1

p−1/2E
[
|X>u|p1E

]1/p
/P (E)1/p (37)

≤ (τ + τ2)K, (38)

for some universal constant K > 0 and the last inequality comes from the pth moments of Gaussian is O((2p)p/2)
and P (E) ≥ 1− δ.

Now we decompose the probability as the following:

P

(
||| 1
n

n∑
i=1

Y 2
i XiX

>
i − I|||op ≥ t

)
≤ P

(
||| 1
n

n∑
i=1

Y 2
i XiX

>
i − I|||op ≥ t|E

)
+ P(Ec)

≤ P

(
||| 1
n

n∑
i=1

Ỹ 2
i X̃iX̃

>
i − E[Ỹ 2X̃X̃>]|||op ≥ t/2

)
︸ ︷︷ ︸

(a)
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+ P
(
|||E[Ỹ 2X̃X̃>]− I|||op ≥ t/2

)
︸ ︷︷ ︸

(b)

+P(Ec)︸ ︷︷ ︸
(c)

.

We can use a measure of concentration for random matrices for (a) given that n ≥ Cd for sufficiently large C > 0

(Vershynin, 2010), and bound by exp
(
− nt2

C(τ+τ2)4 + C ′d
)
for some constants C,C ′ > 0. The bound for (c) is

given by n exp(−τ2), hence we set
τ = Θ

(√
log(n/δ)

)
, τ2 = ‖θ∗‖τ.

Finally, for (b), we first note that

E[Y 2XX>] = E[Ỹ 2X̃X̃>]P (E) + E[Y 2XX>1Ec ].

Rearranging the terms,

|||E[Ỹ 2X̃X̃>]− I|||op ≤ |||E[Ỹ 2X̃X̃>]|||opP (Ec) +
√

sup
u∈Sd

E[Y 4(X>u)4]
√
P (Ec)

≤ (τ + τ2)2n exp(−τ2/2) + 3(τ + τ2)2
√
n exp(−τ2/4) ≤

√
1/n.

We can set t = O

(
(‖θ∗‖+ 1)2

√
d log2(n/δ)/n

)
and get the desired result.

Lemma 11. Let X,Y be the random variables as in Lemma 9. Suppose ‖θ∗‖ ≤ C for some universal constant
C > 0. Then for any given r > 0, with probability at least 1− δ, we have

sup
θ:‖θ‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

YiXi tanh
(
YiX

>
i θ
)
−Mmlr(θ)

∥∥∥∥∥ ≤ cr
√
d ln2(n/δ)

n
, (39)

for some universal constant c > 0.

Proof. We start with the standard discretization argument for bounding the concentration of measures in l2 norm.
Let Z(θ) := 1

n

∑n
i=1 YiXi tanh

(
YiX

>
i θ
)
−Mmlr(θ). The standard symmetrization argument gives that (van der

Vaart and Wellner, 1996; Wainwright, 2019).

P
(

sup
‖θ‖≤r

‖Z(θ)‖ ≥ t
)
≤ 2P

(
sup
‖θ‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

εiYiXi tanh
(
YiX

>
i θ
)∥∥∥∥∥ ≥ t/2

)
, (40)

where εi are independent Rademacher random variables. We define a good event E := {∀i ∈ [n], |Yi| ≤ τ, |X>i θ∗| ≤
Cτ} as before, where τ = Θ

(√
log(n/δ)

)
. Then the probability defined in (40) can be decomposed as

P

(
sup
‖θ‖≤r

∥∥∥∥∥ 1

n

n∑
i=1

εiYiXi tanh
(
YiX

>
i θ
)∥∥∥∥∥ ≥ t/2

∣∣∣∣E
)

+ P (Ec).

We are interested in bounding the following quantity for Chernoff bound:

E

[
exp

(
sup
‖θ‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiYiXi tanh
(
YiX

>
i θ
)∥∥∥∥∥
)∣∣∣∣E

]
,

where we used Chernoff-Bound with some λ > 0 for the last inequality. We first go some steps before we can
apply the Ledoux-Talagrand contraction arguments (Ledoux and Talagrand, 1991), with fi(θ) := tanh

(
|Yi|X>i θ

)
.

First, we use discretization argument for removing l2 norm inside the expectation.

E

[
exp

(
sup
‖θ‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiYiXi tanh
(
YiX

>
i θ
)∥∥∥∥∥
)∣∣∣∣E

]
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≤ E

[
exp

(
sup
u∈Sd

sup
‖θ‖≤r

λ

n

n∑
i=1

εiYi(X
>
i u) tanh

(
YiX

>
i θ
))∣∣∣∣E

]

≤ E

[
exp

(
sup
j∈[M ]

sup
‖θ‖≤r

2λ

n

n∑
i=1

εiYi(X
>
i uj) tanh

(
YiX

>
i θ
))∣∣∣∣E

]

≤
M∑
j=1

E

[
exp

(
sup
‖θ‖≤r

2λ

n

n∑
i=1

εiYi(X
>
i uj) tanh

(
YiX

>
i θ
))∣∣∣∣E

]
,

where M is 1/2-covering number of the unit sphere and {u1, ..., uM} is the corresponding covering set. Now for
each uj , we can apply the Ledoux-Talagrand contraction lemma since |fi(θ1)− fi(θ2)| ≤ |Yi||X>i θ1 −X>i θ2| for
θ ∈ B(0, r):

E

[
exp

(
sup
‖θ‖≤r

2λ

n

n∑
i=1

εiYiX
>
i uj tanh

(
YiX

>
i θ
))∣∣∣∣E

]

= E

[
exp

(
sup
‖θ‖≤r

2λ

n

n∑
i=1

εi|Yi|X>i uj tanh
(
|Yi|X>i θ

))∣∣∣∣E
]

≤ E

[
exp

(
sup
‖θ‖≤r

2λ

n

n∑
i=1

εiY
2
i (X>i θ)(X

>
i uj)

)∣∣∣∣E
]

≤ E

[
exp

(
sup
‖θ‖≤r

2λ

n

n∑
i=1

εiY
2
i (X>i v)(X>i uj)

)∣∣∣∣E
]
, (41)

where we define v := θ/‖θ‖.

We have already seen in (36) that Yi(X>i uj)|E is sub-Gaussian with Orcliz norm O(τ(1 + ‖θ∗‖)) = O(τ). Since
the multiplication of two sub-Gaussian variables is sub-exponential, it implies that Y 2

i (X>i v)(X>i u1)|E is sub-
exponential with Orcliz norm O(τ2) (Vershynin, 2010). Now we need the lemma for the exponential moment of
sub-exponential random variables from Vershynin (2010).

Lemma 12 (Lemma 5.15 in Vershynin (2010)). Let X be a centered sub-exponential random variable. Then, for
t such that t ≤ c/ ‖X‖ψ1

, one has

E[exp(tX)] ≤ exp(Ct2 ‖X‖2ψ1
),

for some universal constant c, C > 0.

Finally, note that εiY 2
i (X>i v)(X>i u1) is a centered sub-exponential random variable with the same Orcliz norm.

Equipped with the lemma, we can obtain that

E

[
exp

(
4λr

1

n

n∑
i=1

εiY
2
i (X>i v)(X>i u1)

)∣∣∣∣E
]
≤ exp(Cλ2r2τ4/n), ∀|λr/n| ≤ c/τ2,

which yields

E

[
exp

(
sup
‖θ‖≤r

λ

n

∥∥∥∥∥
n∑
i=1

εiYiXi tanh
(
YiX

>
i θ
)∥∥∥∥∥
)∣∣∣∣E

]
≤ exp

(
Cλ2r2τ4/n+ C ′d

)
, ∀|λ| ≤ n/cτ2r,

where we used logM = O(d) with some C,C ′, c > 0. Combining all the above, we have that

P
(

sup
θ∈B(θ∗,r)

‖Z(θ)‖ ≥ t
)
≤ exp

(
C0λ

2r2τ4/n+ C1d− λt/2
)

+ P(Ec).

From here, we can optimize for λ = O(t/r2τ4) with setting t = O
(
r
√
dτ4/n

)
. Since t = O

(
r
√
d log2(n/δ)/n

)
,

this concludes the proof.
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F Supplementary Results

In this appendix, we collect an additional result clarifying the initialization in Theorem 1 and the proof for
super-linear convergence of population EM operator in very high SNR regime.

F.1 Initialization with Spectral Methods

Lemma 13. Let M = 1
n

∑n
i=1 Y

2
i XiX

>
i − I where X,Y are as given in Lemma 9. Let the largest eigenvalue and

corresponding eigenvector of M be (λ1, v1). Then, there exists universal constants c0, c1 > 0 such that

|λ1 − ‖θ∗‖2| ≤ c0(‖θ∗‖2 + 1)

√
d log2(n/δ)

n
.

Furthermore, if ‖θ∗‖ ≥ c1(d log2(n/δ)/n)1/4, then

sin∠(v1, θ
∗) ≤ c0

(
1 +

1

‖θ∗‖2

)√
d log2(n/δ)

n
≤ 1

10
.

Proof. The lemma is a direct consequence of Lemma 10 and matrix perturbation theory (Wainwright, 2019).
Note that E[Y 2

i XiX
>
i ] = I + 2θ∗θ∗> (e.g., see Lemma 1 in Yi et al. (2016)).

The above lemma states that when ‖θ∗‖ is not too small, we can always start from the well-initialized point where
it is well aligned with ground truth θ∗. In low SNR regime where ‖θ∗‖2 . (d/n)1/2, we cannot guarantee such a
well-alignment with θ∗ since the eigenvector is perturbed too much. However, the largest eigenvalue can still serve
as an indicator that ‖θ∗‖ is small. Hence in all cases, we can initialize the estimator with θ0

n = max{0.2,
√
λ1}v1

to satisfy the initialization condition that we required in Theorem 1.

F.2 Super-Linear Convergence of Population EM Operator in Very High SNR Regime

In this appendix, we prove Lemma 1 on the super-linear convergence behavior of population EM operator in very
high SNR regime.

Proof. We start from the following equation:

‖Mmlr(θ)− θ∗‖ = E[XY (tanh(Y X>θ)− tanh(Y X>θ∗))]

= E[XY∆(X,Y )(θ)],

where ∆(X,Y )(θ) := tanh(Y X>θ)− tanh(Y X>θ∗). We define good events as follows:

E1 = {2|X>(θ∗ − θ)| ≤ |X>θ∗|},
E2 = {|X>θ∗| ≥ 2τ},
E3 = {|Z| ≤ τ}, (42)

where we set τ = Θ
(√

log ‖θ∗‖
)
.

Let the good event Egood = E1 ∩ E2 ∩ E3. From Lemma 4, under the good event, we have ∆(X,Y )(θ) ≤ exp(−τ2).
To simplify the notation, let ∆(θ) = ∆(X,Y )(θ) and W = νXX>θ∗∆(θ). Then we can decompose the estimation
error as the following:

‖Mmlr(θ)− θ∗‖ = ‖E[XZ∆(θ)] + E[W∆(θ)]‖
≤ sup
u∈Sd−1

|E[(X>u)Z∆(θ)]|+ |E[(W>u)∆(θ)]|

≤ sup
u∈Sd−1

√
E [(X>u)2|∆(θ)|]

√
E [Z2|∆(θ)|]
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+
√

E [(X>u)2|∆(θ)|]
√
E [(X>θ∗)2|∆(θ)|].

We use again the event-wise decomposition strategy. For population EM, note that we set τ = Θ(
√

log ‖θ∗‖)
unlike in finite-sample EM case in Appendix B.1. We need to prove the following lemma:

Lemma 14. For any u ∈ Sd−1, we have

E
[
(X>u)2|∆(θ)|

]
≤ 4 exp(−τ2/2) + 2(τ + 2‖θ − θ∗‖)/‖θ∗‖. (43)

Furthermore, we have

E
[
(X>θ∗)2|∆(θ)|

]
≤ 4‖θ∗‖2 exp(−τ2/2) + 8τ3/‖θ∗‖+ 4‖θ − θ∗‖3/‖θ∗‖. (44)

On the other hand, we have

E
[
Z2|∆(θ)|

]
≤ 4 exp(−τ2/4) + 2(τ + ‖θ − θ∗‖)/‖θ∗‖. (45)

Equipped with the above lemma, whenever ‖θ − θ∗‖ ≥ Cτ with τ = c2
√

log ‖θ∗‖ for sufficiently large constants
C, c2 > 0, we have

E[(X>u)2|∆(θ)|] ≤ 5‖θ − θ∗‖/‖θ∗‖,
E[(X>θ∗)2|∆(θ)|] ≤ 5‖θ − θ∗‖3/‖θ∗‖,

E[Z2|∆(θ)|] ≤ 5‖θ − θ∗‖/‖θ∗‖,

which yields ‖Mmlr(θ)− θ∗‖ ≤ 6‖θ − θ∗‖2/‖θ∗‖, given that ‖θ∗‖ is sufficiently large and ‖θ − θ∗‖ ≤ ‖θ∗‖/10.

Proof of Lemma 14 For equation (43), we can check that

E[(X>u)2|∆(θ)|] ≤ E[(X>u)2|∆(θ)||Egood]P (Egood) + E[(X>u)2|∆(θ)||Ec1 ]P (Ec1)

+ E[(X>u)2|∆(θ)||Ec2 ]P (Ec2) + E[(X>u)2|∆(θ)||Ec3 ]P (Ec3)

≤ exp(−τ2)E[(X>u)21Egood ] + E[(X>u)2|Ec1 ]P (Ec1)+

+ E[(X>u)2|Ec2 ]P (Ec2) + E[(X>u)2|Ec3 ]P (Ec3).

We now recall Lemma 1 in Yi et al. (2014), which is given by:

Lemma 15 (Lemma 1 in Yi et al. (2014)). Given vectors u, v ∈ Rd and a Gaussian random vector X ∼ N (0, I),
the matrix Σ = E[XX>|(X>u)2 > (X>v)2] has singular values(

1 +
sinα

α
, 1− sinα

α
, 1, 1, ..., 1

)
, where α = cos−1

(
(u− v)>(u+ v)

‖u− v‖‖u+ v‖

)
.

Furthermore, if ‖v‖ ≤ ‖u‖, then we have

P ((X>u)2 > (X>v)2) ≤ ‖v‖
‖u‖

.

Based on the results of Lemma 15, we obtain

|||E[XX>|Ec1 ]|||op ≤ 2, P (Ec1) ≤ 2‖θ − θ∗‖/‖θ∗‖.

From standard property of Gaussian distribution, (see also Lemma 9 in Balakrishnan et al. (2017)), we also have

|||E[XX>|Ec2 ]|||op ≤ 1, P (Ec2) ≤ 2τ/‖θ∗‖.

Finally, from standard Gaussian tail bound, P (Ec3) ≤ 2 exp(−τ2/2). Plugging these relations, we get equation (43).
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Similarly, we can check that

E[(X>u)2|∆(θ)|] ≤ exp(−τ2)E[(X>θ∗)21Egood ] + E[(X>θ∗)2|Ec1 ]P (Ec1)+

+ E[(X>θ∗)2|Ec2 ]P (Ec2) + E[(X>θ∗)2|Ec3 ]P (Ec3)

≤ exp(−τ2)E[(X>θ∗)2] + E[(X>(θ∗ − θ))2|Ec1 ]P (Ec1)+

+ 4E[τ2|Ec2 ]P (Ec2) + E[(X>θ∗)2|Ec3 ]P (Ec3)

≤ exp(−τ2)‖θ∗‖2 + 4‖θ∗ − θ‖3/‖θ∗‖+ 8τ3/‖θ∗‖+ 2‖θ∗‖2 exp(−τ2/2),

which gives equation (44).

Finally, for equation (45),

E[Z2|∆(θ)|] ≤ exp(−τ2)E[Z21Egood ] + E[Z2|Ec1 ]P (Ec1) + E[Z2|Ec2 ]P (Ec2) + E[Z21Ec3 ]

≤ exp(−τ2) + E[Z2]P (Ec1) + E[Z2]P (Ec2) +
√

E[Z2]
√
P (Ec3)

≤ 4 exp(−τ2/4) + 2τ/‖θ∗‖+ 2‖θ − θ∗‖/‖θ∗‖,

where we used the independence between Z and E1, E2. This concludes the proof of Lemma 14. �

F.3 Proof of Theorem 3

F.3.1 Convergence in the Population Level

Given the EM updates of location and variance in equation (7), the population version of the EM operation is
given as follows:

Mind(θ) := E(X,Y )

[
XY tanh

(
Y X>θ

1 + ‖θ∗‖2 − ‖θ‖2

)]
, (46)

We recall some notations we defined in the beginning of the section. {v1, ..., vd} is the standard basis in the
transformed coordinate such that v1 = θ/‖θ‖, and span(v1, v2) = span(θ, θ∗). Let x1, x2 be X>v1, X

>v2

respectively. Furthermore, denote b∗1 = θ∗>v1 = ‖θ∗‖ cos∠(θ, θ∗), and b∗2 = θ∗>v2 = ‖θ∗‖ sin∠(θ, θ∗). We will
denote ∆ = ‖θ∗‖2 − ‖θ‖2.

We can rewrite the form of population operator in equation (46) as follows:

Mind(θ) = E(X,Y )

[
XY tanh

(
Y X>‖θ‖

1 + ∆

)]
= E(x1,x2,y)

[
yx1tanh

(
yx1‖θ‖
1 + ∆

)]
v1 + E(x1,x2,y)

[
yx2tanh

(
yx1‖θ‖
1 + ∆

)]
v2.

In fact, this expression is equivalent to (10) by replacing ‖θ‖ ← ‖θ‖
1+∆ . Therefore we can use the equation (29)

with replacing ‖θ‖ such that,

Mind(θ)>v1 ≤
‖θ‖

1 + ∆

(
1− 3‖θ‖2

(1 + ∆)2
+

30‖θ‖4

(1 + ∆)4

)
+ c1

‖θ‖
1 + ∆

‖θ∗‖2,

Mind(θ)>v2 ≤ c2
‖θ‖

1 + ∆
‖θ∗‖2,

for some absolute constants c1, c2 > 0. We will show that 3
(1+∆)2 −

30‖θ‖2
(1+∆)4 ≥ 1.25 whenever ‖θ‖ < 0.2. Then we

can conclude that |Mind(θ)>v1| ≤ ‖θ‖(1− 0.25‖θ‖2 +O(‖θ∗‖2)).

Now it is easy to check that

3

(1 + ∆)2
− 30‖θ‖2

(1 + ∆)4
=

3(1 + ∆)2 − 30‖θ‖2

(1 + ∆)4
=

3− 36‖θ‖2 + 6‖θ∗‖2 + 3∆2

(1 + ∆)4
.
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If ‖θ‖ < 0.2, then |∆| < 0.04, 3 − 36‖θ‖2 ≥ 1.5 and (1 + ∆)4 ≤ 1.16, giving the desired bound for the first
coordinate. Note that the second coordinate is already less than O(‖θ‖‖θ∗‖).

We can also check that this is the best speed at which EM can converge. Observe that

‖Mind(θ)‖ ≥ |Mind(θ)>v1| ≥
‖θ‖

1 + ∆

(
1− 3‖θ‖2

(1 + ∆)2

)
− c3

‖θ‖
1 + ∆

‖θ∗‖2

≥ ‖θ‖
(
1− 4‖θ‖2 − c4‖θ∗‖2

)
,

for some absolute constants c3, c4 > 0 where we simplify the coefficients using ‖θ‖ < 0.2. Together with the upper
bound we can conclude that

‖θ‖(1− 4‖θ‖2 − cl‖θ∗‖2) ≤ ‖Mind(θ)‖ ≤ ‖θ‖(1− 0.25‖θ‖2 + cu‖θ∗‖2), (47)

for some absolute constants cl, cu > 0, completing the proof.

F.3.2 Uniform Deviations of Finite-Sample EM Operators

Note that we assume n & d ln2(n/δ)/ε2 for sufficiently small ε > 0. To simplify the nota-
tion, we use Σ̂n = 1

n

∑
iXiX

>
i and σ̄2

n = 1
n

∑
i Y

2
i − 1

n

∑
i(X

>
i θ)

2. We also let the M̃ind(θ) :=

(
∑n
i=1XiX

>
i )−1

∑n
i=1 YiXi tanh

(
YiX

>
i θ

1+∆

)
. Then we can see that

‖Mn,ind(θ)−Mind(θ)‖ ≤
∥∥∥Mn,ind(θ)− M̃ind(θ)

∥∥∥+
∥∥∥M̃ind(θ)−Mind(θ)

∥∥∥
≤ ‖Σ̂−1

n ‖

∥∥∥∥∥ 1

n

∑
i

XiYi

(
tanh

(
YiX

>
i θ

σ2
n

)
− tanh

(
YiX

>
i θ

1 + ∆

))∥∥∥∥∥︸ ︷︷ ︸
(a)

+ ‖Σ̂−1
n ‖

∥∥∥∥∥ 1

n

∑
i

XiYi tanh

(
YiX

>
i θ

1 + ∆

)
− E

[
XY tanh

(
Y X>θ

1 + ∆

)]∥∥∥∥∥︸ ︷︷ ︸
(b)

+ ‖Σ̂−1
n − I‖

∥∥∥∥E [XY tanh

(
Y X>θ

1 + ∆

)]∥∥∥∥︸ ︷︷ ︸
(c)

.

For bounding (a), we first note that by the concentration lemmas, we have σ̄2
n ≈ 1 + ∆ +O(ε). It is also easy to

verify that | tanh(a)− tanh(b)| ≤ |a− b| for any a, b ∈ R. Now for any unit vector u ∈ Sd,

1

n

∑
i

(X>i u)Yi

(
tanh

(
YiX

>
i θ

σ̄2
n

)
− tanh

(
YiX

>
i θ

1 + ∆

))

≤ 1

n

√∑
i

(X>i u)2Y 2
i

√√√√∑
i

(
YiX>i θ

σ̄2
n

− YiX>i θ

(1 + ∆)

)2

≤ 1

n

√
|||
∑
i

Y 2
i XiX>i |||op

√∑
i

ε2Y 2
i

(X>i θ)
2

(1 + ∆)2

≤ ε‖θ‖
1 + ∆

||| 1
n

∑
i

Y 2
i XiX

>
i |||op ≤ 2ε‖θ‖,

Finally, we can use Lemma 10 to get (a) ≤ O(ε‖θ‖).

For the left two terms, (b) is bounded with applying the Lemma 11 by plugging θ ← θ/(1 + ∆). (c) is bounded
by the concentration of Σ̂n in Lemma 9 and the fact ‖Mind(θ)‖ ≤ ‖θ‖ from (47). The rest of the steps follow the
same argument as in the case for known variances (see Appendix B.3). This conclude the Theorem 3.
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