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Abstract

Consider a collection of datasets generated
by unknown interventions on an unknown
structural causal model G. Recently, Bengio
et al. (2020) conjectured that among all can-
didate models, G is the fastest to adapt from
one dataset to another, along with promising
experiments. Indeed, intuitively G has less
mechanisms to adapt, but this justification
is incomplete. Our contribution is a more
thorough analysis of this hypothesis. We in-
vestigate the adaptation speed of cause-effect
SCMs. Using convergence rates from stochas-
tic optimization, we justify that a relevant
proxy for adaptation speed is distance in pa-
rameter space after intervention. Applying
this proxy to categorical and normal cause-
effect models, we show two results. When the
intervention is on the cause variable, the SCM
with the correct causal direction is advantaged
by a large factor. When the intervention is
on the effect variable, we characterize the
relative adaptation speed. Surprisingly, we
find situations where the anticausal model is
advantaged, falsifying the initial hypothesis.

1 INTRODUCTION

A learning agent interacting with its environment
should be able to answer questions such as “what will
happen to Y if I change X”. Structural Causal Models
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Figure 1: Two models of cause-effect data X → Y .

(SCM) offer a formalism to answer this kind of ques-
tions (Pearl, 2009; Peters et al., 2017). The simplest
SCM is the model X → Y where X is the cause and Y
the effect. Modifying X will modify Y but modifying
Y will not alter X. In general, SCMs model the dis-
tribution of observations with a directed graph where
edges represent independent mechanisms (Janzing and
Scholkopf, 2010).

Modern machine learning methods can fail surprisingly
when the test distribution differ from the training dis-
tribution (Rosenfeld et al., 2018). A recent line of work
describes these distribution shifts as interventions in
an underlying causal model (Zhang et al., 2013; Magli-
acane et al., 2018). If this description is accurate, then
an agent endowed with this hypothetical causal model
could handle distribution shifts by updating the few
mechanisms affected by the intervention. On contrary,
an agent endowed with an incorrect model, would have
to update many mechanisms. Bengio et al. (2020) infer
that the causal agent will be the fastest to adapt to
distribution shifts. Conversely, they use the speed of
adaptation to unknown interventions as a criterion to
learn the true causal model, showing promising em-
pirical results on cause-effect models. Yet they lack a
theoretical argument to connect interventions and fast
adaptation. Thus we raise the question:

Do causal models adapt faster than non-causal models
to distribution shifts induced by interventions?

Contributions. We theoretically and empirically an-
swer this question for cause-effect SCMs with categor-
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ical variables, and partially for multivariate normal
distributions.

• For both settings, we use stochastic optimization
convergence rates to show that the adaptation
speed mostly depends on the distance in parame-
ter space between the initialization (before inter-
vention) and the optimum (after intervention).

• For categorical variables, we fully characterize this
distance. We show that the causal model is faster
by a large factor when the intervention is on the
cause.

• When the intervention is on the effect, we surpris-
ingly find settings where the anticausal model is
systematically faster. As appealing as the fastest-
to-adapt hypothesis may sound, it does not hold
in every situations.

2 RELATED WORK

Causal relationships are asymmetric. These asymme-
tries are often visible in observations, so that one can
identify which is cause and which is effect under rel-
evant assumptions (Mooij et al., 2016). A common
assumption is to constrain the set of functional depen-
dencies between cause and effect. By contrast, in our
work, we focus on two families of distributions which
are notoriously unidentifiable from observational data:
categorical and linear normal variables (Peters et al.,
2017, Ch.4). With data coming from a generic directed
acyclic graph (DAG), we can only hope to discover
the Markov equivalence class of this DAG (Verma and
Pearl, 1991). Many methods seek to achieve this goal,
whether constraint-based such as the PC algorithm
(Spirtes et al., 2000) or score-based methods using
greedy search (Chickering, 2002) or more recently con-
tinuous optimization (Zheng et al., 2018; Lachapelle
et al., 2020). However to discover the exact graph, we
need access to interventional data.

Inferring causal links from interventions or experiments
is the foundation of science. Inferring causal links from
unknown interventions is a much harder and less princi-
pled problem. Tian and Pearl (2001) first studied this
setting, proposing a constraint based method to infer
the interventional equivalence class from a sequence
of interventions. Then Eaton and Murphy (2007) pro-
posed an exact Bayesian approach. More recently,
Squires et al. (2019); Ke et al. (2019) proposed score
based algorithms, improving in scalability and alleviat-
ing parametric assumptions. From a machine learning
perspective, we are concerned with the predictive power
that this structure will give us when faced with new
data.

Distribution shifts are a common problem in machine
learning, as well as in causal statistics (Zhang et al.,
2013; Pearl and Bareinboim, 2014). Schölkopf et al.
(2012) first brought up the idea of invariance to tackle
this problem. Following up on this idea, Peters et al.
(2016) designed an algorithm able to identify robust
causal features from heterogeneous data. This work
has set a fruitful line of research for robust machine
learning (Heinze-Deml et al., 2018b,a; Rothenhäusler
et al., 2019; Arjovsky et al., 2019). In a way, fast
adaptation is the complementary idea of invariance: if
most mechanisms are kept invariant, then only a few
have to adapt. Schölkopf (2019) shed light on these
approaches and the broader scope of causality research
for machine learning.

3 BACKGROUND

In this section, we review the formalism of Bengio
et al. (2020) on observations, interventions, models and
adaptation.

Reference and Transfer Distributions. We as-
sume perfect knowledge of a reference distribution p
over the pair (X,Y ) sampled from an SCM X → Y .
This distribution is the object of interventions, which
results in new transfer distributions p∗. If the inter-
vention is on the cause, X is sampled from a different
marginal, then Y is sampled from the reference condi-
tional

p∗(x, y) = p∗(x)p(y|x) . (1)

If the intervention is on the effect, X is sampled from
the reference marginal, then Y is sampled from another
marginal independently of X

p∗(x, y) = p(x)p∗(y) . (2)

For each transfer distribution, we observe a few sam-
ples.

Models. We parametrize two generative models
of (X,Y ) (Fig. 1):

pθ→(x, y) = pθX (x)pθY |X (y|x) – causal (3)

pθ←(x, y) = pθY (y)pθX|Y (x|y) – anticausal . (4)

For each model, we call mechanisms the marginal and
conditional models. Each mechanisms has its own set
of parameters, e.g. θX and θY |X . In the following we
will use θ to denote interchangeably θ→ and θ←.

Adaptation. Both models are initialized to fit per-
fectly the reference distribution p

θ
(0)
→

= p
θ
(0)
←

= p. They
observe fresh samples from p∗ one by one and up-
date their parameters θ→ and θ← to maximize the
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Figure 2: Intuition behind fast adaptation. An intervention on X turns the reference distribution p(0) into
a transfer distribution p∗. The causal model (blue) only has to adapt θX , whereas the anticausal model (red) has
to adapt both its mechanisms. After adaptation, the causal model ends up the closest from the transfer in terms
of KL, as visible in the abstract distribution space. Blue and red balls represent the proximity prior induced by
taking a few steps of SGD from the reference in each parameter space. Convergence rate analysis reveals that
they are spherical functions of the parameter distance, but they get mapped to non-trivial shapes in distribution
space – ellipses in this sketch.

log-likelihood with a step of stochastic gradient (SGD).
Thanks to the separate parameters, the causal model
log-likelihood loss decomposes as

Lcausal(θ→) = E(X,Y )∼p∗ [− log pθ→(X,Y )]

=Ep∗ [− log pθX (X)] + Ep∗
[
− log pθY |X (Y |X)

]
(5)

When p∗ comes from an intervention, Bengio et al.
(2020) observe that the causal model is often faster
to adapt than the anticausal model. Intuitively, this
is because the causal model has to adapt only the
mechanism which was modified by the intervention. On
the other hand, the anticausal model has to adapt both
its mechanisms. In Figure 2, we compare these different
scenarios and the concept of adaptation figuratively.
While appealing, this reasoning is not rigorous, as
sample complexity bounds of SGD typically do not
depend on the number of parameters to update (Bubeck
et al., 2015, Th. 6.2 & 6.3). In the next section,
we formalize and understand this phenomenon in the
light of convergence rates of stochastic optimization
methods.

Distribution Families. We study two of the sim-
plest sub-families of the exponential family (Wainwright
and Jordan, 2008): categorical and linear normal vari-
ables. Their negative log-likelihood is a convex function
of their natural parameter. These families are inter-
esting because the direction is not identifiable from
observational data (Peters et al., 2017, Ch.4) – e.g.
pθ→ and pθ← can model the same set of distributions –
which makes them challenging for causal discovery.

AN OPTIMIZATION PERSPECTIVE One way to for-
malize adaptation speed is to characterize it via the
convergence speed of the stochastic optimization pro-
cedure. An appealing aspect of stochastic optimization
algorithms such as SGD (when only using fresh sam-
ples and running it on the true loss we care about) is
that they come with convergence rate guarantees on
the population risk in machine learning, thus giving us
direct sample complexity results to obtain a specific
generalization error. The convergence rate is an upper
bound on the expected suboptimality after a given num-
ber of iterations. While these rates are about worst
case performance and might also be loose, fortunately,
for convex optimization, they tend to correspond well
to actual empirical performance (Nesterov, 2004). We
can thus use the convergence bounds as theoretical
proxy for the convergence speed. In our experiments,
we also verify empirically that the bounds correlate
well with the observed convergence speed.

Here we provide a classical convergence rate on the
expected suboptimality with Average Stochastic Gra-
dient Descent (ASGD) under convexity and bounded
gradient assumptions. We re-derive this rate in Ap-
pendix B.1 for completeness. This rate applies to
log-likelihood maximization for categorical random
variables (details in B.2). Since the target distribu-
tion is part of the model family, the log-likelihood
suboptimality is equal to the KL-divergence – e.g.
L(θ)− L(θ∗) = DKL(p∗||pθ).
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ASGD. Assume ∀θ, x, ‖∇ log pθ(x)‖ ≤ B. After T
iterations of SGD on (5),

θ(t+1) = θ(t) + γ∇ log pθ(t)(Xt, Yt) (6)

with learning rate γ := c√
T
, starting from θ(0), the

average parameter’s θ̄(T ) = 1
T

∑T−1
t=0 θ(t) suboptimality

is upper bounded by

E [DKL(p∗||pθ̄(T ))] ≤ c−1‖θ(0) − θ∗‖2 + cB2

2
√
T

(7)

where the expectation is taken over the sampling of
T−1 training pointsXt, Yt and θ∗ is the closest solution
to θ(0) in the solution set argminθ L(θ).

For categorical models, B = 2 (see B.2). Consequently,
for a fixed T and with small enough c, the convergence
upper bounds for causal and anticausal models differ
mainly by δ := ‖θ(0) − θ∗‖2.
The bounded gradient assumption of (7) does not ap-
ply to the log-likelihood of normal variables. In Sec-
tion 5.1, we provide an algorithm along with a conver-
gence rate (22) that do apply to this case. Overall both
bounds (7) and (22) carry the same message which can
be summarized by:

The adaptation speed is dominated by
the initial distance

δcausal =
∥∥∥θ(0)
→ − θ∗→

∥∥∥2

(8)

δanticausal =
∥∥∥θ(0)
← − θ∗←

∥∥∥2

. (9)

Other optimization methods. Yang et al. (2016,
Theorem 1) provides a unified convergence rate for
stochastic heavy ball and Nesterov methods that is
similar to (7), where the initial distance is the main
difference between causal and anticausal models. Conse-
quently, our theoretical analysis holds for a larger class
of algorithms than ASGD. More generally, it applies
to any stochastic optimization method whose sample
complexity depends on parameter distance.

4 CATEGORICAL VARIABLES

In this section, both cause and effect come from cate-
gorical distribution. We provide theoretical bounds on
δcausal and δanticausal. We consider different scenarios
to generate reference and transfer data and explain the
consequences of each scenario.

4.1 Definitions

Cause X and effect Y are now two categorical variables
taking values in {1, . . . ,K}. Categorical variables are

Figure 3: Parametrization of categorical models

an exponential family with mean parameters p ∈∆K

the probability vector, and with natural parameter
s ∈ RK – the logits or score parameters such that
pz = esz∑

z′ e
s
z′ . The causal model has parameters sX :=

(sx)x=1...K and sY |X := (sy|x)x,y=1...K . We gather the
causal parameters in the variable θ→ = (sX , sY |X) and
the anticausal parameters in θ← = (sY , sX|Y ) (Fig. 3).
The loss (5) becomes

Lcausal(θ→) = E(X,Y )∼p∗ [− log pθ→(X,Y )] (10)

= Ep∗

[
−sX + log

∑
x

esx − sY |X + log
∑
y

esy|X

]
.

Each mechanism’s stochastic loss is the sum of a linear
function and a softmax function. The softmax function
is convex and 1-Lipschitz, so we can apply rate (7). To
be self-contained, we include details in Appendix B.2.

4.2 Distance after Intervention

In this section, we prove that interventions on the
cause advantage the causal model by a factorK, and we
describe when interventions on the effect will advantage
one model over another.

Intervention on cause X, sX← s∗X . The causal
conditional sY |X is left unchanged, but the effect
marginal sY is modified in a non-trivial way. Con-
sequently the initial distances are

δcausal = ‖sX − s∗X‖2 (11)

δanticausal = ‖sY − s∗Y ‖2 +
∑
y

‖sX|y − s∗X|y‖2 . (12)

The causal model has to updateK parameters, whereas
the anticausal model has to adapt K2 +K parameters.
Therefore the causal model seems to be advantaged
by a factor K. The following proposition – proved
in Appendix C – shows that this is reflected by `2
distances.

Proposition 1. When the intervention happens on
the cause,

δanticausal ≥ Kδcausal . (13)
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Figure 4: Illustration of Proposition 2. c is on the
line joining sY and m := 1

K

∑
x sY |x. When s∗Y is

within the blue ball of radius R centered at c, ∆ ≤ 0
and the causal model is advantaged, otherwise the
anticausal model is advantaged (red area). This is
a surprising counter-example to the adaptation-speed
hypothesis.

Intervention on effect Y , ∀x, sY |x← s∗Y . Cause
and effect become independent. The causal model is
advantaged only if the intervention s∗Y is close enough
from the previous marginal, as formalized by the fol-
lowing proposition:
Proposition 2. When the intervention happens on
the effect

∆ := δcausal − δanticausal

= (K − 1)
(
‖s∗Y − c‖2 −R2

)
(14)

where R2 ≈ KV̂arX [log
∑
y e

sy|X ] and c =

(
∑
x sY |x)−sY
K−1 .

See Figure 4 for an illustration and Appendix C.3
for the exact formula of R and the proof. When the
intervention s∗Y is close enough to c, which depends on
the reference, the causal model is advantaged. If s∗Y is
far from c or if R is small then the anticausal model is
likely to be advantaged.

4.3 Simulating Reference Distributions

To evaluate the fast adaptation criterion, we are going
to work on synthetic data, which raises the question :
from which distribution should we sample p = pθ(0)?
We call this distribution prior. Following the inde-
pendent mechanism assumption, the marginal on the
cause pX and the conditional of effect given cause pY |X
should not contain any information about each other.

Dense Prior. To sample causal mechanisms, a nat-
ural choice is

pX ∼ Dir(1K) and ∀x,pY |x ∼ Dir(1K) (15)

where Dir is the Dirichlet distribution and 1K is the
all-one vector of dimension K. Dir(1K) the uniform
law over the simplex ∆K . This prior leads to the K2
score from the Bayesian network literature (Cooper
and Herskovits, 1991). We call this choice the dense
prior by opposition to the sparse prior introduced next.
This is the choice made in Bengio et al. (2020), as
well as Chalupka et al. (2016). The latter work re-
ports that distributions sampled from this prior exhibit
some asymmetry between X and Y . In Appendix D.1,
we complement their work, explaining how the effect
marginal is likely to be closer from the uniform dis-
tribution than the cause marginal. This asymmetry
means that the causal direction is identifiable from
observational data.

Sparse Prior. To fix this issue, we study an alter-
native prior that is symmetric and ensures that both
cause and effect marginals are sampled from a uniform
prior over ∆K . We sample the causal mechanisms as
follows

pX ∼ Dir(1K) and ∀x,pY |x ∼ Dir(1K /K) . (16)

The 1K /K parameter means that samples will be ap-
proximately sparse, hence the name. We show in
Appendix D.2 that with this sampling scheme, the
joint is sampled from a sparse Dirichlet over ∆K2 :
p(X,Y ) ∼ Dir(1K2 /K). This in turns means that we
can switch the roles of X and Y in (16). The effect
marginal has uniform density over the simplex. In
general, the causal direction is not identifiable from ob-
servational data. In Bayesian Networks literature, this
is known as the Bayesian Dirichlet equivalent uniform
prior (Heckerman et al., 1995).

4.4 Categorical Variables Experiments

Goal. As discussed in Section 4.3, the prior over the
joint distribution on (X,Y ) is going to influence the
behavior of ASGD. We are seeking answers to two
questions:

1. Is the adaptation speed positively correlated with
the initial distance, as suggested by the upper
bound (7) on the convergence rate of ASGD?

2. Is there a clear difference in adaptation speed
between causal and anticausal models?

Data. We consider categorical variables with K =
20. For each initialization method, we sample 100
different reference joint distributions. For each of these
distributions, we sample an intervention by sampling
a probability vector q uniformly from ∆K . If the
intervention is on the cause, we plug q instead of pX .
If the intervention is on the effect, we redefine pY |x =
q,∀x.
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Figure 5: Experimental results on categorical data. Each plot is captioned with the prior and the
intervention considered. Scatter plots are showing the positive correlation between the KL after 100 steps of
SGD and the initial parameter distance. Each point represent one of 100 synthetic pairs (p(0),p∗). Training
curves show the average KL (solid line) and the (5,95) percentiles (shaded) over 100 runs. Remark how all
models start from the same initial KL, but they converge at different speeds.

Models. We are comparing causal and anticausal
models adaptation speed. We also report results for
a model of the joint pX,Y = softargmax(sX,Y ) as a
reference model. We expect its results to be in between
the performance of the causal and anticausal model as
it expresses no prior over the direction. We optimize all
models with Averaged SGD. In each iteration of SGD
we get one fresh sample from the transfer distribution.
For each model and each setting, we tune the (constant)
learning rate so as to optimize the likelihood after seeing
K2

4 = 100 samples, to explore the few samples regime.
We present results in Figure 5

Dense prior. When the intervention is on the cause,
the causal model is much closer from its optimum: in
Fig. 5a the blue cluster is on the left of the scatter plots.
This is well correlated with faster adaptation (Fig. 5b).
On the contrary, when the intervention is on the effect,
the anticausal model starts closer from its optimum
and it converges faster (Fig. 5d, 5e). We can interpret
this result in light of Proposition 2. In Appendix C.3,
we explain why the radius R is small under the dense
prior. As a result, s∗Y is mostly sampled outside of
the ball of radius R, consequently the anticausal model
is advantaged. Overall, there is a wider gap between
models in Fig. 5b than in Fig. 5e. Consequently, if we
take a balanced average of a few interventions on the

cause and a few interventions on the effect, the causal
model remains faster (details in Appendix C.4).

Sparse prior. When the intervention is on the cause,
the causal model has a slight advantage (Fig. 5c). When
the intervention is on the effect, no model has a set ad-
vantage (Fig. 5f), but the sparsity induces much higher
KL values, as explained in Appendix D.3. This KL
explosion drowns the signal coming from the cause in-
tervention, calling for further algorithmic developments
– such as inferring the intervention, as explored by Ke
et al. (2019).

5 MULTIVARIATE NORMAL
VARIABLES

In this section, we analyze the case of two multivariate
normal variables with a linear relationship. Cause X
and effect Y are sampled from the causal model

X ∼ N (µX ,ΣX) (17)
Y |X ∼ N (AX + a,ΣY |X) (18)

with mean parameters µX ,a ∈ RK and ΣX ,A,ΣY |X ∈
RK×K . This parametrization is the most intuitive but
it is unfortunately not appropriate to get convergence
rates. We are going to introduce another parametriza-
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tion along with an algorithm and a convergence rate
(Sec. 5.1), before providing empirical results (Sec. 5.2).

5.1 Optimization Analysis

The negative log-likelihood of model (17) is notoriously
non-convex. This is problematic for convergence results.
For simplicity, we focus in this section on the simple
marginal mechanism with mean parameters µ,Σ. We
detail the full model in Appendix F. If we use the
natural parameters η = Σ−1µ and Λ = Σ−1 (precision
matrix), the negative log-likelihood is convex

E
[
− log p(η,Λ)(X)

]
(19)

=
1

2

(
E
[
Tr(XX>Λ)− 2X>η

]
+ η>Λ−1η − log |Λ|

)
.

This objective is composed of a pleasant stochastic lin-
ear term, and a difficult deterministic barrier objective
which goes to infinity when Λ → 0. This barrier is
composed of a matrix inverse and a log determinant.
The assumptions of Lipschitz or gradient-Lipschitz re-
quired to get SGD convergence do not hold for the
barrier. While the empirical version of (19) has a
close formed formula for its global minimum, quite
surprisingly, gradient-based optimization of the normal
likelihood is difficult to analyze. Convex optimization
typically deals with non-smooth terms by introducing
proximal operators (Parikh et al., 2014). However this
barrier term is too complex to get an analytic formula
for the proximal operator. We transform it into a more
convenient form by introducing L, the lower triangular
Cholesky factor of the precision matrix Λ = LLT , and
ζ = L−1η = L>µ. Then (19) simplifies into

E
[
− log p(ζ,L)(X)

]
(20)

=
1

2
E
[∥∥L>X − ζ∥∥2

]
−
∑
i

logLi,i .

We will refer to (ζ,L) as Cholesky parameters. This
objective is more suitable to gradient based optimiza-
tion with a simple proximal operator, as detailed in the
next section. We provide all details about the causal
model in Appendix F.

Stochastic Proximal Gradient Algorithm We
want to minimize the sum of a stochastic convex
smooth function fX(θ) := 1

2

∥∥L>X − ζ∥∥2 and convex
non-smooth regularizer g(θ) = −∑i logLi,i. This is
exactly the goal of the stochastic proximal gradient
(Duchi et al., 2010) update

θt+1 = argmin
θ

g(θ) +
1

2γt
‖θt − γt∇fXt(θt)− θ‖2 (21)

where γt is the step-size and Xt is randomly sampled.
For objective (20), the proximal gradient update has a

closed form solution that amounts to updating all pa-
rameters with the stochastic gradient of the quadratic
term, then updating the diagonal elements of L with
the mapping x 7→ 1

2 (x+
√
x2 + 4γ), thus ensuring that

they remain strictly positive (details in Appendix E.2).

Convergence Rate. We assume that stochastic gra-
dients are almost-surely B-Lipschitz. B is known as the
smoothness constant. We show in Appendix E.1 that
running the stochastic proximal gradient algorithm
with step size γt = γ

3B
√
T

where γ ≤ 1, for T iterations
guarantees

E [DKL(p∗||pθ̄(T ))]

≤ 3B‖θ(0) − θ∗‖2
γ
√
T

+
DKL(p∗||pθ(0))

T
. (22)

Analysis. The term KL(p∗||p
θ(0)

)/T is equal for causal
and anticausal models because we assume p(0)

θ→
= p

(0)
θ←

.
For normal variables, B depends only on the data
and is a priori equal for both models (Appendix E.3).
Similarly to (7), both models’ rates differ mainly by
δ = ‖θ(0) − θ∗‖2.
When the intervention is on the cause, we prove in
Appendix F.5 that the anticausal model is farther away
from its optimum in the natural parametrization

δnatural
anticausal ≥ δnatural

causal . (23)

Unfortunately, in the Cholesky parametrization (Fig. 6,
2nd column), or when the intervention is on the effect
(Fig. 6, bottom row),we observe empirically that there
is no such hard guarantee, although the causal distance
tends to be smaller than the anticausal distance.

5.2 Experiments

Similarly to categorical variables, we need to decide on
a prior over reference and transfer distributions. This
choice is informed by two criteria. First the indepen-
dent mechanism principle which states that we should
sample θX independently of θY |X . Second we want θY
to have approximately the same distribution as θX –
e.g. we want the distribution to be approximately sym-
metric so that we cannot identify the direction from
observational data. These considerations lead us to
a flavor of normal-Wishart prior (Geiger et al., 2002)
described in Appendix G.

We sample 100 random joint distributions from this
prior, and for each distribution we sample a random
intervention on the cause, and a random intervention
on the effect. We then run the stochastic proximal gra-
dient on objective (20). We report results in Figure 6.
Similarly to the categorical case, when the intervention
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Figure 6: Multivariate Normal Variables with dimension K = 10. Row 1 and 2 correspond to interventions
on cause and effect respectively. Column 1 & 2: scatter plot δanticausal vs δcausal respectively in natural and Cholesky
parametrization. The grey diagonal is the identity line. We observe a natural tendency for δanticausal > δcausal
(points above the grey diagonal), but this is systematically true only for the natural distance when the intervention
is on the cause. Column 3 & 4: same plot as in Figure 5. Once again we observe a correlation between initial
distance and optimization speed. When the intervention is on the cause, the causal model is advantaged. When
the intervention is on the effect, both curves overlap.

is on the cause, the causal model is advantaged by a
slight margin (upper right figure). When the interven-
tion is on the effect both models are learning at the
same speed (bottom right figure).

Conclusion

We provided a first theoretical analysis of the adapta-
tion speed in two-variables cause-effect SCMs under
localized interventions for categorical and normal data.
Convergence guarantees for stochastic optimization on
the true population log-likelihood indicates that the
adaptation speed is related to the distance between
initial point and optimum in parameter space. We veri-
fied this correlation empirically. We proved analytically
that this distance is lower for the causal model than for
the anticausal model when the intervention is on the
cause variable. This explains a surprising phenomenon:
while both models start with the same suboptimality,
one learns faster than the other. When the interven-
tion is on the effect variable, we highlighted examples
showing that either model can be advantaged. This ob-
servation challenges the intuition that the causal model
should be the fastest to adapt, and it raises new ques-
tions for the approach of Bengio et al. (2020), such as:
are there practical situations where the fastest-to-adapt

heuristic is useful ? On a more theoretical note, is it
possible to characterize the adaptation speed behavior
for more general families of distributions?
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A SOURCE CODE

Source code for all experiments is hosted at https://github.com/remilepriol/causal-adaptation-speed.

B CATEGORICAL OPTIMIZATION

In this section we prove a convergence rate of ASGD that applies to the categorical loss, and we show that the
constants involved in this rate are the same for both causal and anticausal models.

B.1 Convergence of ASGD with Fixed Step-Size

Here we derive a classical convergence rate of Average SGD. This result is standard ; we include it to be
self-contained. The objective is

min
θ
F (θ) = Ei [f(θ, i)] . (24)

Theorem B.1. If each fi(θ) = f(θ, i) has bounded gradient B, then after T steps of SGD with step-size γ = c√
T
,

starting from θ0, the expected sub-optimality verifies

E
[
F (θ̄T )− F (θ∗)

]
≤ 1

2c
√
T
‖θ0 − θ∗‖2 +

cB2

2
√
T

(25)

where θ̄T = 1
T

∑
t θt.

Proof. First we relate the `2 distance to optimum at step t+ 1 with the one at step t :

‖θt+1 − θ∗‖2

= ‖θt − θ∗‖2 − 2γ 〈f ′i(θt), θt − θ∗〉+ γ2‖f ′i(θt)‖2

≤ ‖θt − θ∗‖2 − 2γ 〈f ′i(θt), θt − θ∗〉+ γ2B2 .

By convexity of fi and rearranging the terms we get

2γ(fi(θt)− fi(θ∗)) ≤ 2γ 〈f ′i(θt), θt − θ∗〉
≤ ‖θt − θ∗‖2 − ‖θt+1 − θ∗‖2 + γ2B2.

Now we take the expectation, sum up both sides for T iterations and divide by 2Tγ to get

1

T

T∑
i=1

E [F (θt)− F (θ∗)]

≤ 1

2γT

(
E
[
‖θ0 − θ∗‖2

]
− E

[
‖θT+1 − θ∗‖2

])
+
γB2

2

≤ 1

2γT
‖θ0 − θ∗‖2 +

γB2

2

Finally, we apply Jensen inequality to F in θ̄T = 1
T

∑
t θt to get the final result.

B.2 Categorical Loss Properties

We are now going to verify that assumptions of the rate (7) apply to the negative log-likelihood loss for the
categorical distribution. This loss is standard and it’s properties are well-known, but we review them here to be
self-contained.

Each mechanism has the same form of negative log-likelihood, with the same kind of stochastic gradients. The
total loss is a sum over mechanisms, and the total stochastic gradient is a concatenation of each mechanisms
stochastic gradient. To apply rate 7, we can either apply it separately on each mechanism, either apply to the

https://github.com/remilepriol/causal-adaptation-speed
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whole. Both path lead to the same result. In the end, we simply have to check that this loss is convex, and has
bounded gradients for all z. The random functions coming from sampling Z are

fz(s) = −sz + log(
∑
z′

esz′ ) (26)

This function is the softmax – or logsumexp – function minus a stochastic linear term.

Convexity We are going to show that it is convex but not strongly convex because it becomes flat for large
score values. Its derivative is

∇fz(s) = −ez + p . (27)

where ez is the z-th canonical basis element and p is the output of the softargmax function taken on sZ . The
Hessian is the same for every z.

∇2fz(s) = diag(p)− pp> . (28)

We observe that for any vector v,

v>∇2fz(s)v =
∑
z

pzv
2
z −

(∑
z

pzvz

)2

= VarZ∼p[vZ ] ≥ 0 (29)

which means that the logsumexp is convex. When s0 tends toward positive infinity and the other components
remain constant, p tends toward a Dirac on the 0-th component. Then (29) is 0 for all v, so the logsumexp is not
strongly convex.

Bounded Gradients. The gradient norm is

‖∇fz(s)‖ = ‖p− ez‖ (30)
. (31)

This norm is maximized for p = ez′ ,∀z′ 6= z. The maximum is equal to
√

2. If there are d independent mechanisms
(for d variables in the graph), then the total stochastic gradient which is a concatenation of all gradients has a
norm bounded by B =

√
2d. In our case of cause-effect models, d = 2 and and the gradients are bounded by

B = 2, or in other words, all the fz are 2-Lipschitz.

This bound is the same for causal and anticausal models. It depends on the part of space where p is going to
live. Assuming that it is going to live in most of the space for both directed models, both loss will have the same
Lipschitz constants in practice.

Thanks to these properties, the sample complexity of pθ→ and pθ← are bounded by (7). The difference in
adaptation speed between causal and anticausal models is characterized by the distance in parameter space.

C CATEGORICAL ANALYSIS

In this section, we prove relationships between parameter distances induced by interventions between the causal
and anticausal models. First we prove two useful lemmas. Then we establish that the causal model dominates
the anticausal model by a factor K when the intervention is on the cause. Finally we show that no model has a
set advantage when the intervention bears on the effect.

The logits or scores s live in RK . They have one additional degree of freedom compared to the probability p.
More specifically, the softargmax is invariant by translations along the vector 1 = (1, . . . , 1). In other words, all
scores {s+ λ1 |∀λ ∈ R} are equivalent. Scores which move by following the gradient of this loss will remain in
the same affine hyperplane orthogonal to 1. To ensure that the distances we measure are meaningful, we project
all logits in the hyperplane such that

∑
z sz = 0, by subtracting their mean.

Definition C.1 (Mean-zero score). A score vector s is mean-zero iff
∑
z sz = 0.
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C.1 Switching Direction

In this section we are going to prove a few useful results relating cause and anticausal models. We know the
causal parameters X → Y , and we want to find the corresponding X ← Y model, e.g. express sY , sX|Y as a
function of sX , sY |X . This will help us to find a relationship between δcausal and δanticausal. We first need to
define a few useful variables
Definition C.2 (Average conditional score vectors). For any x or y, define

m(y) :=
1

K

∑
x

sy|x, n(x) :=
1

K

∑
y

sx|y . (32)

Definition C.3 (Conditional log-partition function).

A(x) = log
∑
y

esy|x (33)

With these variables, we can express the reverse conditional score from the causal parameters.
Lemma C.4 (Anticausal conditional score). Let sy, sx be marginal scores, and sy|x, sx|y be conditional scores.
Then

sx|y = sx + (sy|x −m(y))− (A(x)− α) , (34)

where α = 1
K

∑
xA(x).

Proof. Let’s apply Bayes rule to find the conditional probability mass function

p(x|y) ∝ p(y|x)p(x)

∝ exp
(
sy|x −A(x) + sx

)
where A(x) is the log-partition function of p(y|x). Taking the logarithm,

sx|y = sx + sy|x −A(x) + C(y) (35)

where C(y) is a constant defined such that
∑
x sx|y = 0 (see Definition C.1). We take the sum of (35) over x to

find ∑
x

sx+
∑
x

sy|x−
∑
x

A(x)+ KC(y)

= 0+ Km(y)+ Kα+ KC(y)

which simplifies into

C(y) = −m(y)− α

We plug this in (35) to conclude the proof.

We conclude this section with an identity showing that conditional logits are equally close from their averages in
both directions.
Lemma C.5. For any x and y we have

sx|y − n(x) = sy|x −m(y) . (36)

where n(x) := 1
K

∑
y sx|y and m(y) := 1

K

∑
x sy|x.

Proof. We apply Lemma C.4 with the roles of X and Y inverted to express sy|x as a function of the anti causal
parameters

sy|x = sy + (sx|y − n(x))− (B(y)− β) , (37)
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where B(y) = log
∑
x e

sy|x and β = 1
K

∑
y B(y). We can add (34) and (37) to get rid of the conditional scores

sx − n(x)−A(x) + α = −(sy −m(y)−B(y) + β),

for all x, y. The left hand side is constant in y whereas the right hand side is constant in x. Thus both sides are
constants with respect to both x and y. In particular they are equal to their average

∀x, sx − n(x)−A(x) + α =
1

K

∑
x′

(sx′ − n(x′))

− 1

K

∑
x′

A(x′) + α

= 0− 0− α+ α

= 0 .

We plug this equality into (34) to prove the lemma.

C.2 Intervention on Cause

In this section, we analyze the relationship between δcausal and δanticausal after an intervention on the cause.

Proposition 1. If an intervention happens on the cause X then we have

δanticausal ≥ Kδcausal , (38)

where δcausal = ‖sX − s∗X‖2, and δanticausal = ‖sY − s∗Y ‖2 +
∑
y ‖sX|y − s∗X|y‖2

Proof. Given that s∗y|x = sy|x,m∗ = m, A∗ = A and α∗ = α, Lemma C.4 tells us that the anticausal conditional
s∗X|Y verifies

s∗x|y − s∗x = (sy|x −m(y))− (A(x)− α) = sx|y − sx
=⇒ sx|y − s∗x|y = sx − s∗x .

The distance between models before and after intervention are

δcausal = ‖sX − s∗X‖2

δanticausal = ‖sY − s∗Y ‖2 +
∑
y

‖sX|y − s∗X|y‖2

≥ 0 +
∑
y

∑
x

(sx − s∗x)2 = K‖sX − s∗X‖2 .

In conclusion,
δanticausal ≥ Kδcausal . (39)

C.3 Intervention on Effect

The following proposition shows that when the intervention is on the effect, the causal model is advantaged only
when the new effect marginal s∗Y is close enough from the previous marginal.

Proposition 2 When an intervention happens on the effect

∆ : = δcausal − δanticausal (40)

= (K − 1)
(
‖s∗Y − c‖2 −R2

)
(41)
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(a) m is a convex combination of c and sY . The blue
bubble is the sub-level set 0 of ∆. It is a circle of radius
R centered at c. Within this circle, δcausal ≤ δanticausal
the causal model is advantaged. Outside this circle,
δcausal ≥ δanticausal the anticausal model is advantaged.

dense
R2

dense
||s *

Y c||2
sparse

R2
sparse

||s *
Y c||2

100

101

102

103

K2

1

(b) Box plots for the radius R2 and deviations ‖s∗
Y −c‖2

for K = 20 with the dense prior (left) and the sparse
prior (right). The y-axis is logarithmic. Red lines show
analytical estimates for the expected radius.

Figure 7: Behavior of the hyper-sphere within which the causal model is advantaged, as presented in Proposition 2.

where the score vector c and the scalar R are defined as

c =
Km− sY
K − 1

(42)

(K − 1)R2 =K‖n− sX‖2 + (K − 1)‖c‖2 (43)

+ ‖sY ‖2 −K‖m‖2

with m and n as in Definition C.2.

We illustrate the relationship between m, c, sY and R in Figure 7a.

Proof. First we expand the causal distance with a bias variance decomposition

δcausal =
∑
x

‖sY |x − s∗Y ‖2

=
∑
x,y

(sy|x −m(y) +m(y)− s∗y)2

=
∑
x,y

(sy|x −m(y))2 +K
∑
y

(m(y)− s∗y)2

+ 2
∑
y

(m(y)− s∗y)
∑
x

(sy|x −m(y))︸ ︷︷ ︸
=0

. (44)

Given that s∗X|y = sX , we can decompose the anticausal distance similarly

δanticausal = ‖sY − s∗Y ‖2 +
∑
y

‖sX|y − s∗X|y‖2

= ‖sY − s∗Y ‖2 +
∑
x,y

(sx|y − n(x) + n(x)− sx)2

= ‖sY − s∗Y ‖2 +
∑
x,y

(sx|y − n(x))2

+K
∑
x

(n(x)− sx)2 . (45)
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Thanks to Lemma C.5, the variance of conditional score vectors (in blue) in (44) and (45) are equal∑
x,y

(sx|y − n(x))2 =
∑
x,y

(sy|x −m(y))2 .

What remains in the difference is the quadratic form

∆ = δcausal − δanticausal

= K‖m− s∗Y ‖2 −K‖n− sX‖2 − ‖sY − s∗Y ‖2 ,

which we can expand to highlight the role of s∗Y as

∆ =(K − 1)‖s∗Y ‖2 − 2〈s∗Y ,Km− sY 〉
+K‖m‖2 − ‖sY ‖2 −K‖n− sX‖2‖2

=(K − 1)‖s∗Y − c‖2 − (K − 1)‖c‖2

+K‖m‖2 − ‖sY ‖2 −K‖n− sX‖2

where c appears as a non-convex interpolation of m and sY , c = Km−sY
K−1 . Define R2 to conclude the proof.

Empirical estimates of the radius. We report values of R2 and ‖s∗Y − c‖
2 observed for the dense and sparse

priors in Figure 7b. For dense prior radii are much smaller than deviations, whereas for the sparse prior they have
similar magnitude. This explains why the anticausal model systematically adapts faster when the intervention is
on the effect and the prior is dense. We also observe that radii (and deviations) are much greater for the sparse
prior than for the dense prior. In the following paragraph we provide some clues to explain this behaviour.

As illustrated by Figure 7a, m is a convex combination of c and sY : m = (K−1)c+sY
K so by convexity of ‖.‖2,

K − 1

K
‖c‖2 +

1

K
‖sY ‖2 ≥ ‖m‖2

=⇒ (K − 1)‖c‖2 + ‖sY ‖2 −K‖m‖2 ≥ 0

=⇒ R2 ≥ ‖n− sX‖2 .

As K grows larger, this inequality will get closer and closer to an equality. Indeed, m will get closer and closer to
c and we will end up with

K − 1

K
‖c‖2 +

1

K
‖sY ‖2 − ‖m‖2 � ‖n− sX‖2 ≈ R2 .

Before proceeding, let us prove a simple proposition that is a direct consequence of Lemma C.4.

Proposition 3. The squared distance between marginal score and reverse average conditional is equal to the
empirical variance of the conditional log-partition function

‖sX − n‖2 = KV̂arX [A(X)] . (46)

Proof. Taking the average of Lemma C.4 over y yields

1

K

∑
y

sx|y = sx − (A(x)− α) +
1

K

∑
y

(sy|x −m(y))

n(x) = sx − (A(x)− α) ,

where we used the definition of n(x) and the mean-zero scores. Reordering terms gives

sx − n(x) = A(x)− α (47)

Recall that α is the average of A(x) over x. Squaring this equation and summing over x concludes the proof.
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Using this proposition we get that

R2 ≈ ‖sX − n‖2

= KV̂arX [A(X)]

= KV̂arX [log
∑
y

esy|X ] .

Conditional scores sy|x are taking much greater values with much higher variance under the sparse prior than
under the dense prior. To be clear, we sample independently pseudo-scores s̃y|x from exp-gamma laws, and we
subtract their mean to ensure that they sum to 0 (Definition C.1). sy|x = s̃y|x − 1

K

∑
y′ s̃y′|x. This means that

log
∑
y

esy|X = log
∑
y

es̃y|X − 1

K

∑
y

s̃y|x

If we make the approximation that the logsumexp term and the average term are independent then

V̂arX [log
∑
y

esy|X ]

≈ Varsy|x [log
∑
y

esy|x ]

≈ Vars̃y|x [log
∑
y

es̃y|X ] +
1

K
Vars̃y|x [

∑
y

s̃y|x]

= ψ(1)(Kλ) +
1

K
ψ(1)(λ)

where this last step uses the formula for the variance of an exp-gamma variable twice. The variance of an
exponential gamma with shape parameter λ is ψ(1)(λ) where ψ(1) is the trigamma function. The log-sum-exp of
K independent exp-gamma with scale and shape parameters (λ, ζ) is another exp-gamma with scale and shape
parameters (Kλ, ζ). Finally we get the following approximation for the squared radius

R2 ≈ Kψ(1)(Kλ) + ψ(1)(λ) .

The dense prior uses a shape parameter λ = 1 while the sparse prior uses a shape parameter λ = 1
K . We use two

approximations of the trigamma function: ψ(1)( 1
K ) ≈ K2 + π2/6 and ψ(1)(K) ≈ 1

K when K ≥ 10.

R2
dense ≈ Kψ(1)(K) + ψ(1)(1)

≈ 1 + π2/6 = O(1)

R2
sparse ≈ Kψ(1)(1) + ψ(1)(

1

K
)

≈ K2 +Kπ2/6 + π2/6 = O(K2) .

In other words for dense prior the radius grows linearly with the dimension K. We report these estimates along
with real data in Figure 7b.

Independent Special Case. if X is independent of Y in the reference distribution – e.g. ∀x, y,p(x, y) =
p(x)p(y) – then ∀x, y,

sx = sx|y = n(x)

sy = sy|x = m(y)

Plugging these equalities into Proposition 2 yields

c = m = sY and R = 0

=⇒ ∆ = (K − 1)‖s∗Y − sY ‖2 ≥ 0

which means that the anticausal model is advantaged δcausal ≥ δanticausal. This is actually predictable from a
simple parameter counting argument. When the reference distribution is made of independent distributions,
the anticausal conditional mechanism is already optimal sx = sx|y. The anticausal model only has to adapt its
marginal mechanism sY of size K. On contrary, the causal model only has to adapt its conditional mechanism
sy|x 6= sy of size K2. Overall the causal model has to adapt K times more parameters than the anticausal model.
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Figure 8: Categorical dense prior with K=20. Row 1: training curves. Solid lines are average KL over 100
runs. We tune hyper-parameters to minimize the average KL of each model at the black vertical dashed bar
(t=100). Shaded areas are between (5,95) quantiles. Note that all models start from the same initial KL, but they
converge at different speeds. Row 2: scatter plot of the KL at t=100 vs. initial distance. Note that the initial
distance is well correlated with the KL after 100 steps of SGD. Columns: we report results for interventions on
the cause on column 1, the effect on column 2, and an aggregation of both on column 3. We aggregate results by
taking the average of 5 cause interventions and 5 effect interventions as one new trajectory. In total we have 20
such trajectories per model. We are reporting this result because the meta-learning criterion suggested by Bengio
et al. (2020) is akin to the average adaptation speed over a small set of interventions.

C.4 Other Empirical Results for Cause and Effect Interventions

In this section, we present additional results for categorical variables. In Figure 8, compared to the main text, we
add what happens with the dense prior when we average learning curves (pooled) from 5 interventions on the
cause and 5 interventions on the effect : on average the causal model adapts the fastest. In Figure 9, compared to
the main text we show what happens with the sparse prior, both in terms of distance (scatter plots) and in terms
of pooled results. Because the intervention on the effect creates huge values of the KL, there is no set advantage
for any of the models.

C.5 Single Mechanism Intervention

If only sY |x0
changes, for some x0, then from Lemma C.4 we get the following equality

δanticausal =
K − 1

K
δcausal + ‖s∗Y − sY ‖2

+ (K − 1)(A∗(x0)−A(x0))2 . (48)

The causal and anticausal distances seem to be on the same scale, with a multiplicative factor K−1
K / 1 and a

positive additive factor. This is interesting because the sparsity argument holds: the causal model needs to change
K parameters whereas the anticausal model needs to change K2 +K parameters. That means we could expect
an advantage by a factor K for the causal model, similarly to when the intervention is on the cause. However
(48) tells another story: without further assumptions, it seems like both distances will have the same scale.

Experiments. For this kind of intervention to be detectable, we need to intervene on x0 such that p(x0) is
quite large. To ensure this in our experiments, we pick x0 = argmaxx p(x). We report results on dense and sparse
priors in Figure 10. We observe no significant advantage for the causal model, in spite of the parameter counting
prediction.
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Figure 9: Categorical sparse prior with K=20. Column 1: intervention on the cause. The causal model
starts closer from optimum and adapts slightly faster than others. Column 2: intervention on the effect. All
models have the same initial distance and the same objective value. However the KL value is around 10. This is
10 times larger than when the intervention is on the cause. Column 3: we take the average of 5 effect and 5 cause
interventions. The effect dominates this average because it is much larger. As a result there is no signal.
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Figure 10: Single mechanism intervention with K=20. Two first rows: Dense prior. The only model to be
slightly advantaged is the joint model. Two last rows: Sparse prior. This time there is a slight advantage for the
causal model which performs comparably to the joint model. Overall the optimization is hard in both settings,
since we are observing only K2 samples for models with O(K2) parameters. The KL barely decreases.
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K 2 3 4 5 6 7 8 9 10 11 12 13 14
error .4 .2 .1 .07 .03 .01 .005 .002 .0007 .0003 7e-5 3e-5 4e-6

Table 1: Estimation of the Bayes error under the dense prior assumption for increasing categorical variables
dimension K. We estimated these numbers by sampling one million joint distributions for each K. We report 1
significant figure.

D CATEGORICAL PRIORS

In this section we study the dense and sparse prior described in the main paper.

D.1 Causal Direction is Identifiable under the Dense Prior

Chalupka et al. (2016) study the prediction of causal direction from observational data under the dense prior
assumption. The causal direction X → Y induces a certain prior over joint distributions π(p| →). The anticausal
direction X ← Y induces another one π(p| ←). The Bayes classifier is predicting → if

log π(→ |p)− log π(← |p) > 0 , (49)

and← otherwise. Under the dense prior assumption, this classifier makes an error of approximately 0.4 for K = 2,
which decreases exponentially to 0.001 for K = 10. We reproduced their setting and report the error of the
optimal classifier in Table 1 for varying K. In other words the dense prior induce very asymmetric distributions
which makes the causal direction identifiable.

Is this Bayes classifier easy to estimate ? It turns out that under the dense prior, the criterion (49) can be
simplified into the following criterion

DKL(u||pX)−DKL(u||pY ) > 0 (50)

where u := 1 /K is the uniform probability vector. The proof is left as an exercize to the reader. If (50) is
positive, Bayes predicts that the cause is X, otherwise Y is the cause. In words, whichever variable has the most
uniform marginal is the effect. This simple rule is optimal given the prior assumption (and if both directions are
equally likely). We can understand it from a concentration of measure perspective. The effect marginal is written
as a sum of quasi independent uniform variables

p(y) =
∑
x

p(y|x)p(x) (51)

which ends up close from the uniform vector.

D.2 Joint Distribution with Sparse Prior

The following theorem shows how a Dirichlet prior over joint distributions cx,y = p(x, y) is equal to independent
Dirichlet priors over marginal ax = p(x) and conditional by|x = p(y|x) probability mass functions. By applying
this theorem, we find that the sparse prior is equivalent to Dir( 1

K 1K2).
Theorem D.1 (Dirichlet and Factorization). Let c be a random square matrix of dimension K. Let’s define a
as the random vector obtained by summing columns of c, and b as a copy of c with rows normalized so that they
sum to 1. ∀(i, j) ∈ {1, . . . ,K}2

ai =
∑
j

ci,j (52)

bj|i =
ci,j
ai

. (53)

Let γ be a positive square matrix of parameters. The following equivalence holds

c ∼ Dir(γ) ⇐⇒


a ∼ Dir(

∑
i γi)

b:|i ∼ Dir(γi,:),∀i
a |= b:|i |= b:|i′ ,∀i 6= i′

. (54)
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Proof. First let’s remark that the right side of (54) is entirely characterizing the joint distribution on (a, b),
and that the relationship between c and (a, b) is a bijection with reverse ci,j = bj|iai. This means that the
equivalence (54) is an equality between distributions. This means that we can prove the forward implication and
the converse will hold automatically.

If c ∼ Dir(γ), then there exist K2 independent Gamma variables c̃i,j ∼ Γ(γi,j , 1),∀i, j such that

c =
c̃

S
where S =

∑
i,j

c̃i,j . (55)

We know from properties of the Gamma distribution that c is independent of S. Now let’s define ãi :=
∑
j c̃i,j .

This definition has three consequences. First ãi is a sum of independent gammas, so it is a gamma with parameters
(αi :=

∑
j γi,j , 1). Second S =

∑
i ãi. Third a = ã

S is independent of S and is a Dirichlet with parameter vector
α =

∑
j γ:,j .

That was for the marginal. Now for the conditional,

bj|i =
ci,j
ai

=
c̃i,j/S

ãi/S
=
c̃i,j
ãi

. (56)

Again from properties of the Gamma distribution, b:|i |= ãi,∀i, and b:|i ∼ Dir(γi,:). Each of the conditional b:|i
is defined with independent gammas, so we also have the independence between conditionals. We verified all
properties of the right side of (54), which concludes the proof.

D.3 Categorical Sparse Prior Explosion

In this section we explain why the KL takes large values with sparse prior and effect intervention.

On one hand the sparse prior samples probability vectors which are close from being Dirac. On the other hand
the effect intervention creates an outer product between two samples drawn uniformly from the simplex Dir(1).

For instance, for the uniform probability vector u = 1
K2 1 ∈∆K2 and an almost Dirac p = (1− ε)e1 + εu

DKL(u||p) ∈ Θ(log(
1

ε
))

where ε is a small value. As we increase K, the sparse prior Dir(1K2 /K) becomes more sparse. Conceptually,
the value of ε decreases, and the value of DKL(u||p) explodes. This is why we observe high KL values for sparse
prior and effect intervention. Empirically, these values also increase with K.

E NORMAL OPTIMIZATION

In this Section we adapt the stochastic composite mirror-prox algorithm to our setting of unbounded multivariate
normal optimization. First we describe the algorithm and prove a novel convergence rate that applies to our
setting. Then we explicit the update formulas for the normal log-likelihood loss with Cholesky parameters. Finally
we prove that worst case constants appearing in the rate are equal for both causal and anticausal models.

E.1 Stochastic Composite Mirror-Prox

We want to minimize the composite objective

F (θ) = Ei [f(θ, i)] + g(θ) .

For simplicity we denote f(θ, i) by fi(θ) and f(θ) = Ei [fi(θ)]. We assume that fi is convex, ∇fi is L-Lipschitz
and g is a convex function. The stochastic mirror-prox algorithm update rule at time t is

νt = θt+1 − γtf ′i(θt) (57)

θt+1 = argmin
θ

{
g(θ) +

1

γt
Bh(θ, νt)

}
(58)



An Analysis of the Adaptation Speed of Causal Models

where fi is sampled randomly. Bh(x, y) = h(x)−h(y)− < h′(y), x−y > denotes the Bregman divergence between
x and y induced by the convex function h and we have ‖Bh(x, y)‖ ≥ α

2 ‖x− y‖2. When we set h(x) = 1/2‖x‖2,
we recover something called the proximal stochastic gradient method (Duchi and Singer, 2009), also known as
Perturbed proximal gradient algorithm (Atchadé et al., 2017). This last citation in particular has hypothesis very
close to ours.

E.1.1 Convergence Rate

The following Theorem is a mild modification of the Theorem 8 in (Duchi et al., 2010). Our result is different in
2 ways. First, we remove the boundedness assumption for the Bregman divergence throughout the trajectory
i.e. Bh(θ∗, θt) ≤ D for all t. Second, we replace the fi B-Lipschitz continuous assumption by ∇fi B-Lipschitz
continuous. We need this last modification for the result to hold on fi quadratic.

First we prove the following lemma which is a modification of Lemma 1 in (Duchi et al., 2010).
Lemma E.1. With f convex and B-smooth, g convex, and γ ≤ α

3B , at iteration t, if we sample i, we have:

γ {fi(θt) + g(θt+1)− F (θ∗)} ≤Bh(θ∗, θt)− Bh(θ∗, θt+1)

+ γ {fi(θt)− fi(θt+1)} .

Proof. We have the following sequence of inequality

γ
(
fi(θt) + g(θt+1)− F (θ∗)

)
≤ γ 〈θt − θ∗, f ′i(θt)〉+ γ 〈θt+1 − θ∗, ∂gt(θt)〉
≤ Bh(θ∗, θt)− Bh(θ∗, θt+1)

− Bh(θt+1, θt) + γ 〈θt − θt+1, f
′
i(θt)〉

≤ Bh(θ∗, θt)− Bh(θ∗, θt+1)

− Bh(θt+1, θt) +
Bγ

2
‖θt − θt+1‖2

+ γ
(
fi(θt)− fi(θt+1)

)

where the first inequality comes from convexity of fi and g,the second inequality comes from Eq.(6) of lemma
1 in (Duchi et al., 2010), and the third inequality comes from the smoothness of fi. By γ ≤ α

3L , the term
−Bh(θt+1, θt) + Bγ

2 ‖θt − θt+1‖2 is negative : we can drop this term and get the required result. Note that ∂g is a
subgradient of g.

Theorem E.2. Given the above assumptions for fi and g, after T iterations of the stochastic mirror prox
algorithm with γ = c√

T
, (c ≤ α

3B ), we have

E
[
F (θ̄)− F (θ∗)

]
≤ Bh(θ∗, θ0)

c
√
T

+
(F (θ0)− F (θ∗))

T
.

Proof. The proof is similar to the proof of the Theorem 8 in (Duchi et al., 2010) with some modifications. Take
the expectation of lemma E.1 with respect to the samples (iu)u≤t

E
[
γ
(
f(θt) + g(θt+1)− F (θ∗)

)]
≤ E

[
Bh(θ∗, θt)− Bh(θ∗, θt+1) + γ

(
f(θt)− f(θt+1)

)]
where θt and θt+1 are random variable that depends on the samples. Sum up both side for T iterations:

γ

T∑
t=0

E [f(θt) + g(θt+1)− F (θ∗)]

≤ Bh(θ∗, θ0)− E [Bh(θ∗, θT+1)]

+ γ
(
f(θ0)− E [f(θT+1)]

)
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By adding γE [g(θ0)− g(θt+1)] to both sides of the above inequality we get:

γ

T∑
t=1

E [F (θt)− F (θ∗)]

≤ Bh(θ∗, θ0)− E [Bh(θ∗, θT+1)]

+ γ
(
F (θ0)− E [F (θT+1)]

)
≤ Bh(θ∗, θ0) + γ

(
F (θ0)− E [F (θ∗)]

)
where the last inequality is due to non-negativity of Bregman divergence and optimality of θ∗. Divide both sides
by γT = c

√
T and use Jensen inequality on F to conclude the proof.

E.2 Normal Model Updates

The objective function at hand is:

F (L, ζ) = f(L, ζ) + g(L)

f(L, ζ) =
1

2n

n∑
i=1

‖LTxi − ζ‖2

g(L) = − ln(|L|).

Now the update rule for the ζ given that g is independent of ζ and we sample mini-batch B of size m:

ζt+1 = (1− γ)ζt + γLTt

( 1

m

∑
i∈B

xi

)

For the L the gradient update gives

Lt+ 1
2

= Lt − γ
1

m

∑
i∈B

(xix
T
i Lt − xiζTt ) .

Since L is lower triangular, g(L) = ln(|L|) =
∑d
i=1 logLi,i and the proximal operator only applies to diagonal

elements of L – e.g. when i 6= j [Lt+1](i,j) = [Lt+ 1
2
](i,j). Otherwise we have to compute:

[Lt+1](i,i) = argmin
Lii

{
− ln(Lii) +

1

2γ
‖Lii − [Lt+ 1

2
](i,i)‖2

}
.

Therefore the update rule for the [Lt+1](i,i) is:

[Lt+1](i,i) =
1

2

{
[Lt+ 1

2
](i,i) +

√
[Lt+ 1

2
]2(i,i) + 4γ

}
.

Remark how this proximal operator behaves as a smooth projection on the set of strictly positive numbers. If the
diagonal is negative after the gradient update, it brings it to a small positive value. If it was already positive, it
slightly increases its value.

E.3 Equality of Smoothness Constants

In this section, we show that the Lipschitz smoothness parameter B, which appears in the convergence rate (22),
is the same for both causal and anticausal models. Similarly to the categorical case, we reason about marginals
loss first because they have a simpler form.

The loss of a marginal mechanism is fx(L, ζ) = 1
2

∑d
i=1(ζi − LTi x)2 where x is a sample observation and the Li

are the columns of L. We need to show that its Hessian is upper-bounded ‖∇2fx(L, ζ)‖ ≤ B . Thanks to the
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objective fx being quadratic, the Hessian is independent of the parameters (L, ζ). It depends only on the data x.
Since the data domain is a priori the same for causal and anticausal models – e.g. X and Y can live in the same
range – the upper bound for the Hessian is the same. This holds true at least for marginal mechanisms, because
their loss is written exactly like above.

For conditional mechanisms, this is a bit more complicated but the reasoning holds. The objective is similar,
with extra parameters coming from the linear relationship between X and Y . The Cholesky parametrization is
described in equation (68). The conditional model uses ζY |X = MX + m where M is a matrix, m is a vector
and X is a given sample. This means that the objective is still a quadratic and that 2nd order derivatives w.r.t.
LY |X are still independent of the parameters M and m. They depend only on the observed values of X and Y .
We assume that these variables have the same domain a priori, therefore both models have similar worst case
smoothness constants.

F NORMAL ANALYSIS

In this section we introduce three different parametrization of the multivariate normal cause-effect model. The
mean parametrization is the most common and intuitive, but it yields a non-convex optimization problem. The
natural parametrization yields a convex problem with convergence guarantees, but it has no closed update
formulas for our optimization algorithm of choice. The Cholesky parametrization offers both a convex problem
and simple updates.

Then we proceed to study how interventions induce distance in parameter space. We prove that in the natural
parameter space, an intervention on the cause will create more distance in the anticausal model than in the causal
model.

F.1 Mean Parameters

Cause X and effect Y are sampled from the causal model

X ∼ N (µX ,ΣX)

Y |X ∼ N (AX + a,ΣY |X)

with parameters (µX ,ΣX , A, a,ΣY |X). All along, we will assume that all normal laws are non-degenerate – e.g.
ΣX > 0,ΣY |X > 0. We compute the marginal mean and covariance of Y as well as the covariance between X and
Y

E [Y ] = AµX + a

Cov[Y ] = ΣY |X +AΣXA
>

Cov[X,Y ] = ΣXA
> .

From there we can derive the joint distribution as a function of the causal parameters(
X
Y

)
∼ N

((
µX

AµX + a

)
,

(
ΣX ΣXA

>

AΣX ΣY |X +AΣXA
>

))
. (59)

F.2 Natural Parameters

We want the negative log-likelihood objective to be convex, so we are going to use the natural parameters instead
of the mean parameters

N (µ,Σ) = Nnat(η = Σ−1µ,Λ = Σ−1) (60)

where we are using Nnat to explicit that this is taking the natural parameters as arguments Our causal model
using natural parameters is:

X ∼ Nnat(ηX ,ΛX) (61)
Y |X ∼ Nnat(BX + b,ΛY |X)
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where we get the natural parameters from the mean parameters with formulas

ΛX = Σ−1
X

ΛY |X = Σ−1
Y |X

ηX = ΛXµX

B = ΛY |XA

b = ΛY |Xa

F.2.1 Switching Direction

We want to get the natural parameters of the anticausal model as a function of the causal parameters. To do
so we are going to express the natural parameters of the joint, and then we will simply have to swap rows and
columns to invert the roles of X and Y . To get the joint precision matrix, we need to invert the joint covariance.
We use the Schur complement and the blockwise matrix inversion formulas

M =

(
A B
C D

)
M/D := D − CA−1B

M−1 =(
A−1 +A−1B(M/D)−1CA−1 −A−1B(M/D)−1

(M/D)−1CA−1 (M/D)−1

)
In our case, the Schur complement of Σ with respect to its lower right block ΣY is precisely

M/D = Σ/ΣY

= ΣY |X +AΣXA
> −AΣXΣ−1

X ΣXA
>

= ΣY |X .

By applying the formula and identifying the natural parameters, we get

Λ =

(
ΛX +B>Λ−1

Y |XB −B>
−B ΛY |X

)
To get the first natural parameter, all we have to do is to multiply the joint precision and the joint mean

η = Λµ

=

(
ΛXµX +B>Λ−1

Y |XBµX −B>AµX −B>a
−BµX + ΛY |XAµX + ΛY |Xa

)
=

(
ηX −B>Λ−1

Y |Xb
b

)
where B>Λ−1

Y |XBµX −B>AµX , and −BµX + ΛY |XAµX are zero and we express the other terms with natural
parameters. Overall, the joint natural parameters are

Nnat

((
ηX −B>Λ−1

Y |Xb
b

)
,

(
ΛX +B>Λ−1

Y |XB −B>
−B ΛY |X

))
.

From there we can use a symmetry argument to switch from causal X → Y to anticausal X ← Y model.

Y ∼ Nnat(ηY ,ΛY )

X|Y ∼ Nnat(CY + c,ΛX|Y )
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with the following formulas for the conditional mechanism

C = B> (62)

c = ηX −B>Λ−1
Y |Xb (63)

ΛX|Y = ΛX +B>Λ−1
Y |XB (64)

followed by these formulas for the marginal mechanisms

ΛY + C>Λ−1
X|Y C = ΛY |X (65)

ηY − C>Λ−1
X|Y c = b . (66)

These formulas are going to be very useful to establish a relationship between the distance to optimum of the
causal and anticausal models in Appendix F.5.

F.3 Cholesky Parameters

We call Cholesky parametrization of the normal law the parameters (L, ζ) such that

Λ = LL> (L is lower triangular)

ζ = L−1η = L>µ

We use Ncho(ζ,L) to denote the normal law with Cholesky parameters ζ and L. The full causal model (61)
becomes

X ∼ Ncho(ζX ,LX)

Y |X ∼ Ncho(MX +m,LY |X) (67)

where the 5 parameters are defined from the natural model by the equations

LXL
>
X = ΛX

LY |XL
>
Y |X = ΛY |X

ζX = L−1
X ηX (68)

M = L−1
Y |XB

m = L−1
Y |Xb

There is no closed formula to express the Cholesky decomposition of a sum of matrix A+B with the Cholesky
decomposition of A and B. As a consequence, there is no simple formula to switch between causal and anticausal
models with this parametrization.

F.3.1 Joint Cholesky

We derive a formula for the joint Cholesky for future reference. To get a closed form for the joint Cholesky
parameters from the conditional parameters, we need to switch the positions of X and Y in the joint vector – e.g.
we are using (Y,X) instead of (X,Y ). Indeed the Cholesky decomposition is very dependent on the orders of the
rows and columns. That’s also why we cannot simply switch the column orders in the joint representation.(

Y
X

)
∼ Ncho

((
m
ζX

)
,

(
LY |X 0
−M> LX

))
.

This joint representation is simply taking the conditional parameters and putting them in an array. It has the
advantage that the distance is equal to the conditional distance. It hints towards the idea that for multivariate
normal variables, knowing the right Cholesky decomposition is equivalent to knowing the right causal graph.
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F.4 Kullback-Leibler Divergence

We express the KL divergence in all three parametrizations because we use them in the code.

2DKL(N0||N1)

= (µ1 − µ0)>Σ−1
1 (µ1 − µ0)

+ Tr(Σ−1
1 Σ0)− k − log

∣∣Σ−1
1 Σ0

∣∣
= η>1 Λ−1

1 η1 − 2η>1 Λ−1
0 η0 + η>0 Λ−1

0 Λ1Λ−1
0 η0

+ Tr(Λ1Λ−1
0 )− k − log(

∣∣Λ1Λ−1
0

∣∣
=
∥∥V >ζ0 − ζ1∥∥2

+ ‖V ‖2F − k − 2 log|V |

where V := L−1
0 L1 is a lower triangular matrix which plays a special role.

F.5 Distance after Intervention

In this section we evaluate the effect on interventions on the cause and effect for both models. When the intervention
happens on the cause, we replace µX ,ΣX by µ̃X , Σ̃X , or equivalently we replace the natural parameters of the
marginal on X. The natural causal distance is simply

δcausal = ‖ηX − η̃X‖2 + ‖ΛX − Λ̃X‖2F . (69)

Unless indicated otherwise, we will consider the Frobenius distance between matrices. For the anticausal model,
both marginal and conditional parameters need to change. Here similar to categorical case, we have

δanticausal ≥ δcausal.

However when the intervention happens on the effect, there is no clear formal relation between δcausal and
δanticausal. More detail about the deriving the mathematical formula for δcausal and δanticausal is presented in the
following.

F.5.1 Intervention on Cause

When the intervention happens on the cause, the natural causal distance is

δcausal = ‖ηX − η̃X‖2 + ‖ΛX − Λ̃X‖2F . (70)

How does this transformation affect the anticausal parameters? Both the marginal and the conditional have to
adapt. The anticausal conditional is elegantly expressed with the causal natural parameters in (64), so we will
start with the conditional

C − C̃ = B> − B̃> = 0 (71)
c− c̃ = ηX − η̃X (72)

ΛX|Y − Λ̃X|Y = ΛX − Λ̃X . (73)

In words, the linear transformation is invariant, the bias moves like the mean of X, and the conditional precision
moves like the precision of X. This means that we can directly lower bound the anticausal distance with the
causal distance

δanticausal =
∥∥∥C − C̃∥∥∥2

+ ‖c− c̃‖2 +
∥∥∥ΛX|Y − Λ̃X|Y

∥∥∥2

+
∥∥∥ΛY − Λ̃Y

∥∥∥2

+ ‖ηY − η̃Y ‖2

= δcausal +
∥∥∥ΛY − Λ̃Y

∥∥∥2

+ ‖ηY − η̃Y ‖2

> δcausal . (74)

We could get a stronger bound by bounding the anticausal marginal parameters, but any such bound would
involve the value of the linearity B and make the result needlessly more complicated.
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F.5.2 Intervention on Effect

We perform an intervention on Y such that the causal model become independent

X ∼ N (µX ,ΣX)

Y ∼ N (µ̃Y , Σ̃Y ) .

This independence means that the linear models have a slope 0

Ã = B̃ = C̃ = 0 . (75)

The bias then has to account for the mean parameter

ã = µ̃Y , b̃ = η̃Y , c̃ = ηX (76)

And the conditional precision have to match the marginal precision

Σ̃Y |X = Σ̃Y , Λ̃Y |X = Λ̃Y , Λ̃X|Y = ΛX (77)

So the distances are written

δcausal = ‖B‖2F + ‖b− η̃Y ‖2 + ‖ΛY |X − Λ̃Y ‖2F
δanticausal = ‖C‖2F + ‖c− ηX‖2 + ‖ΛX|Y − ΛX‖2F

+ ‖ηY − η̃Y ‖2 + ‖ΛY − Λ̃Y ‖2F
= ‖B‖2F + ‖B>Λ−1

Y |Xb‖2 + ‖B>Λ−1
Y |XB‖2F

+ ‖ηY − η̃Y ‖2 + ‖ΛY − Λ̃Y ‖2F

We did not find any meaningful simplification of these formulas.

G NORMAL PRIOR

Exactly like in the categorical setting, the distributions we sample are going to impact the speed of adaptation
and the distances we measure. Let K be the dimension of X and Y , and n0 = 2K + 2 an arbitrary number of
prior observations. We define a pseudo-conjugate prior

ΛX ∼ W(n0,
IK
K

) (78)

ηX |ΛX ∼ N (0,
ΛX
n0

) (79)

ΛY |X ∼ W(n0, 10
IK
K

) (80)

b|ΛY |X ∼ N (0,
ΛY |X
n0

) (81)

B = ΛY |XA where A ∼ N (0,
IK2√
K

) (82)

where W is the Wishart distribution with parameters: degrees of freedom and scale matrix. We picked these
parameters such that ηY ,ΛY follows approximately the same law as ηX ,ΛX . Two important factors to get a
symmetric relationship between X and Y are 10 and

√
K. First, we sample a larger conditional precision, so that

their relationship is quite deterministic. Second we sample the linear layer such that it preserves the scale of X,
so that X and Y have approximately the same variance. We also use appropriate covariance matrices to sample
other parameters such that the prior is somewhat conjugate and gives proper variance formulas.

We sample interventions from the same distributions as the cause marginal in (82). For an intervention on the
cause

Λ̃X ∼ W(n0,
IK
K

)

η̃X |Λ̃X ∼ N (0,
Λ̃X
n0

) .
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For an intervention on the effect

B̃ = 0Λ̃Y |X = Λ̃Y ∼ W(n0,
IK
K

)

b̃ = η̃Y |Λ̃Y ∼ N (0,
Λ̃Y
n0

) .


