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Abstract

Many Machine Learning algorithms are for-
mulated as regularized optimization problems,
but their performance hinges on a regulariza-
tion parameter that needs to be calibrated
to each application at hand. In this paper,
we propose a general calibration scheme for
regularized optimization problems and apply
it to the graphical lasso, which is a method
for Gaussian graphical modeling. The scheme
is equipped with theoretical guarantees and
motivates a thresholding pipeline that can im-
prove graph recovery. Moreover, requiring at
most one line search over the regularization
path, the calibration scheme is computation-
ally more efficient than competing schemes
that are based on resampling. Finally, we
show in simulations that our approach can
improve on the graph recovery of other ap-
proaches considerably.

1 Introduction

Over the last decades full of technical achievements, we
experienced a revolutionary supply of data, confronting
us with large-scale data sets. In order to handle and to
infer new insights from the appearing wealth of data
it presupposes us to put effort into the development
of new, scaleable procedures. One approach to ad-
dress this problem is using graphical models, which
proved to serve as an intuitive, easy-understanding vi-
sualization of the underlying interaction network that
can then be further analyzed. Typical applications
for graphical models occur in several modern sciences,
including genetics (Dobra et al., 2004), the analysis
of brain connectivity networks (Bu & Lederer, 2017),
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and the investigation of complex financial networks
(Denev, 2015). In all of these cases, graphical models
can reduce the network of interactions to its relevant
parts to lighten the challenge of high-dimensionality.
While domain experts can analyze and interpret the
structure of interactions across features, we can use
this information for more accurate model building. Us-
ing a sparse representation of the relevant parts of the
model, it is possible to develop more efficient inference
algorithms and accelerate sampling from the model. A
popular approach to face this challenge is to recover
the network from the data using undirected graphical
models. We call this task graph recovery.

An important class of undirected graphical models are
Gaussian graphical models. There are numerous esti-
mators for Gaussian graphical models, including those
that account for high dimensionality, e.g. the graph-
ical lasso (Yuan & Lin, 2007; Banerjee et al., 2007;
Friedman et al., 2008), SCAD (Fan et al., 2009), and
MCP (Zhang, 2010), which are based on the idea of
regularized maximum likelihood estimation, and vari-
ous other approaches such as neighborhood regression
(Meinshausen & Biithlmann, 2006; Sun & Zhang, 2012),
TIGER (Liu & Wang, 2017), and SCIO (Liu & Luo,
2015). These estimators reduce the effective dimension-
ality of the model through a regularization term that
is adjusted to the setting at hand with a regularization
parameter.

In this paper we generalize the theoretical framework of
Chichignoud et al. (2014) and utilize the large body of
preliminary theoretical work (Ravikumar et al., 2011)
to verify that we can apply this general scheme to the
graphical lasso. Important features of the resulting
data-driven calibrated estimator are that it comes with
a finite sample upper bound on the approximation
error and is computationally efficient as it requires at
most one graphical lasso solution path. We equip the
estimator with a simple, theory-based threshold and
observe a significant improvement over other methods
in its graph recovery performance.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews Gaussian graphical models and
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presents the proposed estimator for graph recovery,
which we call thresholded adaptive validation graphical
lasso (thAV). Based on an empirical analysis of toy
data sets presented in Section 3, we demonstrate that
the thAV outperforms existing methods on the graph
recovery tasks. We apply the thAV to real-world data
to recover biological networks in Section 4. Finally, we
conclude with a discussion and present ideas for future
research in Section 5. The supplement contains the-
oretical results, proofs, and further simulations. The
code for our experiments is provided and can further
be accessed through our public git repository?.

2 Thresholded Adaptive Validation
for the Graphical Lasso

We begin by giving a brief review of Gaussian graphical
models and describing the graphical lasso optimization
problem in Section 2.1. In Section 2.2 we apply the
adaptive validation (AV) calibration scheme, which was
originally proposed by Chichignoud et al. (2014) and
which we generalize to general regularized optimization
problems in Section A.1 of the supplement, to the
graphical lasso. We obtain finite sample results for
the /.-loss on the off-diagonals of the graphical lasso,
and employ these bounds to motivate a thresholded
graphical lasso approach.

2.1 Brief Review of Gaussian Graphical
Models

An undirected graphical model expresses the condi-
tional dependence structure between components of a
multivariate random variable. More precisely, given a
high-dimensional random variable z € R?, the undi-
rected graphical model depicts for each pair of com-
ponents z;, z; of z if these are independent given the
remaining d — 2 components of z (i.e. z; L z;[2\ (i ;1)
Formally, an undirected graphical model is defined as
a pair (z,G), where G := (V,€£) is a graph with ver-
tices V := {1, ...,d} and edge set £ := {(i,5) € V x V:
zi £ zj|z\fi51 ) It is well-known that in a Gaussian
graphical model, i.e. in the case that z ~ Ny(04, ),
where Y is the positive definite covariance matrix, we
can find an elegant characterization of the conditional
dependency structure. It can be seen as a special case
of the Hammersley-Clifford Theorem (Grimmett, 1973;
Besag, 1974; Lauritzen, 1996): for any ¢ # j € V it
holds that

2 L zj\z\{iﬁj} 54 @ij =0 y (1)
where © := X! is the so called precision matriz.
Hence, in order to estimate the conditional dependence

"https://github.com/MikeLasz/thav.glasso

graph G, one can build on an estimate 6 of the precision
matrix © and define € := {(i,j) € V x V: ©;; # 0}.

Given n samples 2z, ..., 2(") drawn independently
from Ny(04, ), an evident approach to estimate ©
is to employ maximum likelihood estimation. But it
is well-known that its performance suffers in the high-
dimensional setting where n =~ d or even n < d, and
that it does not exist in the latter setting (Wainwright,
2019). A typical approach to overcome the burdens
that come with high-dimensionality is to assume a spar-
sity structure on the target, that is, to assume © to
have many zero-entries. This does not only improve
theoretical guarantees but also makes the conditional
dependence graph more interpretable. Moreover, im-
posing a sparsity structure is in accordance with the
scientific beliefs in typical application areas in which
graphical models are being used (Thieffry et al., 1998;
Jeong et al., 2001). The probably most-frequently used
sparsity encouraging estimation procedure for Gaussian
graphical models is the graphical lasso (Yuan & Lin,
2007)

R 1 <& T
_ : - () (@)
0, = argmln{tr {n g (z ) z Q]

Qest i=1

— log [det[Q]] +7“||Q||1,off} , (2)

where Sd+ is the set of positive definite and sym-
metric matrices in R%*? tr denotes the trace, r is
a problem-dependent regularization parameter, and
€210 == 3,2, €25 denotes the ¢1-norm of €2 € ST
on its off-diagonal. Of course, the performance of the
estimator hinges on the choice of r, and while general
theoretical results for the graphical lasso exist (e.g.
those presented by Zhuang & Lederer (2018)), to the
best of our knowledge there are none that allow for a
sophisticated choice of r for graph recovery tasks that
occur in practice.

2.2 Thresholded Adaptive Validation

In this section, we transfer the AV technique pro-
posed by Chichignoud et al. (2014) for the lasso to
the graphical lasso. As can be seen from our derivation
in Section A.1 of the supplement, the technique can be
applied to tune any general regularized optimization
problem over a set S of the form

6, ¢ argmin{ f(Z,Q) + rh(Q)} , (3)
Qes

where r is a real-valued regularization parameter, f is a
function measuring the fit of the estimator {2 given the
observed data Z, and h is some regularization function
depending only on Q. Comparing (2) with (3) shows
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that the graphical lasso belongs to this class of regu-
larized optimization problems. We can therefore apply
the calibration scheme proposed by Chichignoud et al.
(2014) and which we generalized in the supplement to
obtain the following definition:

Definition 1 (AV). Let R be a finite and nonempty set
of regqularization parameters. Then, the adaptive valida-
tion (AV) calibration scheme selects the regularization
parameter according to

#:=min{r € R: £(6,,0,+) <O +1r")
vr'r" e RN ro0)}

where £ : S;' X 83' — R is the l-distance on the
off-diagonals, C' € R is a constant (specified in the
following), and (:)T/, O, are the graphical lasso esti-
mators (2) using regularization parameter v’ and r”,
respectively. We call 6, (resulting from inserting +
into (2)) the AV estimator.

The constant C' stems from an assumption, which the
theory of Chichignoud et al. (2014) relies on, namely
that there exists this constant and a class of events
(T:)rer, which are increasing in r, such that condi-
tioned on 7, it holds

0(0,0,)<Cr . (4)

Particularly, we only require the existence of the set
of events (7;)rer for some fixed C' and do not need to
have access to it. As demonstrated by Theorem 8 in
Section A.2 of the supplement, we can show based on
the investigations of Ravikumar et al. (2011) that this
assumption holds true for the graphical lasso?. Moti-
vated by this, the smallest regularization parameter 3
that enables us to apply (4) with probability 1 — 4, for
some § € (0,1], can be seen as a natural candidate for
T
r3 := argmin {]P’(ﬁ) >1-— (5} .
reR

However, 75 is inaccessible in practice, since we usually
cannot measure P(7;.). Nonetheless, the AV estimator
©; also results in a good approximation of the precision
matrix as guaranteed by the following theorem, which
is based on the generalization of the Theorem 3 of
Chichignoud et al. (2014) ® applied onto the graphical
lasso.

Theorem 2 (Finite Sample Bound for the AV). Sup-
pose that 7 is the regularization parameter selected

2Note that even though we obtain a class of events
(TT) reR building on a similar interpretation as Chichignoud
et al. (2014), we have to resort to a more involved primal-
dual-witness construction to prove the validity of this upper
bound.

3The generalized version we derived corresponds to The-
orem 3 in Section A.1 of the supplement.

by the AV calibration scheme and C' is the constant
from (4). Then, for any 6 € (0,1], it holds that

F<r; and ((O, (:)T) < 3Crj (5)

with probability at least 1 — 9.

For simplicity of notation, let us denote the AV esti-
mator by © := ©; from here on. The finite sample
upper bound (5) immediately implies that it holds with
probability 1 — ¢ that

1. for any zero entry ©;; = 0 of the true precision

matrix the corresponding entry ©;; of the AV
estimate satisfies |©;;| € [0,3Cr}];

2. for any significant non-zero entry ©;; with |0;;| >
(3+A)C'ry, for some constant A, the corresponding
entry @ij of the AV estimate is also non-zero with
|éij| > /\CTE

These observations suggest a strategy for efficient graph
recovery: by including all edges (7, ) to the edge set
that satisfy |©,;] > ACr%, we make sure that we recover
all significant entries (see 2.). Pursuing this strategy, we
can also shrink the interval, in which AV missclassifies
zero entries to [ACr}, 3Cr¥] (see 1.). However, as r¥ is
inaccessible, we propose to replace it in the selection
strategy by the AV regularization parameter, leading
to the thresholded estimator defined in the following.

Definition 3 (thAV). Let © be the AV estimator.
Then, we define the thresholded adaptive validation
graphical lasso (thAV) estimator by

(ét)z'j = (éij]l{lém>t}>ij ’ (6)

where t := ACT is the threshold, A\ € (0,3], and 14
is the indicator function over a set A. The resulting
estimated edge set is then

E:={(,j) eV xV: 6} #0}
={(i,§) €V x V: |0;] > \CF} .

As we know from Theorem 2 that # < r§ with probabil-
ity 1 — 6, we can use the above observations to derive
the following corollary that guarantees outstanding
graph recovery properties of the thAV:

Corollary 4 (Finite Sample Graph Recovery). Let 6
be the AV estimator and ©' the thAV estimator with
t = AC?, where C' is the constant from Assumption (4)
and A € (0,3]. Then, it holds with probability 1 —§ that

1. for all (i,j) € V such that ©;; = 0 it is
|©i;] € [0, 3Cr3] and therefore

(i,7) € £ < |0i;] € (\CF, 3CT}] .



Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery

2. for all (i,j) € V such that |©;;] > (3+ X)Crj it is
(1)) € €.

The proof of Corollary 4 can be found in Section A.3 of
the supplement. As far as we know, there is no other
theoretical result so far that justifies a specific choice
for a threshold in a thresholded version of the graphi-
cal lasso. Moreover, the corollary offers a theoretical
ground for balancing the tradeoff between false positive
and false negative rate: while maintaining finite-sample
guarantees, we can regulate \ according to our needs
to decrease the false negative rate (part 2) at the cost
of increasing the interval (ACF,3Cr}] in which thAV
missclassifies negatives (part 1).

Importantly, the thAV also comes with notable compu-
tational benefits, since the computations in Definition 1
only require at most 1 solution path. Using the glasso
R package (Friedman et al., 2008; Witten et al., 2011),
we can efficiently compute the thAV as described by
Algorithm 1 in Section B of the supplement.

Finally, note that even though there exist theoretical
bounds justifying (4) (see Section A.2 of the supple-
ment), they are usually too loose or bounded to restric-
tions that are hard to interpret and violated in practice.
Thus, what we observe in practice is usually not (4),
but rather a more robust “quantiled version” of it:

l1_(0,0) < Cr |

where /1 _ (0, ©) defines the 1 —a quantile of the set of
absolute differences {|©;; —©;;]};;. Under this assump-
tion, one could derive the same theory for the quantiled
version of the loss, i.e. by replacing all £ by ¢;_,, in this
section (compare with the general theory in Section A.1
of the supplement). However, in practice the results
are very similar and our method is computationally
less expensive.

3 Simulation study

In this section we compare the thAV to various other
commonly used methods to estimate a Gaussian graph-
ical model, which are the StARS (Liu et al., 2010), the
scaled lasso (Sun & Zhang, 2012), the TIGER (Liu &
Wang, 2017), the regularized score matching estima-
tor (rSME) tuned via eBIC (Lin et al., 2016), and the
SCIO* tuned via CV and via the Bregman-criterion
(Liu & Luo, 2015)°. We sample synthetic data from a

“The regularized score matching estimator (rSME) and
the SCIO estimator solve the same optimization problem
in the Gaussian setting.

5We have also evaluated RIC, which is the default graph-
ical lasso calibration scheme in the huge R package (Zhao
et al., 2012). However, we decided to exclude it from our
simulation study due to bad results, computational insta-
bility, and a lack of theory.

Gaussian distribution N;(04, ©~1), whereby we adopt
a similar precision matrix generation procedure from
Caballe et al. (2015) for sampling random and scale-free
graphs. A detailed description of the based generation
process can be found in Section C.1 of the supplement.
We scale the data such that it is centered and has
empirically unit variance.

If not stated differently, we use t = C'7 and C' = 0.7 in
the following. We define the set of possible regulariza-
tion parameters to be R := {0.05 + i(rmax — 0.05)/40 :
i € {1,..,40}}, where Tmayx = maxz; %] is the
largest off-diagonal entry in absolute value of the em-
pirical covariance matrix®. To enhance the robustness
of our algorithm, we scale the graphical lasso estima-
tors in Definition 1 such that they have unit diagonal
entries. If not specified, the results of all experiments
are averaged over 25 iterations and standard deviations
are shown in parenthesis. Besides the experiments
presented in this paper, we present additional investi-
gations and repeat all experiment in various settings in
Section C.3 of the supplement. We provide the code for
all experiments with the submission, which can further
be accessed through the public git repository.

Performance in Fj-score Table 1 shows the perfor-
mance of the different methods for the graph recovery
task. The performance is evaluated based on precision,
recall, and the resulting F}-score, which are defined in
Section C.3 of the supplement. The proposed thAV
estimator not only clearly outperforms the baseline
methods but it also has a noticeable advantage over
the oracle graphical lasso estimator, which is the (non-
thresholded) graphical lasso estimator that achieves
maximal Fj-score among all regularization parameters.
This implies that it is mandatory to apply thresholding
on top of regularized optimization to obtain good graph
recovery results with the graphical lasso. Remarkably,
in estimating a random graph, we observe that the
thAV always achieves a recall of above 0.9 while main-
taining good precision. This is in stark contrast to
the other methods, which seem to overestimate the
graphs resulting in a high recall but comparably low
precision. Moreover, the results indicate that scale-free
graphs in general are much harder to estimate than
random graphs. As it has already been reported in
other works (see Liu & IThler (2011); Tang et al. (2015)
and references therein), the graphical lasso is not able
to provide a good estimation of a scale-free graph be-
cause its regularization does not impose any preference
for identifying hub-like structures. Nevertheless, thAV
remains superior to the other methods in terms of
reaching the highest F}-Score in most cases. Again,
thAV can find a good balance between precision and

5This is the smallest regularization parameter that esti-
mates an empty graph.
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Table 1: Graph recovery performance for varying graphs and sample size. The bold numbers indicate the best

score in each setting.

RANDOM SCALE-FREE
Fy PRECISION RECALL Fy PRECISION RECALL

n = 300, d = 200

ORACLE 0.70 (0.13) 0.60 (0.16) 0.89 (0.03) 0.37 (0.12) 0.37 (0.22) 0.63 (0.23)
STARS 0.59 (0.14) 0.44 (0.13) 0.93 (0.09) 0.29 (0.13) 0.20 (0.10) 0.65 (0.12)
SCALED LASSO 0.68 (0.02) 0.52 (0.03) 0.98 (0.01) 0.40 (0.07) 0.26 (0.05) 0.84 (0.07)
TIGER 0.47 (0.09) 0.31 (0.08) 0.99 (0.01) 0.34 (0.07) 0.21 (0.05) 0.87 (0.07)
RSME (EBIC) 0.64 (0.17) 0.49 (0.16) 0.98 (0.01) 0.47 (0.23) 0.42 (0.24) 0.74 (0.14)
scio (CV) 0.19 (0.36) 0.23 (0.41) 0.17 (0.34) 0.15 (0.19) 0.44 (0.50) 0.09 (0.12)
scio (BREGMAN) 0.13 (0.17) 0.11 (0.22) 0.96 (0.16) 0.24 (0.18) 0.51 (0.44) 0.57 (0.37)
THAV 0.91 (0.03) 0.90 (0.04) 0.93 (0.05) 0.54 (0.13) 0.48 (0.19) 0.70 (0.13)
n = 200, d = 300

ORACLE 0.70 (0.10) 0.63 (0.14) 0.81 (0.03) 0.29 (0.07) 0.25 (0.15) 0.47 (0.13)
STARS 0.54 (0.11) 0.39 (0.11) 0.93 (0.03) 0.25 (0.07) 0.17 (0.06) 0.54 (0.10)
SCALED LASSO 0.65 (0.03) 0.49 (0.02) 0.94 (0.02) 0.30 (0.04) 0.20 (0.03) 0.59 (0.08)
TIGER 0.45 (0.08) 0.30 (0.07) 0.96 (0.02) 0.25 (0.05) 0.15 (0.04) 0.67 (0.09)
RSME (EBIC) 0.02 (0.00) 0.01 (0.00) 0.99 (0.01) 0.01 (0.00) 0.01 (0.00) 0.95 (0.02)
scio (CV) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.06 (0.09) 0.36 (0.49) 0.03 (0.05)
scio (BREGMAN) 0.26 (0.29) 0.27 (0.35) 0.86 (0.21) 0.16 (0.12) 0.57 (0.47) 0.36 (0.27)
THAV 0.79 (0.09) 0.73 (0.15) 0.90 (0.04) 0.28 (0.11) 0.21 (0.14) 0.60 (0.11)
n = 400, d = 200

ORACLE 0.74 (0.13) 0.65 (0.17) 0.91 (0.03) 0.42 (0.10) 0.42 (0.22) 0.67 (0.26)
STARS 0.63 (0.13) 0.48 (0.14) 0.96 (0.03) 0.34 (0.12) 0.23 (0.09) 0.70 (0.14)
SCALED LASSO 0.70 (0.03) 0.54 (0.03) 0.99 (0.01) 0.44 (0.05) 0.29 (0.04) 0.90 (0.07)
TIGER 0.48 (0.09) 0.32 (0.08) 0.99 (0.01) 0.33 (0.05) 0.20 (0.04) 0.93 (0.06)
RSME (EBIC) 0.56 (0.20) 0.41 (0.18) 1.00 (0.00) 0.54 (0.13) 0.43 (0.15) 0.82 (0.11)
scio (CV) 0.48 (0.45) 0.52 (0.47) 0.48 (0.46) 0.14 (0.25) 0.28 (0.45) 0.10 (0.19)
scio (BREGMAN) 0.16 (0.16) 0.12 (0.22) 0.97 (0.13) 0.21 (0.18) 0.35 (0.40) 0.71 (0.36)
THAV 0.93 (0.04) 0.92 (0.06) 0.95 (0.04) 0.63 (0.13) 0.59 (0.19) 0.75 (0.14)

recall, whereas methods such as StARS and TIGER are
overestimating the graph, which results in comparably
low precision.

In Table 1, it appears that the recovery performance
drops with an increment of d, which makes sense
since the number of parameters increases quadrati-
cally with d. However, in our next experiments (Ta-
ble 2), in which we investigate the thAV in the setting
d € {600,...,1000} and set n = 500, we observe that
this is surprisingly not the case when enough data,
but still n < d, is available. The Fj-score for a ran-
dom graph remains stable across all d at an impressive
value of 0.96. In the case of a scale-free graph, the
performance decays slowly, while maintaining a good
trade-off between precision and recall. Note that the
support recovery in the case d = 1000 involves about
500000 parameters.

Moreover, the careful reader will actually realize that
the proposed calibration scheme can also be employed
to tune the rSME estimator. Because of the generality
of our results from Section A.1 we can employ existing
results from Lin et al. (2016) to verify the validity of

Assumption (4) for the rSME. As it is shown in Sec-
tion C.4 of the supplement, the rSME calibrated with
the thAV approach performs comparably to the thAV
graphical lasso. This is an important observation as
the rSME can be applied to estimate the conditional
dependency structure of a pairwise interaction model,
which is a broader model class than the class of Gaus-
sian graphical models. Hence, the calibration technique
and the underlying theory can naturally be extended
to the non-Gaussian setting.

Furthermore, we repeat the empirical study with the
modified graphical lasso proposed by Liu & Ihler (2011),
which we calibrate and clip via the thAV technique.
This estimator employs a power law regularization that
encourages the appearance of nodes with a high degree
and are thus better suited for scale-free graphs. The
experimental study is shown in Section C.4 of the
supplement.

Dependence on C' If we increase the constant C' in
the AV calibration scheme, we decrease 7 (see Propo-
sition 9 of the supplement) and therefore employ less
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Table 2: Graph recovery performance of the thAV with fixed sample size n = 500 for large-scale examples. The

results are based on 20 iterations.

RANDOM SCALE-FREE

F PRECISION REcALL I3 PRECISION REcALL
d = 600 0.96 (0.03) 0.97 (0.02) 0.94 (0.05 0.43 (0.17) 0.45 (0.29) 0.61 (0.17)
d =700 0.96 (0.02) 0.98 (0.02) 0.93 (0.04 0.42 (0.16) 0.43 (0.25) 0.53 (0.13)
d = 800 0.95 (0.02) 0.97 (0.03) 0.93 (0.04 0.40 (0.18) 0.45 (0.29) 0.52 (0.16)
d =900 0.96 (0.02) 0.97 (0.04) 0.95 (0.03 0.33 (0.17) 0.33 (0.26) 0.54 (0.16)
d = 1000 0.96 (0.02) 0.98 (0.01) 0.93 (0.03 0.34 (0.17) 0.36 (0.27) 0.46 (0.15)

regularization. Hence, the AV estimator is inherently
related to the choice of C'. We plot the performance
of different AV estimators with varying thresholds in
Figure 1 and make two crucial observations. First, we
see significant dissimilarities in the performance of the
unthresholded AV estimators: because the calibrated
regularization parameter ranges from 7 = 0.23 in the
case C = 0.5 to # = 0.09 in the case C = 0.8, the
Fi-score drops from approximately 0.70 to 0.35. Thus,
the AV estimator’s performance heavily depends on
the choice of C. But after thresholding, and this is the
second observation, the thresholded AV estimators’ per-
formance curves become very similar and reach almost
the same peak. We can observe the same behaviour
in the other settings, as it is shown in Section C.3 of
the supplement. Importantly, we also show in the sup-
plement that we do not observe a similar performance
peak if we threshold the unregularized optimization
problem (setting r = 0 in (2)). Hence, neither regu-
larization via regularized optimization is sufficient for
graph recovery, see the performance of the oracle esti-
mator in Table 1, nor does unregularized thresholding
yield to good results. Therefore we claim that it is
necessary to apply both types of regularizations, as it
is done by thAV and which additionally encourages
stability in C.

To further investigate the stability of the thAV in C,
we consider pairs of thAV estimators resulting from
different choices of C, which we call (:)tC/, and C:)é,,.
Table 3 reports the differences between these estima-
tors by calculating Fl(éé,, @g,,) for a random graph.
We do not only achieve a high Fy(0, L) for any C,
but also the different estimates are all very similar,
i.e. F1(6L,, ©4,) is always above 0.80. Therefore, we
can confirm that the recovered graphs are stable in the
choice of C.

Varying graph density In this last experiment, we
put emphasis on the adaptability of thAV on the density
of the graph, i.e. the proportion of edges to the number
of nodes in the graph. The graph’s density of a random
graph is controlled via p, the probability that a pair

Table 3: Similarity F (6%, 0%,,) for different choices of
C (C" and C") for a random graph with d = 200 using
n = 300 samples. The performance scores F} (O, (:)tc)
are 0.80 (0.06), 0.88 (0.04), 0.91 (0.05), 0.85 (0.10) for
C in 0.5, 0.6, 0.7, 0.8, respectively.

C 0.6 0.7 0.8
0.5 0.88 (0.05) 0.82 (0.08) 0.81 (0.10)
0.6 1 0.93 (0.04) 0.84 (0.09)
0.7 - 1 0.92 (0.05)
0.8 - - 1

of nodes is being connected. Details can be found
in Section C.1 of the supplement. We observe from
Table 4 that the Fi-score of the thAV estimator remains
stable across all densities, whereas the other estimators
tend to perform better for dense graphs. This is no
surprise since we have seen in the previous experiments
that the other estimators tend to overestimate the
presence of edges in a graph as indicated by a high
recall but low precision. In all investigated settings, the
thAV estimator outperforms the competing estimation
procedures considerably.

4 Applications

Graphical model recovery plays a big role in under-
standing biological networks. In this section, we apply
our procedure on 2 open-source data sets to obtain
sparse and interpretable graph structures.

Recovering a Microbial Network It is believed
that the human microbiome plays a fundamental role
in human health. Thus, the American Gut Project
(McDonald et al., 2018) was launched to pave the way
to find associations among the microbiome, but also to
confirm associations between the microbiome and other
aspects of human health, like psychiatric stability. In
this example, we estimate the microbial network to en-
hance the understanding of the roles and the relations
between the microbes. Since microbial datasets come
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Figure 1: The Fj-score (blue, solid), precision (yellow, dotted), and recall (green, dashed) of a thresholded AV
estimator for a random graph with d = 200 based on n = 300 samples for C € {0.5, 0.6, 0.7, 0.8} with varying
thresholds. The resulting AV regularization parameters are 0.23, 0.17, 0.13, 0.09, respectively. The vertical line
depicts the proposed threshold ¢ = C7 corresponding to the thAV estimate.

with some technical problems, it is vital to preprocess
the data. We refer to the work of Kurtz et al. (2015)
and Yoon et al. (2019) for details about the problems
and a suitable preprocessing routine for microbial data.
We use the preprocessed amgut2.filt.phy data, which is
included in the SpiecEasi package (Kurtz et al., 2015).
The data set measures the abundance of microbial
operational taxonomic units (OTUs) and consists of
n = 296 samples and d = 138 different OTUs. We
employ the nonparanormal transformation (Liu et al.,
2009) and estimate the microbial network using the
thAV. The thAV estimator returns a very sparse graph
that identifies various clusters, see Section D of the
supplement. However, the estimator includes no inter-
actions between different classes of microbes. To get
insight about interactions across classes of microbes, we
reduced the truncation parameter A to 0.5. Note that
the results of Corollary 4 are valid for each A € (0, 3].
The resulting graph is depicted in Figure 2(a).

Recovering a Gene Network In pharmacology,
the vitamin riboflavin is industrially produced using
diverse microorganisms. Being able to fully understand
the bacterias’ genome, biologists promise to further
optimize the riboflavin production. The riboflavin data
set is provided by the DSM in Switzerland and contains
n = 71 samples and d = 4088 gen expressions. The R
package hdi (Dezeure et al., 2015) provides this data
set in its implementation. We compare the results of
the thAV (see Figure 2(b)) with those of Biithlmann
et al. (2014), who analyzed the same data set using a
neighborhood regression approach’, and observe that
the thAV returns a much sparser graph with more
cluster-like structures. This does not only increase the
interpretability of the graph but also imposes some

"Similar to Biihlmann et al. (2014), we shrink the data
set by only considering the 100 genes with the highest em-
pirical variance and scale the data using the nonparanormal
transformation.

tight connections between several genes within these
clusters.

5 Discussion and Conclusion

Graphical models are a very popular framework for
co-occurrence networks, and the graphical lasso is one
of the most standard estimators in this framework. In
this paper, we generalize the theoretical framework of
Chichignoud et al. (2014) for deriving a calibration
scheme for the lasso and successfully transfer it to cali-
brate the graphical lasso. However, our empirical study
reveals that graphical lasso estimation itself is not suf-
ficient for effective support recovery, so an additional
thresholding step becomes necessary. Our resulting
calibration method comes with a finite sample result
that allows us to derive a corollary suggesting how
to choose a theoretically founded threshold in such a
thresholded graphical lasso approach. The resulting es-
timator, which we call thresholded adaptive validation
(thAV) estimator, provides a simple and fast implemen-
tation with finite sample guarantees on the recovery
performance. To the best of our knowledge, this is the
first thresholding methodology for the graphical lasso
that comes with a practical, theory-based threshold.
Moreover, the thAV clearly outmatches existing graph
recovery methods in our empirical analysis, showing
both, a high recall but also a high precision in most
settings. Other methods, which do not come with a
practical threshold, tend to overestimate the graph.
Thus, we would recommend the thAV as the method of
choice for applications requiring an interpretable and
sparse graph structure.

One shortcoming of the proposed procedure is that
we replace the tuning parameter r by a quantity C,
and we even introduce A, which defines our thresh-
old. However, regarding A, we derive a finite sample
result for every A € (0,3]. And secondly, the correspon-
dence between C' and the AV regularization parameter
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Table 4: Fi-score if we change the connection proba-
bility to p € {2/d, 4/d} in a random graph in various
settings. The previous simulations employed p = 3/d.
The bold numbers indicate the best score in each set-
ting.

2/d 4/d

n = 300, d = 200

STARS 0.55 (0.14)  0.57 (0.13)
SCALED LASSO 0.60 (0.03) 0.73 (0.02)
TIGER 0.39 (0.09) 0.53 (0.08)
RSME (eBIC) 0.51 (0.27) 0.55 (0.23)
SCIO (CV) 0.33 (0.40) 0.22 (0.39)
SCIO (BREGMAN) 0.23 (0.29) 0.22 (0.23)
THAV 0.91 (0.05) 0.89 (0.04)
n = 200, d = 300

STARS 0.49 (0.11)  0.52 (0.09)
SCALED LASSO 0.58 (0.03) 0.68 (0.02)
TIGER 0.35 (0.09) 0.48 (0.10)
rRSME (EBIC) 0.01 (0.00) 0.03 (0.00)
SCIO (CV) 0.14 (0.26) 0.20 (0.31)
SCIO (BREGMAN) 0.31 (0.36) 0.33 (0.31)
THAV 0.87 (0.03) 0.73 (0.11)
n = 400, d = 200

STARS 0.61 (0.16) 0.61 (0.12)
SCALED LASSO 0.60 (0.03) 0.74 (0.02)
TIGER 0.38 (0.07) 0.52 (0.06)
RSME (EBIC) 0.55 (0.22) 0.54 (0.14)
SCIO (CV) 0.21 (0.39) 0.35 (0.44)
SCIO (BREGMAN) 0.14 (0.20) 0.15 (0.01)
THAV 0.94 (0.04) 0.93 (0.03)

leads to a threshold that regulates the impact of C
on the thAV, resulting in an estimator that is stable
in C. In contrast, the calibration via the regulariza-
tion parameter r is not equipped with such a stability
property. The introduction of new hyperparameters
can also not be seen as a disadvantage in comparison
to related methods, which replace the regularization
parameter by other hyperparameters as well. For in-
stance, the StARS calibration scheme for the graphical
lasso introduces new parameters N and b, which de-
fine the number of NV subsamples of size b, and the
parameter 5, which restricts the instability. TIGER
introduces a new regularization parameter £ and the au-
thors (Liu & Wang, 2017) argue that the final problem
is regularization-parameter-insensitive.

On the other hand, a major advantage of this cali-
bration scheme is its generality. While we focus on
the graphical lasso in this paper, the derived theoreti-
cal framework can also serve as a foundation for other
thresholding approaches, which are not limited to Gaus-
sian graphical modeling. For instance, the proposed
method has the potential to effectively tune the rSME;,
which is a graph recovery method for the pairwise in-
teraction model. Using the same primal dual-witness
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Figure 2: The thAV based on the American Gut Data
is shown in Figure 2(a). To avoid too large graphics,
we exclude isolated vertices. The color and the shape
of a node imply the biological cluster of each OTU.
Figure 2(b) depicts the thAV applied on the ribloflavin
data.

technique, the authors (Lin et al., 2016) prove the as-
sumption on which our theoretical framework is based
(see (4)). Hence, we can derive the same theory for
these types of estimators using the adaptive validation
technique. We note that many empirical results re-
garding the rSME are rather limited to ROC curves,
which conceal the regularization parameter selection.
Moreover, we can also employ the framework for meth-
ods that aim to recover the support of specific types of
graph topologies, such as particularly scale-free graphs
(Liu & Thler, 2011).

For future work, we hope to apply the proposed gen-
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eral framework to calibrate regularized optimization
problems and equip these estimators with finite sam-
ple theoretical guarantees. These might include other
applications of sparse precision matrix estimation such
as high-dimensional discriminant analysis and portfolio
allocation (see Fan et al. (2016) and references therein),
but also applications beyond the scope of sparse preci-
sion matrix estimation.
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