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Abstract

Several works have shown that perturbation
stable instances of the MAP inference problem
in Potts models can be solved exactly using a
natural linear programming (LP) relaxation.
However, most of these works give few (or no)
guarantees for the LP solutions on instances
that do not satisfy the relatively strict pertur-
bation stability definitions. In this work, we
go beyond these stability results by showing
that the LP approximately recovers the MAP
solution of a stable instance even after the
instance is corrupted by noise. This “noisy
stable” model realistically fits with practical
MAP inference problems: we design an algo-
rithm for finding “close” stable instances, and
show that several real-world instances from
computer vision have nearby instances that
are perturbation stable. These results suggest
a new theoretical explanation for the excellent
performance of this LP relaxation in practice.

1 Introduction

In this work, we study the MAP inference problem in
the ferromagnetic Potts model, which is also known as
uniform metric labeling (Kleinberg & Tardos, 2002).
Given a graph G = (V,E), this problem is:

minimize
x:V→[k]

∑
u∈V

c(u, x(u)) +
∑

(u,v)∈E

w(u, v)1[x(u) 6= x(v)].

Here we are optimizing over labelings x : V → [k]
where [k] = {1, 2, . . . , k}. The objective is comprised
of “node costs” c : V × [k] → R, and “edge weights”
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w : E → R>0; a labeling x pays the cost c(u, i) when
it labels node u with label i and pays w(u, v) on edge
(u, v) when it labels u and v differently. This problem
is NP-hard for variable k ≥ 3 (Kleinberg & Tardos,
2002) even when the graph G is planar (Dahlhaus et al.,
1992). However, there are several efficient and empiri-
cally successful approximation algorithms for the MAP
inference problem—such as TRW (Wainwright et al.,
2005) and MPLP (Globerson & Jaakkola, 2008)—that
are related in some way to the local LP relaxation,
which is also sometimes called the pairwise LP (Wain-
wright & Jordan, 2008; Chekuri et al., 2001). This
LP relaxation returns an approximate MAP solution
for most problem instances. However, when the pa-
rameters of these models are learned so as to enable
good structured prediction, often the LP relaxation
exactly or almost exactly recovers the MAP solution
(Meshi et al., 2019). The connection between the LP
relaxation and commonly used approximate MAP infer-
ence algorithms then leads to the following compelling
question, which is of great practical relevance for under-
standing the “tightness” of the LP solution (informally,
how close the LP solution is to the MAP solution).

Can we explain the exceptional performance of the lo-
cal LP relaxation in recovering the MAP solution in
practice?

Several works have studied different conditions that im-
ply the local relaxation or related relaxations are tight
(e.g., Kolmogorov & Wainwright, 2005; Wainwright &
Jordan, 2008; Thapper et al., 2012; Weller et al., 2016;
Rowland et al., 2017). Recent work on tightness of the
local relaxation has focused on a class of several related
conditions known as perturbation stability. Intuitively,
an instance is perturbation stable if the solution x∗ to
the MAP inference problem is unique, and moreover,
x∗ is the unique solution even when the edge weights w
are multiplicatively perturbed by a certain adversarial
amount (Bilu & Linial, 2010). This structural assump-
tion about the instance (G, c, w) captures the intuition
that, on “real-world” instances, the ground-truth so-
lution is stable and does not change much when the
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Figure 1: Left: prior work (Lang et al., 2018) showed that a stable instance can be exactly solved efficiently.
Colors indicate the label of each vertex in the MAP solution x∗. On stable instances, solving the LP relaxation
(represented by the arrow) recovers the MAP solution. However, real-world instances are not suitably stable for
this result to apply in practice (Lang et al., 2019). Right: in this work, we show that solving the LP relaxation
on a (slightly) corrupted stable instance (corruptions shown as bold edges) approximately recovers the original
MAP solution. This is true even if the corruption changes the MAP solution (as in the bottom example). In
other words, we prove that “easy” instances are still approximately easy even after small perturbations.

weights are slightly perturbed.

For constants β, γ ≥ 1, we say that w′ is a (β, γ)-
perturbation of the weights w if 1

β ·w(u, v) ≤ w′(u, v) ≤
γ · w(u, v) for all (u, v) ∈ E. Suppose x∗ is the unique
MAP solution to the instance (G, c, w). Then, we
say (G, c, w) is a (β, γ)-stable instance if x∗ is also
the unique MAP solution to every instance (G, c, w′)
where w′ is a (β, γ)-perturbation of w. Lang et al.
(2018) showed that when (G, c, w) is (2, 1)-stable, the
solution to the local LP relaxation is persistent i.e., the
LP solution exactly recovers the MAP solution x∗.

While theoretically interesting, (2, 1)-stability is a strict
condition that is unlikely to be satisfied in practice:
the solution x∗ is not allowed to change at all when the
weights are perturbed. No real-world instances have
yet been shown to be (2, 1)-stable (Lang et al., 2019).
Moreover, the LP relaxation is also not persistent on
most of those instances. However, the solution of the
local LP relaxation is still nearly persistent i.e., the
LP solution is very close to the MAP solution x∗ (see
Definition 3.1 for a formal definition). Those examples
made it clear that theory must go beyond perturbation
stability to explain this phenomenon of near-persistence
that is prevalent in practice (see e.g., Sontag, 2010;
Shekhovtsov et al., 2017).

Why is the LP relaxation nearly persistent on MAP
inference instances in practice?

There are several theoretical frameworks to explain
exactness or tightness of LP relaxations, such as total
unimodularity, submodularity (Kolmogorov & Wain-

wright, 2005), and perturbation stability (Lang et al.,
2018, 2019), as well as structural assumptions about
the graph G (Wainwright & Jordan, 2008), or combined
assumptions about G and the form of the objective
function (Weller et al., 2016; Rowland et al., 2017).
However, these frameworks can not be used to prove
near-persistence.

Figure 1 (informally) shows our main result. The left
side depicts the previous result of Lang et al. (2018): if
the instance is (2, 1)-stable (a fairly strong structural
assumption), the LP relaxation exactly recovers the full
solution x∗. This result is limited because real-world
instances have been shown to not satisfy (2, 1)-stability
(Lang et al., 2019). The right side shows our main
result: if the instance is a slightly corrupted (2, 1)-
stable instance, the LP relaxation still approximately
recovers the solution x∗ to the stable instance.

Intuitively, we may expect a real-world instance to be
“close” to a stable instance (i.e., to be a “corrupted sta-
ble” instance, as in Figure 1) even if the instance itself
is not stable. We design an algorithm to check whether
this is the case. We find that on several real examples,
sparse and small-norm changes to the instance make it
appropriately stable for our theorems to apply. In other
words, we certify that these real instances are close to
stable instances. For these instances, our theoretical
results explain why the LP relaxation approximately
recovers the MAP solution.

More formally, we assume that there is some latent
stable instance (G, c̄, w̄), and that the observed instance
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(G, ĉ, ŵ) is a noisy version of (G, c̄, w̄) that is close to it.
Let x̂ be the solution to the local LP on the observed
instance (G, ĉ, ŵ), and let x̄ be the (unknown) MAP
solution on the unseen stable instance (G, c̄, w̄). We
prove that under certain conditions, the LP solution
x̂ is nearly persistent i.e., the Hamming error ‖x̂− x̄‖1
is small (see Definition 3.1). In other words, the local
LP solution to the observed instance approximately
recovers the latent integral solution x̄.

We complement this by studying a natural generative
model that generates noisy stable instances which, with
high probability, satisfy the above conditions for near
persistency. In other words, the observed instance
(G, ĉ, ŵ) is obtained by random perturbations to the
latent stable instance (G, c̄, w̄), and the LP relaxation
approximately recovers the MAP solution to the latent
instance with high probability.

Our theoretical results imply that the local LP approx-
imately recovers the MAP solution when the observed
instance is close to a stable instance. Our empirical re-
sults suggest that real-world instances are very close to
stable instances. These results together suggest a new
explanation for the near-persistency of the solution of
the local LP relaxation for MAP inference in practice.
To prove these results and derive our algorithm for
finding a “close-by” stable instance, we make several
novel technical contributions, which we outline below.

Technical contributions.

• In Section 4, we generalize the (2, 1)-stability result
of Lang et al. (2018) to work under a much weaker
assumption, which we call (2, 1)-expansion stabil-
ity. That is, we prove the local LP is tight on (2, 1)-
expansion stable instances. Additionally, given the
instance’s MAP solution, (2, 1)-expansion stabil-
ity is efficiently checkable. To the best of our
knowledge, most other perturbation stability as-
sumptions are not known to satisfy this desirable
property. This generalization is crucial for the effi-
ciency of our algorithm for finding stable instances
that are close to a given observed instance.

• In Section 5, we give a simple extension of (2, 1)-
expansion stability called (2, 1, ψ)-expansion sta-
bility. We prove it implies a “curvature” result
around the MAP solution x̄. On instances that
satisfy this condition, if a labeling x̂ is close in
objective value to x̄, it must also be close in the so-
lution space. This result lets us translate between
objective gap and Hamming distance.

• In Section 6, we study a natural generative model
where the observed instance is generated from an
arbitrary latent stable instance by random (sub-
Gaussian) perturbations to the costs and weights.

We prove that, with high probability, every feasi-
ble LP solution takes close objective values on the
latent and observed instances. The proof uses a
rounding algorithm for metric labeling in a novel
way to obtain stronger guarantees. When com-
bined with our other results, this proves that when
the latent instance is (2, 1, ψ)-expansion stable, the
LP solution is nearly persistent on the observed
instance with high probability. These results sug-
gest a theoretical explanation for the phenomenon
of near-persistence of the LP solution in practice.

• We design an efficient algorithm for finding
(2, 1, ψ)-expansion stable instances that are “close”
to a given instance (G, ĉ, ŵ) in Section 7. To the
best of our knowledge, this is the first algorithm for
finding close-by stable instances, and is also an effi-
cient algorithm for checking (2, 1, ψ)-expansion sta-
bility. This algorithm allows us to check whether
real-world instances can plausibly be considered
“corrupted stable” instances as shown in Figure 1.

• We run our algorithm on several real-world in-
stances of MAP inference in Section 8, and find
that the observed instances (G, ĉ, ŵ) often admit
close-by (2, 1, ψ)-stable instances (G, c̄, w̄). More-
over, we find that the local LP solution x̂ typically
has very close objective to x̄ in (G, c̄, w̄). Our
curvature result for (2, 1, ψ)-stable instances thus
gives an explanation for the tightness of the local
LP relaxation on (G, ĉ, ŵ).

2 Related work

Perturbation stability. Several works have given
recovery guarantees for the local LP relaxation on
perturbation stable instances of uniform metric label-
ing (Lang et al., 2018, 2019) and for similar problems
(Makarychev et al., 2014; Angelidakis et al., 2017).
Lang et al. (2019) give partial recovery guarantees
for the local LP when parts (blocks) of the observed
instance satisfy a stability-like condition, and they
showed that practical instances have blocks that satisfy
their condition. However, the required block stability
condition in turn depends on certain quantities related
to the LP dual. This is unsatisfactory since this does
not explain when and why such instances are likely to
arise in practice. For a more extensive treatment of
the subject, we refer the reader to the “Perturbation
Resilience” chapter from Roughgarden (2021).

Easy instances corrupted with noise. Our ran-
dom noise model is similar to several planted average-
case models like stochastic block models (SBMs) con-
sidered in the context of problems like community de-
tection, correlation clustering and partitioning (see e.g.,
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McSherry, 2001; Abbe, 2018; Globerson et al., 2015).
Instances generated from these models can also be
seen as the result of random noise injected into an
instance with a nice block structure that is easy to
solve. Several works give exact recovery and approxi-
mate recovery guarantees for semidefinite programming
(SDP) relaxations for such models in different parame-
ter regimes (Abbe, 2018; Guédon & Vershynin, 2016).
In our model however, we start with an arbitrary sta-
ble instance as opposed to an instance with a block
structure (which is trivial to solve). Moreover, we
are unaware of such analysis in the context of linear
programs. Please see Section 6 for a more detailed
comparison. To the best of our knowledge, we are
the first to study instances generated from random
perturbations to stable instances.

Partial optimality algorithms. Several works
have developed fast algorithms for identifying parts
of the MAP assignment. These algorithms output an
approximate solution x̂ and a set of vertices where x̂
provably agrees with the MAP solution x∗ (e.g., Kov-
tun, 2003; Shekhovtsov, 2013; Swoboda et al., 2016;
Shekhovtsov et al., 2017). Like these works, our results
also prove that an approximate solution x̂ has small
error |x̂− x∗|. However, these previous approaches are
more concerned with designing fast algorithms for find-
ing such x̂. In contrast, we focus on giving structural
conditions that explain why a particular x̂ (the solu-
tion to the local LP relaxation) often approximately
recovers x∗. Our algorithm in Section 7 is thus not
meant as an efficient method for certifying that |x̂−x∗|
is small, but rather as a method for checking whether
our structural condition (that the observed instance is
close to a stable instance) is satisfied in practice.

3 Preliminaries

In this section we introduce our notation, define the
local LP relaxation for MAP inference, and give more
details on perturbation stability. As in the previous sec-
tion, the MAP inference problem in the ferromagnetic
Potts model on the instance (G, c, w) can be written
in energy minimization form as:

minimize
x:V→[k]

∑
u∈V

c(u, x(u)) +
∑

(u,v)∈E

w(u, v)1[x(u) 6= x(v)].

(1)
Here x is an assignment (or labeling) of vertices to
labels i.e. x : V → {1, 2, . . . , k}. We can identify each
labeling x with a point (xu : u ∈ V ;xuv : (u, v) ∈ E),
where each xu ∈ {0, 1}k and each xuv ∈ {0, 1}k×k.

In this work, we consider all node costs c(u, i) ∈ R
and all edge weights w(u, v) > 0. We note that this is
equivalent to the formulation where all node costs and

edge weights are non-negative (Kleinberg & Tardos,
2002). See Appendix A for a proof of this equivalence.

We encode the node costs and the edge weights in a
vector θ ∈ Rnk+mk2 where n = |V | and m = |E| s.t.
θ(u, i) = c(u, i), θ(u, v, i, j) = w(u, v)1[i 6= j]. Then
the objective can be written as 〈θ, x〉. We set xu(i) = 1
when x(u) = i, and 0 otherwise. Similarly, we set
xuv(i, j) = 1 when x(u) = i and x(v) = j, and 0
otherwise. Where convenient, we use x to refer to this
point rather than the labeling x : V → [k]. We can
then rewrite (1) as:

min.
x

∑
u∈V

k∑
i=1

c(u, i)xu(i) +
∑

(u,v)∈E

w(u, v)
∑
i 6=j

xuv(i, j)

subject to:
k∑
i=1

xu(i) = 1 ∀ u ∈ V

k∑
i=1

xuv(i, j) = xv(j) ∀ (u, v) ∈ E, j ∈ [k]

k∑
j=1

xuv(i, j) = xu(i) ∀ (u, v) ∈ E, i ∈ [k]

xuv(i, j) ∈ {0, 1} ∀ (u, v), (i, j)
xu(i) ∈ {0, 1} ∀ u, i.

This is equivalent to (1), and is an integer linear pro-
gram (ILP). By relaxing the integrality constraints
from {0, 1} to [0, 1], we obtain the local LP relaxation:

min.
x∈L(G)

∑
u∈V

k∑
i=1

c(u, i)xu(i) +
∑

(u,v)∈E

w(u, v)
∑
i6=j

xuv(i, j),

where L(G) is the polytope defined by the same con-
straints as above, with x ∈ {0, 1} replaced with
x ∈ [0, 1]. This is known as the local polytope (Wain-
wright & Jordan, 2008). The vertices of L(G) are either
integral, meaning all xu and xuv take values in {0, 1},
or fractional, when some variables take values in (0, 1).
Integral vertices of this polytope correspond to label-
ings x : V → [k], so if the LP solution is obtained at
an integral vertex, then it is also a MAP assignment.

If the solution x∗ of this relaxation on an instance
(G, c, w) is obtained at an integral vertex, we say the
LP is tight on the instance, because the LP has exactly
recovered a MAP assignment. If the LP is not tight,
there may still be some vertices u where x∗u takes in-
tegral values. In this case, if x∗u(i) = 1 and x̄(u) = i,
i.e., the LP solution agrees with the MAP assignment
x̄ at vertex u, the LP is said to be persistent at u.
x∗u(i) ∈ {0, 1} does not imply the LP is persistent at u,
in general. The LP solution x∗ is said to be persistent
if it agrees with x̄ at every vertex u ∈ V .
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Recovery error: In practice, the local LP relaxation
is often not tight, but is nearly persistent. We will
measure the recovery error of our LP solution in terms
of the “Hamming error” between the LP solution and
the MAP assignment.
Definition 3.1 (Recovery error). Given an instance
(G, c, w) of (1), let x̄ be a MAP assignment, and let x∗
be a solution to the local LP relaxation. The recovery
error is given by (with some abuse of notation)

1
2‖x

∗ − x̄‖1 := 1
2‖x

∗
V − x̄V ‖1

= 1
2
∑
u∈V

∑
i∈[k]

∣∣x∗u(i)− 1[x̄(u) = i]
∣∣.

xV ∈ Rnk denotes the portion of x restricted to the
vertex set V . If x∗ is integral, the recovery error mea-
sures the number of vertices where x∗ disagrees with
x̄. When the recovery error of x∗ is 0, the solution x∗
is persistent. We will say that the LP solution x∗ is
nearly persistent when the recovery error of solution x∗
is a small fraction of n.

In our analysis, we will consider the following subset
L∗(G) of L(G) which is easier to work with, and which
contains all points we are interested in.
Definition 3.2 (L∗(G)). We define L∗(G) ⊆ L(G) to
be the set of points x ∈ L(G) which further satisfy
the constraint that xuv(i, i) = min(xu(i), xv(i)) for all
(u, v) ∈ E and i ∈ [k].

Claim 3.3. For a given graph G, every solution x ∈
L(G) that minimizes 〈θ, x〉 for some valid objective
vector θ = (c, w) also belongs to L∗(G). Further, all
integer solutions in L(G) also belong to L∗(G).

We prove this claim in Appendix A.

Our new stability result relies on the set of expansions
of a labeling x.
Definition 3.4 (Expansion). Let x : V → [k] be a
labeling of V . For any label α ∈ [k], we say that x′ is
an α-expansion of x if x′ 6= x and the following hold
for all u ∈ V :

x(u) = α =⇒ x′(u) = α,

x′(u) 6= α =⇒ x′(u) = x(u).

That is, x′ may only expand the set of points labeled
α, and cannot make other changes to x.

4 Expansion Stability

In this section, we generalize the stability result of Lang
et al. (2018) to a much broader class of instances. This
generalization allows us to efficiently check whether a

u w

v

1 + ε

1 + ε 1 + ε
Node Costs
u .5 ∞ ∞
v 1 0 ∞
w 1 ∞ 0

Figure 2: (2, 1)-expansion stable instance that is not
(2, 1)-stable. In the original instance (shown left), the
optimal solution labels each vertex with label 1, for
an objective of 2.5. This instance is not (2, 1)-stable:
consider the (2, 1)-perturbation that multiples all edge
weights by 1/2. In this perturbed instance, the original
solution still has objective 2.5, and the new optimal
solution labels (u, v, w) → (1, 2, 3). This has a node
cost of 0.5 and an edge cost of (3 + 3ε)/2, for a to-
tal of 2 + 3ε/2 < 2.5. Since the original solution is
not optimal in the perturbed instance, this instance
is not (2, 1)-perturbation stable. However, note that
the only expansions of the original solution (which
had all label 1) that have non-infinite objective are
(u, v, w) → (1, 2, 1) and (u, v, w) → (1, 1, 3). These
each have objective 2.5 + ε, which is strictly greater
than the perturbed objective of the original solution.
In fact, checking this single perturbation, known as the
adversarial perturbation is enough to verify expansion
stability: this instance is (2, 1)-expansion stable. We
include the full details in Appendix B.

real-world instance could plausibly have the structure
shown in Figure 1 (that is, whether the instance is close
to a suitably stable instance).

Consider a fixed instance (G, c, w) with a unique
MAP solution x̄. Theorem 1 of Lang et al.
(2018) requires that for all θ′ ∈ {(c, w′) | w′ ∈
{(2, 1)-perturbations of w}}, 〈θ′, x〉 > 〈θ′, x̄〉 for all la-
belings x 6= x̄. That is, that result requires x̄ to be
the unique optimal solution in any (2, 1)-perturbation
of the instance. By contrast, our result only requires
x̄ to have better perturbed objective than the set of
expansions of x̄ (c.f. Definition 3.4).
Definition 4.1 ((2,1)-expansion stability). Let x̄ be
the unique MAP solution for (G, c, w), and let Ex̄ be
the set of expansions of x̄ (see Definition 3.4). Let

Θ = {(c, w′) | w′ ∈ {(2, 1)-perturbations of w}}

be the set of all objective vectors within a (2, 1)-
perturbation of θ = (c, w). We say the instance
(G, c, w) is (2, 1)-expansion stable if the following holds
for all θ′ ∈ Θ and all x ∈ Ex̄:

〈θ′, x〉 > 〈θ′, x̄〉.

That is, x̄ is better than all of its expansions x 6= x̄ in
every (2, 1)-perturbation of the instance.
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Theorem 4.2 (Local LP is tight on (2, 1)-expansion
stable instances). Let x̄ and x̂ be the MAP and local LP
solutions to a (2, 1)-expansion stable instance (G, c, w),
respectively. Then x̄ = x̂ i.e. the local LP is tight on
(G, c, w).

We defer the proof of this theorem to Appendix B as
it is similar to the proof of Theorem 1 from Lang et al.
(2018). The (2, 1)-expansion stability assumption is
much weaker than (2, 1)-stability because the former
only compares x̄ to its expansions, whereas the latter
compares x̄ to all labelings. While the rest of our results
can also be adapted to the (2, 1)-stability definition,
this relaxed assumption gives better empirical results.
Figure 2 shows an example of a (2, 1)-expansion stable
instance that is not (2, 1)-stable. This shows that our
new stability condition is less restrictive.

5 Curvature around MAP solution
and near persistence of the LP
solution

In this section, we show that a condition related to
(2, 1)-expansion stability, called (2, 1, ψ)-expansion sta-
bility, implies a “curvature” result for the objective
function around the MAP solution x̄. On instances
satisfying this condition, any point x̂ ∈ L(G) with ob-
jective close to x̄ also has small ‖x̂− x̄‖1, so x̂ and x̄
are close in solution space. In other words, if the LP
solution x̂ to a “corrupted” (2, 1, ψ)-expansion stable in-
stance is near-optimal in the original (2, 1, ψ)-expansion
stable instance (whose solution is x̄), then the result in
this section implies ‖x̂− x̄‖1 is small. This immediately
gives a version of the result in the right panel of Fig-
ure 1: suppose we define an instance to be close to a
(2, 1, ψ)-expansion stable (G, c̄, w̄) if its LP solution x̂ is
approximately optimal in (G, c̄, w̄). Then the curvature
result implies that the LP approximately recovers the
stable instance’s MAP solution x̄ for all close instances.
In Section 6, we give a generative model where the gen-
erated instances are “close” according to this definition
with high probability.

The (2, 1, ψ)-expansion stability condition, for ψ > 0,
says that the instance is (2, 1)-expansion stable even if
we allow all node costs c(u, i) to be additively perturbed
by up to ψ. This extra additive stability will allow us
to prove the curvature result. This is related to the
use of additive stability in Lang et al. (2019) to give
persistency guarantees.
Definition 5.1 ((2, 1, ψ)-expansion stable). For ψ > 0,
we say an instance (G, c, w) is (2, 1, ψ)-expansion stable
if (G, c′, w) is (2, 1)-expansion stable for all c′ with
c ≤ c′ ≤ c+ ψ · 1 where 1 is the all-ones vector.

The following theorem shows low recovery error i.e.,

near persistence of the LP solution on (2, 1, ψ) expan-
sion stable instances in terms of the gap in objective
value.
Theorem 5.2. Let (G, c, w) be a (2, 1, ψ)-expansion
stable instance with MAP solution x̄. Let θ = (c, w).
Then for any x ∈ L∗(G), the recovery error (see
Def. 3.1) satisfies

1
2‖x− x̄‖1 := 1

2‖xV − x̄V ‖1 ≤
1
ψ
|〈θ, x〉 − 〈θ, x̄〉|. (2)

Proof (sketch). For any x ∈ L∗(G), we construct a
feasible solution x̂ which is a strict convex combination
of x and x̄ that is very close to x̄. Then, we apply
a rounding algorithm to x̂ to get a random integer
solution h. Let θ̂ represent the worst (2, 1)-perturbation
for x̄. This is the instance where all the edges not cut by
x̄ have their weights multiplied by 1/2. We define the
objective difference using θ̂ as Ah = 〈θ̂, h〉−〈θ̂, x̄〉. First
we show an upper bound for E[Ah] using properties of
the rounding algorithm. Then we show that for any
solution h in the support of our rounding algorithm,
Ah ≥ ψ · Bh where Bh is the Hamming error of h
(when compared to x̄). On the other hand, one can
also use the properties of the rounding algorithm to
get a lower bound on E[Bh] in terms of the recovery
error (i.e., Hamming error) of the LP solution. These
bounds together imply the required upper bound on
the recovery error of the LP solution.

We defer the complete proof and an alternate dual-
based proof to Appendix C.

Theorem 5.2 shows that on a (2, 1, ψ)-expansion stable
instance, small objective gap 〈θ, x〉−〈θ, x̄〉 implies small
distance ||xV − x̄V ||1 in solution space. Although this
holds for any x ∈ L∗(G), we will be interested in x that
are LP solutions to an observed, corrupted version of
the stable instance.

We now show that if the observed instance has a nearby
stable instance, then the LP solution for the observed in-
stance has small Hamming error. For any two instances
θ̂ = (ĉ, ŵ) and θ̄ = (c̄, w̄) on the same graph G, the met-
ric between them d(θ̂, θ̄) := supx∈L∗(G) |〈θ̂, x〉 − 〈θ̄, x〉|.
Corollary 5.3 (LP solution is good if there is a nearby
stable instance). Let x̂MAP and x̂ be the MAP and local
LP solutions to an observed instance (G, ĉ, ŵ). Also, let
x̄ be the MAP solution for a latent (2, 1, ψ)-expansion
stable instance (G, c̄, w̄). If θ̂ = (ĉ, ŵ) and θ̄ = (c̄, w̄),

1
2‖x̂V − x̂

MAP
V ‖1 ≤

2d(θ̂, θ̄)
ψ

+ 1
2‖x̂

MAP
V − x̄V ‖1.

We defer the proof of this corollary to Appendix C.
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6 Generative model for noisy stable
instances

In the previous section, we showed that if an instance
(G, ĉ, ŵ) is “close” to a (2, 1, ψ)-expansion stable in-
stance (G, c̄, w̄) (i.e., the LP solution x̂ to (G, ĉ, ŵ)
has good objective in (G, c̄, w̄)), then ‖x̂− x̄‖ is small,
where x̄ is the MAP solution to the stable instance.
In this section, we give a natural generative model
for (G, ĉ, ŵ), based on randomly corrupting (G, c̄, w̄),
in which x̂ has good objective in (G, c̄, w̄) with high
probability. Together with the curvature result from
the previous section (Theorem 5.2), this implies that
the LP relaxation, run on the noisy instances (G, ĉ, ŵ),
approximately recovers x̄ with high probability.

We now describe our generative model for the prob-
lem instances, which starts with an arbitrary stable
instance and perturbs it with random additive pertur-
bations to the edge costs and node costs (of potentially
varying magnitudes). The random perturbations re-
flect possible uncertainty in the edge costs and node
costs of the Markov random field. We will assume
the random noise comes from any distribution that is
sub-Gaussian1. However, there is a small technicality:
the edge costs need to be positive (node costs can be
negative). For this reason we will consider truncated
sub-Gaussian random variables for the noise for the
edge weights. We define sub-Gaussian and truncated
sub-Gaussian random variables in Appendix D.

Generative Model: We start with an instance
(G, c̄, w̄) that is (2, 1, ψ)-expansion stable, and perturb
the edge costs and node costs independently. Given
any instance (G, c̄, w̄), an instance (G, ĉ, ŵ) from the
model is generated as follows:

1. For all node-label pairs (u, i), ĉ(u, i) = c̄(u, i) +
c̃(u, i), where c̃(u, i) is sub-Gaussian with mean 0
and parameter σu,i.

2. For all edges (u, v), ŵ(u, v) = w̄(u, v) + w̃(u, v),
where w̃(u, v) is an independent r.v. that
is (−w(u, v), γu,v)-truncated sub-Gaussian with
mean 0.

3. (G, ĉ, ŵ) is the observed instance.

By the definition of our model, the edge weights
ŵ(u, v) ≥ 0 for all (u, v) ∈ E. The parameters of
the model are the unperturbed instance (G, c̄, w̄), and
the noise parameters { γu,v, σu,i }u,v∈V,i∈[k]. On the
one hand, the above model captures a natural average-
case model for the problem. For a fixed ground-truth
solution x∗ : V → [k], consider the stable instance
(H, c, w) where w∗uv = 2 for all u, v in the same clus-

1All of the results that follow can also be generalized to
sub-exponential random variables; however for convenience,
we restrict our attention to sub-Gaussians.

ter (i.e., x∗(u) = x∗(v)) and w∗uv = 1 otherwise; and
with c∗(u, i) = 1 if x∗(u) = i, and c∗(u, i) = 1 + ψ
otherwise. The above noisy stable model with stable
instance (H, c, w) generates instances that are remi-
niscent of (stochastic) block models, with additional
node costs. On the other hand, the above model is
much more general, since we can start with any stable
instance (G, c, w).

With high probability over the random corruptions
of our stable instance, the local LP on the corrupted
instance approximately recovers the MAP solution x̄
of the stable instance. The key step in the proof of
this theorem is showing that, with high probability, the
observed instance is close to the latent stable instance
in the metric we defined earlier.
Lemma 6.1 (d(θ̂, θ̄) is small w.h.p. ). There exists a
universal constant c < 1 such that for any instance in
the above model, with probability at least 1− o(1),

sup
x∈L∗(G)

|〈θ̂, x〉 − 〈θ̄, x〉| ≤ c
√
nk

√√√√∑
u,i

σ2
u,i + k2

4
∑
uv

γ2
u,v

Proof (sketch). For any fixed x ∈ L∗(G), we can show
that |〈θ̂, x〉 − 〈θ̄, x〉| is small w.h.p. using a standard
large deviations bound for sums of sub-Gaussian ran-
dom variables. The main technical challenge is in
showing that the supremum over all feasible solutions
is small w.h.p. The standard approach is to perform
a union bound over an ε-net of feasible LP solutions
in L∗. However, this gives a loose bound. Instead,
we upper bound the supremum by using a rounding
algorithm for LP solutions in L∗(G), and union bound
only over the discrete solutions output by the rounding
algorithm. This gives significant improvements over the
standard approach; for example, in a d-regular graph
with equal variance parameter γuv, this saves a factor
of
√
d apart from logarithmic factors in n.

We defer the details to Appendix D. The above proof
technique that uses a rounding algorithm to provide a
deviation bound for a continuous relaxation is similar
to the analysis of SDP relaxations for average-case
problems (see e.g., Makarychev et al., 2013; Guédon &
Vershynin, 2016). The above lemma, when combined
with Theorem 5.2 gives the following guarantee.
Theorem 6.2 (LP solution is nearly persistent). Let
x̂ be the local LP solution to the observed instance
(G, ĉ, ŵ) and x̄ be the MAP solution to the latent
(2, 1, ψ)-expansion stable instance (G, c̄, w̄). With high
probability over the random noise,

1
2‖x̂V − x̄V ‖1 ≤

2
ψ
· c
√
nk ·

√∑
u,i

σ2
u,i + k2

∑
uv

γ2
u,v
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Proof. We know that for any feasible solution x ∈
L(G), 〈θ̄, x〉 ≥ 〈θ̄, x̄〉. Therefore, 〈θ̄, x̂〉 ≥ 〈θ̄, x̄〉. Re-
member that we defined d(θ̂, θ̄) as supx∈L∗(G) |〈θ̂, x〉 −
〈θ̄, x〉|. Since x̂ and x̄ are both points in L∗(G),

〈θ̄, x̂〉 ≤ 〈θ̂, x̂〉+ d(θ̂, θ̄) ≤ 〈θ̂, x̄〉+ d(θ̂, θ̄)
≤ 〈θ̄, x̄〉+ 2d(θ̂, θ̄)

The first and third inequalities follow from the defini-
tion of d(θ̂, θ̄). The second inequality follows from
the fact that x̂ is the minimizer of 〈θ̄, x〉 over all
x ∈ L(G). Therefore,0 ≤ 〈θ̄, x̂〉 − 〈θ̄, x̄〉 ≤ 2d(θ̂, θ̄).
Using this in Theorem 5.2, we get 1

2‖x̂− x̄‖1 ≤
2d(θ̂,θ̄)
ψ .

Lemma 6.1 then gives an upper bound on d(θ̂, θ̄) that
holds w.h.p.

For a d-regular graph in the uniform setting, we get
the following useful corollary:
Corollary 6.3 (MAP solution recovery for regular
graphs ). Suppose we have a d-regular graph G with
γ2
u,v = γ2 for all edges (u, v), and σ2

u,i = σ2 for all
vertex-label pairs (u, i). Also, suppose only a fraction
ρ of the vertices and η of the edges are subject to the
noise. With high probability over the random noise,

‖x̂V − x̄V ‖1
2n ≤

2ck
√
ρσ2 + ηdk

8 γ2

ψ

Note that when x̂ is an integer solution, the left-hand-
side is the fraction of vertices misclassified by x̂.

7 Finding nearby stable instances

In this section, we describe an algorithm for efficiently
finding (2, 1, ψ)-expansion stable instances that are
“close” to an observed instance (G, ĉ, ŵ). This algorithm
allows us to check whether we can plausibly model real-
world instances as “corrupted” versions of a (2, 1, ψ)-
expansion stable instance.

In addition to an observed instance (G, ĉ, ŵ), the al-
gorithm takes as input a “target” labeling xt. For
example, xt could be a MAP solution of the observed
instance. Surprisingly, once given a target solution,
this algorithm is efficient.

We want to search over costs c and weights w. The
broad goal to solve the following optimization problem:

minimize
c≥0,w≥0

f(c, w) (3)

subject to (G, c, w) is (2, 1, ψ)-expansion stable
with MAP solution xt,

where f(c, w) is any convex function of c and w. In
particular, we will use f1(c, w) = ||(c, w)− (ĉ, ŵ)||1 and

f2(c, w) = 1
2 ||(c, w) − (ĉ, ŵ)||22 for minimizing the L1

and L2 distances between to the observed instance.
The output of this optimization problem will give the
closest objective vector (c̄, w̄) for which the instance
(G, c̄, w̄) is (2, 1, ψ)-expansion stable. If the optimal
objective value of this optimization is 0, the observed
instance (G, ĉ, ŵ) is (2, 1, ψ)-expansion stable.

There is always a feasible (c, w) for (3) (see Appendix E
for a proof), but it may change many weights and costs.
Next we derive an efficiently-solvable reformulation of
(3). In the next section, we find that the changes to
ĉ and ŵ required to find a (2, 1, ψ)-expansion stable
instance are relatively sparse in practice.
Theorem 7.1. The optimization problem (3) can be
expressed as a convex minimization problem over a
polytope described by poly(n,m, k) constraints. When
f(c, w) = ||(c, w)− (ĉ, ŵ)||1, (3) can be expressed as a
linear program.

The instance (G, c, w) is (2, 1, ψ)-expansion stable if
xt is better than every expansion y of xt in every
(2, 1, ψ)-perturbation of (c, w). Let E be the set of all
expansions of the target solution xt. Then for all θ′
within a (2, 1, ψ)-perturbation of θ = (c, w), we should
have that 〈θ′, xt〉 ≤ miny∈E〈θ′, xt〉. It is enough to
check the adversarial (2, 1, ψ)-perturbation θadv. This
perturbation makes the target solution xt as bad as
possible. If xt is better than all the expansions y ∈ E
in this perturbation, it is better than all y ∈ E in every
(2, 1, ψ)-perturbation (see Appendix E for a proof). We
set θadv = (cadv, wadv) as:

cadv(u, i) =
{
c(u, i) + ψ i = xt(u),
c(u, i) otherwise.

wadv(u, v) =
{
w(u, v) xt(u) 6= xt(u),
1
2w(u, v) otherwise.

The target solution xt is fixed, so 〈θadv, xt〉 is a linear
function of the optimization variables c and w. For
α ∈ [k], let Eα be the set of α-expansions of xt. Because
E = ∪α∈[k]Eα, we have 〈θ′, xt〉 ≤ miny∈E〈θ′, xt〉 if and
only if 〈θ′, xt〉 ≤ miny∈Eα〈θ′, xt〉 for all α ∈ [k]. We
can simplify the original optimization problem to:

minimize
c≥0,w≥0

f(c, w)

subject to 〈θadv, xt〉 ≤ min
y∈Eα
〈θadv, y〉 ∀ α ∈ [k],

θadv is a linear function of c, w as defined above. We
now use the structure of the sets Eα to simplify the con-
straints. The optimal value of miny∈Eα〈θadv, y〉 is the
objective value of the best (w.r.t. θadv) α-expansion
of xt. The best α-expansion of a fixed solution xt

can be found by solving a minimum cut problem in
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Table 1: Results from the output of (5) on three stereo vision instances. More details in Appendix F.

Instance Costs changed Weights changed (normalized) Recovery error bound ||x̂V − x̂MAP
V ||1/2n

tsukuba 4.9% 2.3% 0.0518 0.0027
venus 22.5% 1.3% 0.0214 0.0016
cones 1.2% 2.1% 0.0437 0.0022

an auxiliary graph Gxtaux(α) whose weights depend on
linearly on the objective θadv, and therefore depend
linearly on our optimization variables (c, w) (Boykov
et al., 2001, Section 4). Therefore, the optimization
problem miny∈Eα〈θadv, y〉 can be expressed as a mini-
mum cut problem. Because this minimum cut problem
can be written as a linear program, we can rewrite each
constraint as

〈θadv, xt〉 ≤ min
z:A(α)z=b(α),z≥0

〈θadv, z〉, (4)

where {A(α)z = b(α), z ≥ 0} is the feasible region of
the standard metric LP corresponding to the minimum
cut problem in Gx

t

aux(α). The number of vertices in
Gx

t

aux(α) and the number of constraints in A(α)z = b(α)
is poly(m,n, k) for all α. We now derive an equivalent
linear formulation of (4) using a careful application of
strong duality. The dual to the LP on the RHS is:

maximize
ν

〈b(α), ν〉, s.t. A(α)T ν ≤ θadv.

Because strong duality holds for this linear program,
we have that (4) holds if and only if there exists ν with
A(α)T ν ≤ θadv such that 〈θadv, xt〉 ≤ 〈b(α), ν〉.

This is a linear constraint in (c, w, ν). By using this
dual witness trick for each label α ∈ [k], we obtain:

minimize
c≥0,w≥0,{να}

f(c, w) (5)

subject to 〈θadv, xt〉 ≤ 〈b(α), να〉 ∀ α
A(α)T να ≤ θadv ∀ α.

The constraints of (5) are linear in the optimization
variables (c, w) and να. The dimension of θadv is nk +
mk2, so there are k(nk + mk2 + 1) constraints and
nk+m+

∑
α |b(α)| = poly(m,n, k) variables. Because

minimization of the L1 distance f1(c, w) can be encoded
using a linear function and linear constraints, (5) is
a linear program in this case. It is clear from the
derivation of (5) that it is equivalent to (3). This
proves Theorem 7.1. This formulation (5) can easily be
input into “off-the-shelf” convex programming packages
such as Gurobi (Gurobi Optimization, 2020).

8 Numerical results

Table 1 shows the results of running (5) on real-world
instances of MAP inference to find nearby (2, 1, ψ)-

expansion stable instances. We study stereo vision mod-
els using images from the Middlebury stereo dataset
(Scharstein & Szeliski, 2002) and Potts models from
Tappen & Freeman (2003). Please see Appendix F for
more details about the models and experiments.

We find, surprisingly, that only relatively sparse
changes are required to make the observed instances
(2, 1, ψ)-expansion stable with ψ = 1. On these in-
stances, we evaluate the recovery guarantees by our
bound from Theorem 5.2 and compare it to the actual
value of the recovery error ||x̂− x̂MAP ||1/2n. In all of
our experiments, we choose the target solution xt for (5)
to be equal to the MAP solution x̂MAP of the observed
instance. Therefore, we find a (2, 1, ψ)-expansion sta-
ble instance that has the same MAP solution as our
observed instance. The recovery error bound given by
Theorem 5.2 is then also a bound for the recovery error
between x̂ and x̂MAP , because x̂MAP = xt. On these
instances, the bounds from our curvature result (The-
orem 5.2) are reasonably close to the actual recovery
value. However, this bound uses the property that x̂
has good objective in the stable instance and so it is
still a “data-dependent” bound in the sense that it uses
an empirically observed property of the LP solution x̂.
In Appendix F, we show how to refine Corollary 5.3 to
give non-vacuous recovery bounds that do not depend
on x̂.

9 Conclusion

We studied the phenomenon of near persistence of the
local LP relaxation on instances of MAP inference in
ferromagnetic Potts model. We gave theoretical re-
sults, algorithms (for finding nearby stable instances)
and empirical results to demonstrate that even after a
(2, 1, ψ)-perturbation stable instance is corrupted with
noise, the solution to the LP relaxation is nearly persis-
tent i.e., it approximately recovers the MAP solution.
Our theoretical results imply that the local LP approx-
imately recovers the MAP solution when the observed
instance is close to a stable instance. Our empirical re-
sults suggest that real-world instances are very close to
stable instances. These results together suggest a new
explanation for the near-persistency of the solution of
the local LP relaxation for MAP inference in practice.
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