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Abstract

Consider a collection of datasets generated
by unknown interventions on an unknown
structural causal model G. Recently, Bengio
et al. (2020) conjectured that among all can-
didate models, G is the fastest to adapt from
one dataset to another, along with promising
experiments. Indeed, intuitively G has less
mechanisms to adapt, but this justification
is incomplete. Our contribution is a more
thorough analysis of this hypothesis. We in-
vestigate the adaptation speed of cause-effect
SCMs. Using convergence rates from stochas-
tic optimization, we justify that a relevant
proxy for adaptation speed is distance in pa-
rameter space after intervention. Applying
this proxy to categorical and normal cause-
effect models, we show two results. When the
intervention is on the cause variable, the SCM
with the correct causal direction is advantaged
by a large factor. When the intervention is
on the effect variable, we characterize the
relative adaptation speed. Surprisingly, we
find situations where the anticausal model is
advantaged, falsifying the initial hypothesis.

1 INTRODUCTION

A learning agent interacting with its environment
should be able to answer questions such as “what will
happen to Y if I change X”. Structural Causal Models
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Figure 1: Two models of cause-effect data X → Y .

(SCM) offer a formalism to answer this kind of ques-
tions (Pearl, 2009; Peters et al., 2017). The simplest
SCM is the model X → Y where X is the cause and Y
the effect. Modifying X will modify Y but modifying
Y will not alter X. In general, SCMs model the dis-
tribution of observations with a directed graph where
edges represent independent mechanisms (Janzing and
Scholkopf, 2010).

Modern machine learning methods can fail surprisingly
when the test distribution differ from the training dis-
tribution (Rosenfeld et al., 2018). A recent line of work
describes these distribution shifts as interventions in
an underlying causal model (Zhang et al., 2013; Magli-
acane et al., 2018). If this description is accurate, then
an agent endowed with this hypothetical causal model
could handle distribution shifts by updating the few
mechanisms affected by the intervention. On contrary,
an agent endowed with an incorrect model, would have
to update many mechanisms. Bengio et al. (2020) infer
that the causal agent will be the fastest to adapt to
distribution shifts. Conversely, they use the speed of
adaptation to unknown interventions as a criterion to
learn the true causal model, showing promising em-
pirical results on cause-effect models. Yet they lack a
theoretical argument to connect interventions and fast
adaptation. Thus we raise the question:

Do causal models adapt faster than non-causal models
to distribution shifts induced by interventions?

Contributions. We theoretically and empirically an-
swer this question for cause-effect SCMs with categor-
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ical variables, and partially for multivariate normal
distributions.

• For both settings, we use stochastic optimization
convergence rates to show that the adaptation
speed mostly depends on the distance in parame-
ter space between the initialization (before inter-
vention) and the optimum (after intervention).

• For categorical variables, we fully characterize this
distance. We show that the causal model is faster
by a large factor when the intervention is on the
cause.

• When the intervention is on the effect, we surpris-
ingly find settings where the anticausal model is
systematically faster. As appealing as the fastest-
to-adapt hypothesis may sound, it does not hold
in every situations.

2 RELATED WORK

Causal relationships are asymmetric. These asymme-
tries are often visible in observations, so that one can
identify which is cause and which is effect under rel-
evant assumptions (Mooij et al., 2016). A common
assumption is to constrain the set of functional depen-
dencies between cause and effect. By contrast, in our
work, we focus on two families of distributions which
are notoriously unidentifiable from observational data:
categorical and linear normal variables (Peters et al.,
2017, Ch.4). With data coming from a generic directed
acyclic graph (DAG), we can only hope to discover
the Markov equivalence class of this DAG (Verma and
Pearl, 1991). Many methods seek to achieve this goal,
whether constraint-based such as the PC algorithm
(Spirtes et al., 2000) or score-based methods using
greedy search (Chickering, 2002) or more recently con-
tinuous optimization (Zheng et al., 2018; Lachapelle
et al., 2020). However to discover the exact graph, we
need access to interventional data.

Inferring causal links from interventions or experiments
is the foundation of science. Inferring causal links from
unknown interventions is a much harder and less princi-
pled problem. Tian and Pearl (2001) first studied this
setting, proposing a constraint based method to infer
the interventional equivalence class from a sequence
of interventions. Then Eaton and Murphy (2007) pro-
posed an exact Bayesian approach. More recently,
Squires et al. (2019); Ke et al. (2019) proposed score
based algorithms, improving in scalability and alleviat-
ing parametric assumptions. From a machine learning
perspective, we are concerned with the predictive power
that this structure will give us when faced with new
data.

Distribution shifts are a common problem in machine
learning, as well as in causal statistics (Zhang et al.,
2013; Pearl and Bareinboim, 2014). Schölkopf et al.
(2012) first brought up the idea of invariance to tackle
this problem. Following up on this idea, Peters et al.
(2016) designed an algorithm able to identify robust
causal features from heterogeneous data. This work
has set a fruitful line of research for robust machine
learning (Heinze-Deml et al., 2018b,a; Rothenhäusler
et al., 2019; Arjovsky et al., 2019). In a way, fast
adaptation is the complementary idea of invariance: if
most mechanisms are kept invariant, then only a few
have to adapt. Schölkopf (2019) shed light on these
approaches and the broader scope of causality research
for machine learning.

3 BACKGROUND

In this section, we review the formalism of Bengio
et al. (2020) on observations, interventions, models and
adaptation.

Reference and Transfer Distributions. We as-
sume perfect knowledge of a reference distribution p
over the pair (X,Y ) sampled from an SCM X → Y .
This distribution is the object of interventions, which
results in new transfer distributions p∗. If the inter-
vention is on the cause, X is sampled from a different
marginal, then Y is sampled from the reference condi-
tional

p∗(x, y) = p∗(x)p(y|x) . (1)

If the intervention is on the effect, X is sampled from
the reference marginal, then Y is sampled from another
marginal independently of X

p∗(x, y) = p(x)p∗(y) . (2)

For each transfer distribution, we observe a few sam-
ples.

Models. We parametrize two generative models
of (X,Y ) (Fig. 1):

pθ→(x, y) = pθX (x)pθY |X (y|x) – causal (3)

pθ←(x, y) = pθY (y)pθX|Y (x|y) – anticausal . (4)

For each model, we call mechanisms the marginal and
conditional models. Each mechanisms has its own set
of parameters, e.g. θX and θY |X . In the following we
will use θ to denote interchangeably θ→ and θ←.

Adaptation. Both models are initialized to fit per-
fectly the reference distribution p

θ
(0)
→

= p
θ
(0)
←

= p. They
observe fresh samples from p∗ one by one and up-
date their parameters θ→ and θ← to maximize the
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Figure 2: Intuition behind fast adaptation. An intervention on X turns the reference distribution p(0) into
a transfer distribution p∗. The causal model (blue) only has to adapt θX , whereas the anticausal model (red) has
to adapt both its mechanisms. After adaptation, the causal model ends up the closest from the transfer in terms
of KL, as visible in the abstract distribution space. Blue and red balls represent the proximity prior induced by
taking a few steps of SGD from the reference in each parameter space. Convergence rate analysis reveals that
they are spherical functions of the parameter distance, but they get mapped to non-trivial shapes in distribution
space – ellipses in this sketch.

log-likelihood with a step of stochastic gradient (SGD).
Thanks to the separate parameters, the causal model
log-likelihood loss decomposes as

Lcausal(θ→) = E(X,Y )∼p∗ [− log pθ→(X,Y )]

=Ep∗ [− log pθX (X)] + Ep∗
[
− log pθY |X (Y |X)

]
(5)

When p∗ comes from an intervention, Bengio et al.
(2020) observe that the causal model is often faster
to adapt than the anticausal model. Intuitively, this
is because the causal model has to adapt only the
mechanism which was modified by the intervention. On
the other hand, the anticausal model has to adapt both
its mechanisms. In Figure 2, we compare these different
scenarios and the concept of adaptation figuratively.
While appealing, this reasoning is not rigorous, as
sample complexity bounds of SGD typically do not
depend on the number of parameters to update (Bubeck
et al., 2015, Th. 6.2 & 6.3). In the next section,
we formalize and understand this phenomenon in the
light of convergence rates of stochastic optimization
methods.

Distribution Families. We study two of the sim-
plest sub-families of the exponential family (Wainwright
and Jordan, 2008): categorical and linear normal vari-
ables. Their negative log-likelihood is a convex function
of their natural parameter. These families are inter-
esting because the direction is not identifiable from
observational data (Peters et al., 2017, Ch.4) – e.g.
pθ→ and pθ← can model the same set of distributions –
which makes them challenging for causal discovery.

AN OPTIMIZATION PERSPECTIVE One way to for-
malize adaptation speed is to characterize it via the
convergence speed of the stochastic optimization pro-
cedure. An appealing aspect of stochastic optimization
algorithms such as SGD (when only using fresh sam-
ples and running it on the true loss we care about) is
that they come with convergence rate guarantees on
the population risk in machine learning, thus giving us
direct sample complexity results to obtain a specific
generalization error. The convergence rate is an upper
bound on the expected suboptimality after a given num-
ber of iterations. While these rates are about worst
case performance and might also be loose, fortunately,
for convex optimization, they tend to correspond well
to actual empirical performance (Nesterov, 2004). We
can thus use the convergence bounds as theoretical
proxy for the convergence speed. In our experiments,
we also verify empirically that the bounds correlate
well with the observed convergence speed.

Here we provide a classical convergence rate on the
expected suboptimality with Average Stochastic Gra-
dient Descent (ASGD) under convexity and bounded
gradient assumptions. We re-derive this rate in Ap-
pendix B.1 for completeness. This rate applies to
log-likelihood maximization for categorical random
variables (details in B.2). Since the target distribu-
tion is part of the model family, the log-likelihood
suboptimality is equal to the KL-divergence – e.g.
L(θ)− L(θ∗) = DKL(p∗||pθ).
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ASGD. Assume ∀θ, x, ‖∇ log pθ(x)‖ ≤ B. After T
iterations of SGD on (5),

θ(t+1) = θ(t) + γ∇ log pθ(t)(Xt, Yt) (6)

with learning rate γ := c√
T
, starting from θ(0), the

average parameter’s θ̄(T ) = 1
T

∑T−1
t=0 θ(t) suboptimality

is upper bounded by

E [DKL(p∗||pθ̄(T ))] ≤ c−1‖θ(0) − θ∗‖2 + cB2

2
√
T

(7)

where the expectation is taken over the sampling of
T−1 training pointsXt, Yt and θ∗ is the closest solution
to θ(0) in the solution set argminθ L(θ).

For categorical models, B = 2 (see B.2). Consequently,
for a fixed T and with small enough c, the convergence
upper bounds for causal and anticausal models differ
mainly by δ := ‖θ(0) − θ∗‖2.
The bounded gradient assumption of (7) does not ap-
ply to the log-likelihood of normal variables. In Sec-
tion 5.1, we provide an algorithm along with a conver-
gence rate (22) that do apply to this case. Overall both
bounds (7) and (22) carry the same message which can
be summarized by:

The adaptation speed is dominated by
the initial distance

δcausal =
∥∥∥θ(0)
→ − θ∗→

∥∥∥2

(8)

δanticausal =
∥∥∥θ(0)
← − θ∗←

∥∥∥2

. (9)

Other optimization methods. Yang et al. (2016,
Theorem 1) provides a unified convergence rate for
stochastic heavy ball and Nesterov methods that is
similar to (7), where the initial distance is the main
difference between causal and anticausal models. Conse-
quently, our theoretical analysis holds for a larger class
of algorithms than ASGD. More generally, it applies
to any stochastic optimization method whose sample
complexity depends on parameter distance.

4 CATEGORICAL VARIABLES

In this section, both cause and effect come from cate-
gorical distribution. We provide theoretical bounds on
δcausal and δanticausal. We consider different scenarios
to generate reference and transfer data and explain the
consequences of each scenario.

4.1 Definitions

Cause X and effect Y are now two categorical variables
taking values in {1, . . . ,K}. Categorical variables are

Figure 3: Parametrization of categorical models

an exponential family with mean parameters p ∈∆K

the probability vector, and with natural parameter
s ∈ RK – the logits or score parameters such that
pz = esz∑

z′ e
s
z′ . The causal model has parameters sX :=

(sx)x=1...K and sY |X := (sy|x)x,y=1...K . We gather the
causal parameters in the variable θ→ = (sX , sY |X) and
the anticausal parameters in θ← = (sY , sX|Y ) (Fig. 3).
The loss (5) becomes

Lcausal(θ→) = E(X,Y )∼p∗ [− log pθ→(X,Y )] (10)

= Ep∗

[
−sX + log

∑
x

esx − sY |X + log
∑
y

esy|X

]
.

Each mechanism’s stochastic loss is the sum of a linear
function and a softmax function. The softmax function
is convex and 1-Lipschitz, so we can apply rate (7). To
be self-contained, we include details in Appendix B.2.

4.2 Distance after Intervention

In this section, we prove that interventions on the
cause advantage the causal model by a factorK, and we
describe when interventions on the effect will advantage
one model over another.

Intervention on cause X, sX← s∗X . The causal
conditional sY |X is left unchanged, but the effect
marginal sY is modified in a non-trivial way. Con-
sequently the initial distances are

δcausal = ‖sX − s∗X‖2 (11)

δanticausal = ‖sY − s∗Y ‖2 +
∑
y

‖sX|y − s∗X|y‖2 . (12)

The causal model has to updateK parameters, whereas
the anticausal model has to adapt K2 +K parameters.
Therefore the causal model seems to be advantaged
by a factor K. The following proposition – proved
in Appendix C – shows that this is reflected by `2
distances.

Proposition 1. When the intervention happens on
the cause,

δanticausal ≥ Kδcausal . (13)
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Figure 4: Illustration of Proposition 2. c is on the
line joining sY and m := 1

K

∑
x sY |x. When s∗Y is

within the blue ball of radius R centered at c, ∆ ≤ 0
and the causal model is advantaged, otherwise the
anticausal model is advantaged (red area). This is
a surprising counter-example to the adaptation-speed
hypothesis.

Intervention on effect Y , ∀x, sY |x← s∗Y . Cause
and effect become independent. The causal model is
advantaged only if the intervention s∗Y is close enough
from the previous marginal, as formalized by the fol-
lowing proposition:
Proposition 2. When the intervention happens on
the effect

∆ := δcausal − δanticausal

= (K − 1)
(
‖s∗Y − c‖2 −R2

)
(14)

where R2 ≈ KV̂arX [log
∑
y e

sy|X ] and c =

(
∑
x sY |x)−sY
K−1 .

See Figure 4 for an illustration and Appendix C.3
for the exact formula of R and the proof. When the
intervention s∗Y is close enough to c, which depends on
the reference, the causal model is advantaged. If s∗Y is
far from c or if R is small then the anticausal model is
likely to be advantaged.

4.3 Simulating Reference Distributions

To evaluate the fast adaptation criterion, we are going
to work on synthetic data, which raises the question :
from which distribution should we sample p = pθ(0)?
We call this distribution prior. Following the inde-
pendent mechanism assumption, the marginal on the
cause pX and the conditional of effect given cause pY |X
should not contain any information about each other.

Dense Prior. To sample causal mechanisms, a nat-
ural choice is

pX ∼ Dir(1K) and ∀x,pY |x ∼ Dir(1K) (15)

where Dir is the Dirichlet distribution and 1K is the
all-one vector of dimension K. Dir(1K) the uniform
law over the simplex ∆K . This prior leads to the K2
score from the Bayesian network literature (Cooper
and Herskovits, 1991). We call this choice the dense
prior by opposition to the sparse prior introduced next.
This is the choice made in Bengio et al. (2020), as
well as Chalupka et al. (2016). The latter work re-
ports that distributions sampled from this prior exhibit
some asymmetry between X and Y . In Appendix D.1,
we complement their work, explaining how the effect
marginal is likely to be closer from the uniform dis-
tribution than the cause marginal. This asymmetry
means that the causal direction is identifiable from
observational data.

Sparse Prior. To fix this issue, we study an alter-
native prior that is symmetric and ensures that both
cause and effect marginals are sampled from a uniform
prior over ∆K . We sample the causal mechanisms as
follows

pX ∼ Dir(1K) and ∀x,pY |x ∼ Dir(1K /K) . (16)

The 1K /K parameter means that samples will be ap-
proximately sparse, hence the name. We show in
Appendix D.2 that with this sampling scheme, the
joint is sampled from a sparse Dirichlet over ∆K2 :
p(X,Y ) ∼ Dir(1K2 /K). This in turns means that we
can switch the roles of X and Y in (16). The effect
marginal has uniform density over the simplex. In
general, the causal direction is not identifiable from ob-
servational data. In Bayesian Networks literature, this
is known as the Bayesian Dirichlet equivalent uniform
prior (Heckerman et al., 1995).

4.4 Categorical Variables Experiments

Goal. As discussed in Section 4.3, the prior over the
joint distribution on (X,Y ) is going to influence the
behavior of ASGD. We are seeking answers to two
questions:

1. Is the adaptation speed positively correlated with
the initial distance, as suggested by the upper
bound (7) on the convergence rate of ASGD?

2. Is there a clear difference in adaptation speed
between causal and anticausal models?

Data. We consider categorical variables with K =
20. For each initialization method, we sample 100
different reference joint distributions. For each of these
distributions, we sample an intervention by sampling
a probability vector q uniformly from ∆K . If the
intervention is on the cause, we plug q instead of pX .
If the intervention is on the effect, we redefine pY |x =
q,∀x.



An Analysis of the Adaptation Speed of Causal Models

0 1 2 3

||θ(0) − θ∗||2 ×103

0.5

1.0

1.5

K
L(
p∗ ,p

(t
)
);

T
=
10
0 y=ax+b, r2=0.77,

a=3.7e-04, b=0.19

(a) Dense - cause.

0 100 200 300 400
number of samples t

0.25

0.50

0.75

1.00

1.25

K
L(
p∗ ,p

(t
)
)

Anti
Causal
Joint

(b) Dense - cause.

0 100 200 300 400
number of samples t

0.00

0.25

0.50

0.75

1.00

1.25

K
L(
p∗ ,p

(t
)
)

Anti
Causal
Joint

(c) Sparse - cause.

0.5 1.0 1.5 2.0

||θ(0) − θ∗||2 ×103

4

6

8

K
L(
p∗ ,p

(t
)
);

T
=
10
0

×10−1

y=ax+b, r2=0.47,
a=2.3e-04, b=0.36

(d) Dense - effect.

0 100 200 300 400
number of samples t

0.25

0.50

0.75

1.00

1.25

K
L(
p∗ ,p

(t
)
)

Anti
Causal
Joint

(e) Dense - effect.

0 100 200 300 400
number of samples t

10

15

20

K
L(
p∗ ,p

(t
)
)

Anti
Causal
Joint

(f) Sparse - effect.

Figure 5: Experimental results on categorical data. Each plot is captioned with the prior and the
intervention considered. Scatter plots are showing the positive correlation between the KL after 100 steps of
SGD and the initial parameter distance. Each point represent one of 100 synthetic pairs (p(0),p∗). Training
curves show the average KL (solid line) and the (5,95) percentiles (shaded) over 100 runs. Remark how all
models start from the same initial KL, but they converge at different speeds.

Models. We are comparing causal and anticausal
models adaptation speed. We also report results for
a model of the joint pX,Y = softargmax(sX,Y ) as a
reference model. We expect its results to be in between
the performance of the causal and anticausal model as
it expresses no prior over the direction. We optimize all
models with Averaged SGD. In each iteration of SGD
we get one fresh sample from the transfer distribution.
For each model and each setting, we tune the (constant)
learning rate so as to optimize the likelihood after seeing
K2

4 = 100 samples, to explore the few samples regime.
We present results in Figure 5

Dense prior. When the intervention is on the cause,
the causal model is much closer from its optimum: in
Fig. 5a the blue cluster is on the left of the scatter plots.
This is well correlated with faster adaptation (Fig. 5b).
On the contrary, when the intervention is on the effect,
the anticausal model starts closer from its optimum
and it converges faster (Fig. 5d, 5e). We can interpret
this result in light of Proposition 2. In Appendix C.3,
we explain why the radius R is small under the dense
prior. As a result, s∗Y is mostly sampled outside of
the ball of radius R, consequently the anticausal model
is advantaged. Overall, there is a wider gap between
models in Fig. 5b than in Fig. 5e. Consequently, if we
take a balanced average of a few interventions on the

cause and a few interventions on the effect, the causal
model remains faster (details in Appendix C.4).

Sparse prior. When the intervention is on the cause,
the causal model has a slight advantage (Fig. 5c). When
the intervention is on the effect, no model has a set ad-
vantage (Fig. 5f), but the sparsity induces much higher
KL values, as explained in Appendix D.3. This KL
explosion drowns the signal coming from the cause in-
tervention, calling for further algorithmic developments
– such as inferring the intervention, as explored by Ke
et al. (2019).

5 MULTIVARIATE NORMAL
VARIABLES

In this section, we analyze the case of two multivariate
normal variables with a linear relationship. Cause X
and effect Y are sampled from the causal model

X ∼ N (µX ,ΣX) (17)
Y |X ∼ N (AX + a,ΣY |X) (18)

with mean parameters µX ,a ∈ RK and ΣX ,A,ΣY |X ∈
RK×K . This parametrization is the most intuitive but
it is unfortunately not appropriate to get convergence
rates. We are going to introduce another parametriza-
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tion along with an algorithm and a convergence rate
(Sec. 5.1), before providing empirical results (Sec. 5.2).

5.1 Optimization Analysis

The negative log-likelihood of model (17) is notoriously
non-convex. This is problematic for convergence results.
For simplicity, we focus in this section on the simple
marginal mechanism with mean parameters µ,Σ. We
detail the full model in Appendix F. If we use the
natural parameters η = Σ−1µ and Λ = Σ−1 (precision
matrix), the negative log-likelihood is convex

E
[
− log p(η,Λ)(X)

]
(19)

=
1

2

(
E
[
Tr(XX>Λ)− 2X>η

]
+ η>Λ−1η − log |Λ|

)
.

This objective is composed of a pleasant stochastic lin-
ear term, and a difficult deterministic barrier objective
which goes to infinity when Λ → 0. This barrier is
composed of a matrix inverse and a log determinant.
The assumptions of Lipschitz or gradient-Lipschitz re-
quired to get SGD convergence do not hold for the
barrier. While the empirical version of (19) has a
close formed formula for its global minimum, quite
surprisingly, gradient-based optimization of the normal
likelihood is difficult to analyze. Convex optimization
typically deals with non-smooth terms by introducing
proximal operators (Parikh et al., 2014). However this
barrier term is too complex to get an analytic formula
for the proximal operator. We transform it into a more
convenient form by introducing L, the lower triangular
Cholesky factor of the precision matrix Λ = LLT , and
ζ = L−1η = L>µ. Then (19) simplifies into

E
[
− log p(ζ,L)(X)

]
(20)

=
1

2
E
[∥∥L>X − ζ∥∥2

]
−
∑
i

logLi,i .

We will refer to (ζ,L) as Cholesky parameters. This
objective is more suitable to gradient based optimiza-
tion with a simple proximal operator, as detailed in the
next section. We provide all details about the causal
model in Appendix F.

Stochastic Proximal Gradient Algorithm We
want to minimize the sum of a stochastic convex
smooth function fX(θ) := 1

2

∥∥L>X − ζ∥∥2 and convex
non-smooth regularizer g(θ) = −∑i logLi,i. This is
exactly the goal of the stochastic proximal gradient
(Duchi et al., 2010) update

θt+1 = argmin
θ

g(θ) +
1

2γt
‖θt − γt∇fXt(θt)− θ‖2 (21)

where γt is the step-size and Xt is randomly sampled.
For objective (20), the proximal gradient update has a

closed form solution that amounts to updating all pa-
rameters with the stochastic gradient of the quadratic
term, then updating the diagonal elements of L with
the mapping x 7→ 1

2 (x+
√
x2 + 4γ), thus ensuring that

they remain strictly positive (details in Appendix E.2).

Convergence Rate. We assume that stochastic gra-
dients are almost-surely B-Lipschitz. B is known as the
smoothness constant. We show in Appendix E.1 that
running the stochastic proximal gradient algorithm
with step size γt = γ

3B
√
T

where γ ≤ 1, for T iterations
guarantees

E [DKL(p∗||pθ̄(T ))]

≤ 3B‖θ(0) − θ∗‖2
γ
√
T

+
DKL(p∗||pθ(0))

T
. (22)

Analysis. The term KL(p∗||p
θ(0)

)/T is equal for causal
and anticausal models because we assume p(0)

θ→
= p

(0)
θ←

.
For normal variables, B depends only on the data
and is a priori equal for both models (Appendix E.3).
Similarly to (7), both models’ rates differ mainly by
δ = ‖θ(0) − θ∗‖2.
When the intervention is on the cause, we prove in
Appendix F.5 that the anticausal model is farther away
from its optimum in the natural parametrization

δnatural
anticausal ≥ δnatural

causal . (23)

Unfortunately, in the Cholesky parametrization (Fig. 6,
2nd column), or when the intervention is on the effect
(Fig. 6, bottom row),we observe empirically that there
is no such hard guarantee, although the causal distance
tends to be smaller than the anticausal distance.

5.2 Experiments

Similarly to categorical variables, we need to decide on
a prior over reference and transfer distributions. This
choice is informed by two criteria. First the indepen-
dent mechanism principle which states that we should
sample θX independently of θY |X . Second we want θY
to have approximately the same distribution as θX –
e.g. we want the distribution to be approximately sym-
metric so that we cannot identify the direction from
observational data. These considerations lead us to
a flavor of normal-Wishart prior (Geiger et al., 2002)
described in Appendix G.

We sample 100 random joint distributions from this
prior, and for each distribution we sample a random
intervention on the cause, and a random intervention
on the effect. We then run the stochastic proximal gra-
dient on objective (20). We report results in Figure 6.
Similarly to the categorical case, when the intervention
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Figure 6: Multivariate Normal Variables with dimension K = 10. Row 1 and 2 correspond to interventions
on cause and effect respectively. Column 1 & 2: scatter plot δanticausal vs δcausal respectively in natural and Cholesky
parametrization. The grey diagonal is the identity line. We observe a natural tendency for δanticausal > δcausal
(points above the grey diagonal), but this is systematically true only for the natural distance when the intervention
is on the cause. Column 3 & 4: same plot as in Figure 5. Once again we observe a correlation between initial
distance and optimization speed. When the intervention is on the cause, the causal model is advantaged. When
the intervention is on the effect, both curves overlap.

is on the cause, the causal model is advantaged by a
slight margin (upper right figure). When the interven-
tion is on the effect both models are learning at the
same speed (bottom right figure).

Conclusion

We provided a first theoretical analysis of the adapta-
tion speed in two-variables cause-effect SCMs under
localized interventions for categorical and normal data.
Convergence guarantees for stochastic optimization on
the true population log-likelihood indicates that the
adaptation speed is related to the distance between
initial point and optimum in parameter space. We veri-
fied this correlation empirically. We proved analytically
that this distance is lower for the causal model than for
the anticausal model when the intervention is on the
cause variable. This explains a surprising phenomenon:
while both models start with the same suboptimality,
one learns faster than the other. When the interven-
tion is on the effect variable, we highlighted examples
showing that either model can be advantaged. This ob-
servation challenges the intuition that the causal model
should be the fastest to adapt, and it raises new ques-
tions for the approach of Bengio et al. (2020), such as:
are there practical situations where the fastest-to-adapt

heuristic is useful ? On a more theoretical note, is it
possible to characterize the adaptation speed behavior
for more general families of distributions?
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