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This is the supplementary material for the main text in [11]. We organize it as follows:

• We give detailed proofs of the theoretical results in the main text for the entropy partial transport (EPT)
problem for nonnegative measures on a tree having different masses in §A.

• We provide further experimental results in §B, e.g.,

– about more setups for the efficient approximation of ẼT
0

λ for ẼT
α

λ ,
– about different values of α,
– about different numbers of slices,
– and about different parameters in tree metric sampling.

• We next give more details and discussions in §C, e.g.,

– more details about experiments (e.g., softwares, datasets, more details about the experiment setup).
– some brief review about kernels, and more referred details (e.g., for tree metric sampling, persistence

diagrams and related mathematical definitions in topological data analysis).
– more discussions about other relations with other work.

We note that we have released code for our proposals at

https://github.com/lttam/EntropyPartialTransport.

A Detailed Proofs

In this section, we present detailed proofs of the theoretical results in the main text.
∗: Two authors contributed equally.

https://github.com/lttam/EntropyPartialTransport
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A.1 Proof for Theorem 3.1 in the main text

Proof. i) Note that ETc,λ(µ, ν) is a concave function in λ since it is the infimum of a family of concave functions
in λ. Therefore, u is convex on R. In particular, u is differentiable almost everywhere on R.

Let λ ∈ R, recall the definition of Cλ(γ) in Equation (4) in the main text. Then for any γ ∈ �0(λ), we have

ETc,λ+δ(µ, ν) ≤ Cλ+δ(γ) = Cλ(γ)− bδγ(T × T ) = ETc,λ(µ, ν)− bδγ(T × T ) ∀δ ∈ R. (1)

This implies that {
b γ(T × T ) : γ ∈ �0(λ)

}
⊂ ∂u(λ).

We next show that the opposite inclusion is also true, i.e.,
{
b γ(T × T ) : γ ∈ �0(λ)

}
= ∂u(λ). This is obviously

holds if ∂u(λ) is singleton and hence we only need to consider λ for which the convex set ∂u(λ) has more than
one element.

Let m ∈ ∂u(λ), then m can be expressed as a convex combination of extreme points m1, . . . ,mN of ∂u(λ), i.e.,
m =

∑N
i=1 timi with 0 ≤ ti ≤ 1 and

∑N
i=1 ti = 1. As mi is an extreme point of ∂u(λ), there exists a sequence

λn → λ such that λn is a differentiable point of u and u′(λn)→ mi.

Let γn ∈ �0(λn), then b γn(T × T ) = u′(λn) → mi. By compactness, there exists a subsequence {γnk} and
~γi ∈ �≤(µ, ν) such that γnk → ~γi weakly. It follows that γnk(T × T ) → ~γi(T × T ), and hence we must have
b ~γi(T × T ) = mi. We have

Cλnk (γλnk ) = Cλ(γλnk ) + b(λ− λnk)γnk(T × T ) ≥ ETc,λ(µ, ν) + b(λ− λnk)γnk(T × T )

≥ ETc,λ(µ, ν)− b �m|λ− λnk |

and for any γ ∈ �0(λ), there holds

Cλnk (γλnk ) ≤ Cλnk (γ) = Cλ(γ) + b(λ− λnk)γ(T × T ) = ETc,λ(µ, ν) + b(λ− λnk)γ(T × T ).

We thus deduce that limk→∞ Cλnk (γλnk ) = ETc,λ(µ, ν). These together with the lower semicontinuity of Cλ give

ETc,λ(µ, ν) = lim inf
k→∞

Cλnk (γλnk ) = lim inf
k→∞

[
Cλ(γλnk ) + b(λ− λnk)γnk(T × T )

]
= lim inf

k→∞
Cλ(γλnk ) ≥ Cλ(~γi).

Therefore, ~γi ∈ �0(λ) with mass b ~γi(T ×T ) = mi. Due to the convexity of �0(λ), we have �γ :=
∑N
i=1 ti~γ

i ∈ �0(λ)

with b �γ(T × T ) =
∑N
i=1 timi = m. That is,

∂u(λ) ⊂
{
b γ(T × T ) : γ ∈ �0(λ)

}
,

and we thus infer that
{
b γ(T × T ) : γ ∈ �0(λ)

}
= ∂u(λ) for all λ ∈ R.

In order to prove the second part of i), let γ ∈ �0(λ1) and ~γ ∈ �0(λ2) be arbitrary. We have

ETc,λ2
(µ, ν) = Cλ2

(~γ) = Cλ1
(~γ)− b(λ2 − λ1)~γ(T × T )

≥ ETc,λ1
(µ, ν)− b(λ2 − λ1)~γ(T × T ). (2)

Hence by combining with (1), we deduce that

ETc,λ1
(µ, ν)− b(λ2 − λ1)~γ(T × T ) ≤ ETc,λ2

(µ, ν) ≤ ETc,λ1
(µ, ν)− b(λ2 − λ1)γ(T × T ),

which yields γ(T × T ) ≤ ~γ(T × T ). This together with the above characterization of ∂u(λ) implies the second
part of i).

ii) If u is differentiable at λ, then ∂u(λ) is a singleton set. However, as ∂u(λ) =
{
b γ(T × T ) : γ ∈ �0(λ)

}
by i),

we thus infer that the mass γ(T × T ) must be the same for every γ ∈ �0(λ).

Next assume that every element in �0(λ) has the same mass, say m. For δ 6= 0, let γλ+δ ∈ �0(λ + δ) and
m(λ+ δ) := γλ+δ(T × T ). Then, we claim that

lim
δ→0

m(λ+ δ) = m. (3)
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Assume the claim for the moment, and let δ > 0. Then, as in (1)–(2), we have

ETc,λ+δ(µ, ν) ≤ ETc,λ(µ, ν)− bδm and ETc,λ+δ(µ, ν) ≥ ETc,λ(µ, ν)− bδm(λ+ δ).

It follows that
−bm(λ+ δ) ≤ ETc,λ+δ(µ, ν)− ETc,λ(µ, ν)

δ
≤ −bm.

This together with claim (3) gives limδ→0+
ETc,λ+δ(µ,ν)−ETc,λ(µ,ν)

δ = −bm. By the same argument, we also have
limδ→0�

ETc,λ+δ(µ,ν)−ETc,λ(µ,ν)
δ = −bm. Thus, we infer that u is differentiable at λ with u′(λ) = bm. Therefore,

it remains to prove claim (3).

Indeed, by compactness there exists a subsequence, still labeled by γλ+δ, and γ ∈ �≤(µ, ν) such that γλ+δ → γ
weakly as δ → 0. As in i), we can show that γ ∈ �0(λ). Then, as the mass functional is weakly continuous, we
obtain m(λ+ δ) = γλ+δ(T × T )→ γ(T × T ) = m. We in fact have shown that any subsequence of {m(λ+ δ)}δ
has a further subsequence converging to the same number m. Therefore, the full sequence {m(λ + δ)}δ must
converge to m, and hence (3) is proved.

iii) For any λ ∈ R, we have ∂u(λ) =
{
b γ(T × T ) : γ ∈ �0(λ)

}
⊂ [0, b �m]. Thus, we only need to prove

[0, b �m] ⊂ ∂u(R). First, note that as ∂u(λ) ⊂ R is a compact and convex set, it must be a finite and closed
interval. Therefore, if we let

γλmin := arg min
γ∈Γ0(λ)

γ(T × T ) and γλmax := arg max
γ∈Γ0(λ)

γ(T × T ),

then it follows from ii) that ∂u(λ) =
[
b γλmin(T × T ), b γλmax(T × T )

]
for every λ ∈ R. From Equation (4)

in the main text, it is clear that ∂u(λ) = {0} for λ negative enough. Indeed, if we take λ < −M , then as
w1(x) + w2(y) ≤ b c(x, y) +M , we have 0 < b c(x, y)− w1(x)− w2(y)− λ for all x, y ∈ T . Then, we obtain from
Equation (4) in the main text that Cλ(0) ≤ Cλ(γ) for every γ ∈ �≤(µ, ν) and the strict inequality holds if γ 6= 0.
Thus, �0(λ) = {0} which gives ∂u(λ) = {0} and u(λ) = −

∫
T w1µ(dx)−

∫
T w2ν(dx).

We next show that ∂u(λ) = {b �m} for λ positive enough. Since c(x, y) is bounded due to its continuity on T × T ,
we can choose λ ∈ R such that c(x, y)− λ < 0 for all x, y ∈ T . Let γ ∈ �0(λ). We claim that either γ1 = µ or
γ2 = ν. Indeed, since otherwise we have γ1(A0) < µ(A0) and γ2(B0) < ν(B0) for some Borel sets A0, B0 ⊂ T .
Let ~γ := γ + [(µ− γ1)χA0 ]⊗ [(ν − γ2)χB0 ]. Then, for any Borel set A ⊂ T we have

~γ1(A) = γ1(A) + µ(A ∩A0)− γ1(A ∩A0) = γ1(A \A0) + µ(A ∩A0)

≤ µ(A \A0) + µ(A ∩A0) = µ(A).

Likewise, ~γ2(B) ≤ ν(B) for any Borel set B ⊂ T . Thus ~γ ∈ �≤(µ, ν). On the other hand, it is clear from Equation
(4) in the main text and the facts γ1 ≤ ~γ1, γ2 ≤ ~γ2, and c− λ < 0 that Cλ(~γ) < Cλ(γ). This is impossible and so
the claim is proved. That is, either γ1 = µ or γ2 = ν. It follows that γ(T × T ) = �m for every γ ∈ �0(λ), and
hence ∂u(λ) = {b �m}. This also means that u is differentiable at λ with u′(λ) = b �m.

Therefore, it remains to show that

(0, b �m) ⊂ ∂u(R) =
⋃
λ∈R

[
b γλmin(T × T ), b γλmax(T × T )

]
. (4)

Assume by contradiction that there exists m ∈ (0, b �m) such that m 6∈ ∂u(λ) for every λ ∈ R. For convenience, we
adopt the following notation: for sets A,B ⊂ R and r ∈ R, we write A < r if a < r for every a ∈ A, and A < B if
a < b for every a ∈ A and b ∈ B. Let us consider the following two sets

S1 := {λ : ∂u(λ) < m} and S2 := {λ : ∂u(λ) > m}.

Then λ ∈ S1 if λ is negative enough, and λ ∈ S2 if λ is positive enough. For any λ1 ∈ S1 and λ2 ∈ S2, we have
∂u(λ1) < m < ∂u(λ2), and hence λ1 < λ2 by the monotonicity in i). That is, S1 < S2 and so we obtain

λ∗ := sup{λ : λ ∈ S1} ≤ inf{λ : λ ∈ S2} =: λ∗∗.

If λ∗ < λ∗∗, then for any λ ∈ (λ∗, λ∗∗) we have λ 6∈ S1 and λ 6∈ S2. Therefore, ∂u(λ) 6< m and ∂u(λ) 6> m. Hence,
we can find m1,m2 ∈ ∂u(λ) such that m1 ≥ m and m2 ≤ m. Thus, m ∈ [m2,m1] ⊂ ∂u(λ) due to the convexity
of the set ∂u(λ). This contradicts our hypothesis, and we conclude that λ∗ = λ∗∗.
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We next select sequences {λ1
n} ⊂ S1 and {λ2

n} ⊂ S2 such that λ1
n → λ∗ and λ2

n → λ∗∗ = λ∗. For each n, let

γnmin := arg min
γ∈Γ0(λ1

n)

γ(T × T ) and γnmax := arg max
γ∈Γ0(λ2

n)

γ(T × T ).

By compactness, there exist subsequences, still labeled as {γnmin} and {γnmax}, and γ∗, γ∗∗ ∈ �≤(µ, ν) such
that γnmin → γ∗ weakly and γnmax → γ∗∗ weakly. By arguing exactly as in i), we then obtain γ∗, γ∗∗ ∈ �0(λ∗),
γnmin(T × T ) → γ∗(T × T ), and γnmax(T × T ) → γ∗∗(T × T ). As b γnmin(T × T ) < m due to λ1

n ∈ S1, we
must have b γ∗(T × T ) ≤ m. Likewise, we have b γ∗∗(T × T ) ≥ m as b γnmax(T × T ) > m for all n. Hence,
m ∈ [b γ∗(T × T ), b γ∗∗(T × T )]. Since γ∗, γ∗∗ ∈ �0(λ∗), we infer that m ∈ ∂u(λ∗). This is a contradiction and
the proof is complete. We note that since λ1

n ≤ λ∗ ≤ λ2
n, we have from the monotonicity in i) that

γnmin(T × T ) ≤ γ(T × T ) ≤ γnmax(T × T )

for every γ ∈ �0(λ∗). By sending n to infinity, it follows that γ∗(T × T ) ≤ γ(T × T ) ≤ γ∗∗(T × T ) for every
γ ∈ �0(λ∗). That is, γ∗ = γλ

�

min and γ∗∗ = γλ
�

max.

A.2 Proof for Lemma 3.2 in the main text

Proof. We first observe for any Borel set A ⊂ T that

γ̂(A× {ŝ}) = γ̂(A× T̂ )− γ̂(A× T ) = µ̂(A)− γ(A× T ) = µ(A)− γ1(A) =

∫
A

(1− f1)µ(dx).

For the same reason, we have γ̂({ŝ} ×B) =
∫
B

(1− f2)ν(dx) for any set Borel set B ⊂ T . Also,

γ̂({ŝ} × {ŝ}) = γ̂(T̂ × {ŝ})− γ̂(T × {ŝ})
= γ̂(T̂ × T̂ )− γ̂(T̂ × T )−

[
γ̂(T × T̂ )− γ̂(T × T )

]
= µ̂(T̂ )− ν̂(T )− µ̂(T ) + γ(T × T ) = γ(T × T ).

Since the Equation (6) in the main text is obviously true for sets of the form A×B with A,B ⊂ T being Borel
sets, we only need to verify it for sets of the following forms: (A∪ {ŝ})×B, A× (B ∪ {ŝ}), (A∪ {ŝ})× (B ∪ {ŝ})
for Borel sets A,B ⊂ T . We check it case by case as follows.

Case 1: Using the above observation, we have

γ̂((A ∪ {ŝ})×B) = γ̂(A×B) + γ̂({ŝ} ×B) = γ(A×B) +

∫
B

(1− f2)ν(dx).

Therefore, the Equation (6) in the main text holds in this case.

Case 2: the Equation (6) in the main text is also true for this case because

γ̂(A× (B ∪ {ŝ})) = γ̂(A×B) + γ̂(A× {ŝ}) = γ(A×B) +

∫
A

(1− f1)µ(dx).

Case 3: the Equation (6) in the main text is true as well since

γ̂((A ∪ {ŝ})× (B ∪ {ŝ})) = γ̂(A×B) + γ̂(A× {ŝ}) + γ̂({ŝ} ×B) + γ̂({ŝ} × {ŝ})

= γ(A×B) +

∫
A

(1− f1)µ(dx) +

∫
B

(1− f2)ν(dx) + γ(T × T ).

Now as the Equation (6) in the main text holds, we obviously have γ(U×T ) ≤ γ̂(U×T ) ≤ γ̂(U×T̂ ) = µ̂(U) = µ(U)
for any Borel set U ⊂ T . Likewise, γ(T × U) ≤ ν(U) for any Borel set U ⊂ T . Therefore, γ ∈ �≤(µ, ν).
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A.3 Proof for Proposition 3.3 in the main text

Proof. We first show that KT(µ̂, ν̂) ≤ ETc,λ(µ, ν).

For any γ ∈ �≤(µ, ν), let γ̂ be given by the Equation (6) in the main text. Then, γ̂ ∈ �(µ̂, ν̂) and

KT(µ̂, ν̂) ≤
∫
T̂ ×T̂

ĉ(x, y)γ̂(dx, dy) = b

∫
T ×T

[c(x, y)− λ]γ(dx, dy)

+

∫
T
w1[1− f1(x)]µ(dx) +

∫
T
w2[1− f2(x)]ν(dx).

It follows that KT(µ̂, ν̂) ≤ ETc,λ(µ, ν).

We next show that KT(µ̂, ν̂) ≥ ETc,λ(µ, ν). To see this, for any γ̂ ∈ �(µ̂, ν̂) we let γ be the restriction of γ̂ to
T . Then by Lemma 3.2 in the main text, we have γ ∈ �≤(µ, ν) and the Equation (6) in the main text holds.
Consequently, ∫

T̂ ×T̂
ĉ(x, y)γ̂(dx, dy) = b

∫
T ×T

[c(x, y)− λ]γ(dx, dy)

+

∫
T
w1[1− f1(x)]µ(dx) +

∫
T
w2[1− f2(x)]ν(dx)

≥ ETc,λ(µ, ν).

By taking the infimum over γ̂, we infer that KT(µ̂, ν̂) ≥ ETc,λ(µ, ν).

Thus we obtain
KT(µ̂, ν̂) = ETc,λ(µ, ν).

The relation about the optimal solutions also follows from the above arguments.

A.4 Proof for Theorem 3.4 in the main text

Proof. From Proposition 3.3 in the main text and the dual formulation for KT(µ̂, ν̂) proved in [3, Corollary 2.6],
we have

ETc,λ(µ, ν) = sup
û∈L1(µ̂), v̂∈L1(ν̂)
û(x)+v̂(y)≤ĉ(x,y)

∫
T̂
û(x)µ̂(dx) +

∫
T̂
v̂(x)ν̂(dx) =: I.

Therefore, it is enough to prove that I = J where

J := sup
(u,v)∈K

[ ∫
T
u(x)µ(dx) +

∫
T
v(x)ν(dx)

]
.

For (u, v) satisfying u ≤ w1, v ≤ w2 and u(x) + v(y) ≤ b[c(x, y)− λ], we extend it to T̂ by taking û(ŝ) = 0 and
v̂(ŝ) = 0. Then, it is clear that û(x) + v̂(y) ≤ ĉ(x, y) for x, y ∈ T̂ , and

I ≥
∫
T̂
û(x)µ̂(dx) +

∫
T̂
v̂(x)ν̂(dx) =

∫
T
u(x)µ(dx) +

∫
T
v(x)ν(dx).

It follows that I ≥ J . In order to prove the converse, let (û, v̂) be a maximizer for I. Then, by considering
(û− û(ŝ), v̂ + û(ŝ)), we can assume that û(ŝ) = 0. Also, if we let v(y) := infx∈T̂ [ĉ(x, y)− û(x)], then (û, v) is still
in the admissible class for I and v̂(y) ≤ v(y). This implies that (û, v) is also a maximizer for I. For these reasons,
we can assume w.l.g. that the maximizer (û, v̂) has the following additional properties: û(ŝ) = 0 and

v̂(y) = inf
x∈T̂

[ĉ(x, y)− û(x)] ∀y ∈ T̂ .

In particular, v̂(ŝ) = infx∈T̂ [ĉ(x, ŝ) − û(x)]. For convenience, define w1(ŝ) = 0 and consider the following two
possibilities.
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Case 1: infx∈T̂ [w1(x)−û(x)] ≥ 0. Then, since ĉ(ŝ, ŝ)−û(ŝ) = 0 and infx∈T [ĉ(x, ŝ)−û(x)] = infx∈T [w1(x)−û(x)] ≥
0, we have v̂(ŝ) = 0. Also, v̂(y) ≤ ĉ(ŝ, y)− û(ŝ) ≤ w2(y) for all y ∈ T̂ . For each y ∈ T , by using the facts û ≤ w1

and ĉ(ŝ, y)− w1(ŝ) = w2(y) ≥ 0 we get

v̂(y) ≥ inf
x∈T̂

[ĉ(x, y)− w1(x)] = inf
x∈T
{b[c(x, y)− λ]− w1(x)} = −bλ+ inf

x∈T
[b c(x, y)− w1(x)].

Thus (û, v̂) ∈ K and

I =

∫
T̂
û(x)µ̂(dx) +

∫
T̂
v̂(x)ν̂(dx) =

∫
T
û(x)µ̂(dx) +

∫
T
v̂(x)ν̂(dx) + v̂(ŝ)µ(T )

=

∫
T
û(x)µ(dx) +

∫
T
v̂(x)ν(dx) ≤ J.

Case 2: infx∈T̂ [w1(x)− û(x)] < 0. Then, by arguing as in Case 1, we have v̂(ŝ) = infx∈T [w1(x)− û(x)] < 0 and

I =

∫
T
v̂(x)ν(dx) +

∫
T
û(x)µ(dx) + µ(T ) inf

T
[w1 − û]. (5)

Let ~u(x) := min{û(x), w1(x)}. Then, it is obvious that ~u(x) + v̂(y) ≤ ĉ(x, y) and ~u(ŝ) = 0. Since infx∈T [w1(x)−
û(x)] < 0, there exists x0 ∈ T such that w1(x0) < û(x0). Thus, ~u(x0) = w1(x0) and hence infT [w1 − ~u] ≤ 0. As
~u ≤ w1, we infer further that infT [w1 − ~u] = 0. We also have∫

T
û(x)µ(dx) + µ(T ) inf

T
[w1 − û]

=

∫
T

~u(x)µ(dx) +

∫
T :û>w1

[û(x)− w1(x)]µ(dx) + µ(T ) inf
T

[w1 − û] ≤
∫
T

~u(x)µ(dx).

This together with (5) gives

I ≤
∫
T

~u(x)µ(dx) +

∫
T
v̂(x)ν(dx).

Now let ~v(y) = infx∈T̂ [ĉ(x, y)− ~u(x)] for y ∈ T . Then, v̂(y) ≤ ~v(y) ≤ ĉ(ŝ, y)− ~u(ŝ) = w2(y) for y ∈ T . For each
y ∈ T , by using the facts ~u ≤ w1 and ĉ(ŝ, y)− w1(ŝ) = w2(y) ≥ 0 we also get

~v(y) ≥ inf
x∈T̂

[ĉ(x, y)− w1(x)] = inf
x∈T
{b[c(x, y)− λ]− w1(x)} = −bλ+ inf

x∈T
[b c(x, y)− w1(x)].

It follows that (~u, ~v) ∈ K and

I ≤
∫
T

~u(x)µ(dx) +

∫
T

~v(x)ν(dx) ≤ J.

Thus we conclude that I = J and the theorem follows.

A.5 Proof for Corollary 3.5 in the main text

Proof. Notice that as wi (i = 1, 2) is b-Lipschitz, we have for every x ∈ T that

− wi(x) ≤ inf
y∈T

[
b dT (x, y)− wi(y)

]
. (6)

For each (u, v) ∈ K, let

v∗(x) := inf
y∈T

{
b[dT (x, y)− λ]− v(y)

}
= −bλ+ inf

y∈T

[
b dT (x, y)− v(y)

]
≥ u(x),

v∗∗(y) := inf
x∈T

{
b[dT (x, y)− λ]− v∗(x)

}
= −bλ+ inf

x∈T

[
b dT (x, y)− v∗(x)

]
≥ v(y).
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By using −bλ+ infx∈T [b dT (x, y)− w1(x)] ≤ v(y) ≤ w2(y) and (6), we obtain for every x ∈ T that

v∗(x) ≤ −bλ− v(x) ≤ − inf
y∈T

[b dT (x, y)− w1(y)] ≤ w1(x),

v∗(x) ≥ −bλ+ inf
y∈T

[
b dT (x, y)− w2(y)

]
≥ −bλ− w2(x).

We also have v∗ is b-Lipschitz, i.e., |v∗(x1)− v∗(x2)| ≤ b dT (x1, x2). Indeed, let x1, x2 ∈ T . Then for any ε > 0,
there exists y1 ∈ T such that b dT (x1, y1)− v(y1) < v∗(x1) + bλ+ ε. It follows that

v∗(x2)− v∗(x1) ≤ b dT (x2, y1)− v(y1) + ε− [b dT (x1, y1)− v(y1)] ≤ b dT (x1, x2) + ε.

Since this holds for every ε > 0, we get v∗(x2)− v∗(x1) ≤ b dT (x1, x2). By interchanging the role of x1 and x2,
we also obtain v∗(x1)− v∗(x2) ≤ b dT (x1, x2). Thus, |v∗(x1)− v∗(x2)| ≤ b dT (x1, x2). Hence, we have shown that
v∗ ∈ L′ with

L′ :=
{
f ∈ C(T ) : −bλ− w2 ≤ f ≤ w1, |f(x)− f(y)| ≤ b dT (x, y)

}
.

We next claim v∗∗ = −bλ− v∗. For this, it is clear from the definition that v∗∗(y) ≤ −bλ− v∗(y). On the other
hand, from the Lipschitz property of v∗ we obtain

−v∗(y) ≤ b dT (x, y)− v∗(x) ∀x ∈ T ,

which gives −bλ− v∗(y) ≤ v∗∗(y). Thus, we conclude that v∗∗ = −bλ− v∗ as claimed.

From these, we obtain that∫
T
u(x)µ(dx) +

∫
T
v(x)ν(dx) ≤

∫
T
v∗(x)µ(dx) +

∫
T
v∗∗(x)ν(dx)

=

∫
T
v∗(x)µ(dx)−

∫
T
v∗(x)ν(dx)− bλν(T )

≤ −bλν(T ) + sup

{∫
T
f(µ− ν) : f ∈ L′

}
.

This together with Theorem 3.4 in the main text implies that ETλ(µ, ν) ≤ −bλν(T ) + sup
{∫
T f(µ− ν) : f ∈ L′

}
.

To prove the converse, let f ∈ L′. Define u := f and v := −bλ − f . Then, we have u(x) ≤ w1(x), v(x) ≤
−bλ− [−bλ− w2(x)] = w2(x), and

v(x) ≥ −bλ− w1(x) ≥ −bλ+ inf
y∈T

[b dT (x, y)− w1(y)].

Also, the Lipschitz property of f gives

u(x) + v(y) = −bλ+ f(x)− f(y) ≤ b[dT (x, y)− λ] ∀x, y ∈ T .

Thus (u, v) ∈ K, and hence we obtain from Theorem 3.4 in the main text that

−bλν(T ) +

∫
T
f(µ− ν) =

∫
T
u(x)µ(dx) +

∫
T
v(x)ν(dx) ≤ ETλ(µ, ν).

As this holds for every f ∈ L′, we get

−bλν(T ) + sup

{∫
T
f(µ− ν) : f ∈ L′

}
≤ ETλ(µ, ν).

Thus, we have shown that

ETλ(µ, ν) = −bλν(T ) + sup

{∫
T
f(µ− ν) : f ∈ L′

}
. (7)

Now consider f = ~f − bλ
2 . Then, f ∈ L′ if and only if ~f ∈ L. Moreover,∫

T
f(µ− ν) = −bλ

2

[
µ(T )− ν(T )

]
+

∫
T

~f(µ− ν).

Therefore, the conclusion of the corollary follows from (7).
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A.6 Proof for Proposition 3.7 in the main text

In order to prove Proposition 3.7 in the main text, we need the following auxiliary result.
Lemma A.1. Assume that w1 > 0 and w2 > 0. Then, d(µ, ν) = 0 implies that µ = ν.

Proof. Assume that d(µ, ν) = 0. Let γ0 be an optimal plan for ETλ(µ, ν), and set m := γ0(T × T ). Then,
m ≤ min{µ(T ), ν(T )}, and hence we obtain from Problem (3) in the main text that∫

T
w1[1− f1(x)]µ(dx) +

∫
T
w2[1− f2(x)]ν(dx) + b

∫
T ×T

dT (x, y)γ0(dx, dy)

= ETλ(µ, ν) + λbm ≤ ETλ(µ, ν) +
bλ

2

[
µ(T ) + ν(T )

]
= d(µ, ν) = 0.

Thus, ∫
T
w1[1− f1(x)]µ(dx) =

∫
T
w2[1− f2(x)]ν(dx) =

∫
T ×T

dT (x, y)γ0(dx, dy) = 0.

Since w1 and w2 are positive, it follows in particular that f1 = 1 µ-a.e. and f2 = 1 ν-a.e. That is, γ0
1 = µ and

γ0
2 = ν. Moreover, the above last identity implies that γ0 is supported on the diagonal (y = x). Therefore, for

any continuous function ϕ on T we have∫
T
ϕ(x)µ(dx) =

∫
T ×T

ϕ(x)γ0(dx, dy) =

∫
T ×T

ϕ(y)γ0(dx, dy) =

∫
T
ϕ(y)ν(dy).

We thus conclude that µ = ν.

Proof. [Of Proposition 3.7 in the main text]

i) This follows immediately from Corollary 3.5 in the main text.

ii) By Corollary 3.5 in the main text, it is clear that d(µ, ν) ≥ 0 and d(µ, µ) = 0. Also, if d(µ, ν) = 0, then by
Lemma A.1, we have µ = ν. It is obvious that d satisfies the triangle inequality.

iii) Due to the assumption w1 = w2 we have f ∈ L if and only if −f ∈ L. It follows that d(µ, ν) = d(ν, µ). This
together with ii) implies that (M(T ), d) is a metric space. Its completeness follows from [13, Proposition 4]. As a
complete metric space, it is well known that (M(T ), d) is a geodesic space if and only if for every µ, ν ∈M(T )
there exists σ ∈M(T ) such that

d(µ, σ) = d(ν, σ) =
1

2
d(µ, ν).

To verify the latter, take σ := µ+ν
2 . Then using Corollary 3.5 in the main text, we obtain

d(µ, σ) =
1

2
sup
f∈L

∫
T
f(µ− ν) =

1

2
d(µ, ν)

and
d(ν, σ) =

1

2
sup
f∈L

∫
T
f(ν − µ) =

1

2
d(ν, µ) =

1

2
d(µ, ν).

A.7 Proof for Proposition 3.8 in the main text

Proof. Observe that

ẼT
α

λ(µ, ν) = −bλ
2

[
µ(T ) + ν(T )

]
+ sup

{
s[µ(T )− ν(T )] : s ∈

[
− bλ

2
− w2(r) + α,w1(r) +

bλ

2
− α

]}
+ sup

{∫
T

[ ∫
[r,x]

g(y)ω(dy
]
(µ− ν)(dx) : ‖g‖L1(T ) ≤ b

}
.
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The first supremum equals to [w1(r) + bλ
2 − α][µ(T ) − ν(T )] if µ(T ) ≥ ν(T ) and equals to −[w2(r) + bλ

2 −
α][µ(T )− ν(T )] if µ(T ) < ν(T ). On the other hand, by the same arguments as in [4, p.575-576], we see that the
second supremum equals to

∫
T |µ(�(x))− ν(�(x))|ω(dx). Putting them together, we obtain the desired formula

for ẼT
α

λ(µ, ν).

A.8 Proof for Proposition 3.9 in the main text

Proof. The inequality ETλ(µ, ν) ≤ ẼT
0

λ(µ, ν) holds due to L ⊂ L0 and Corollary 3.5 in the main text. Next, let

2bL(T ) ≤ α ≤ 1

2
[bλ+ w1(r) + w2(r)].

Then, thanks to Corollary 3.5 in the main text, the stated lower bound will follow if Lα ⊂ L. This is achieved if
we can show that any f ∈ Lα satisfies −w2 − bλ

2 ≤ f ≤ w1 + bλ
2 . Indeed, for such function f we have

f(x) = s+

∫
[r,x]

g(y)ω(dy),

with s ∈
[
−w2(r)− bλ

2 + α,w1(r) + bλ
2 − α

]
and ‖g‖L1(T ) ≤ b. This together the b-Lipschitz property of w1, w2

gives for every x ∈ T that

f(x) ≤ s+ ‖g‖L1(T )ω([r, x]) ≤ w1(r) +
bλ

2
− α+ bL(T ) ≤ w1(x) +

bλ

2
− α+ 2bL(T ) ≤ w1(x) +

bλ

2

and

f(x) ≥ s− ‖g‖L1(T )ω([r, x]) ≥ −w2(r)− bλ

2
+ α− bL(T )

≥ −w2(x)− bλ

2
+ α− 2bL(T ) ≥ −w2(x)− bλ

2
.

It follows that f ∈ L. Thus, Lα ⊂ L and we obtain

ẼT
α

λ(µ, ν) ≤ ETλ(µ, ν).

A.9 Proof of Proposition 3.10 in the main text

We begin with the following auxiliary result.
Lemma A.2. Let µ, ν ∈M(T ). Then, µ = ν if and only if µ(�(x)) = ν(�(x)) for every x in T .

Proof. It is obvious that µ = ν implies that µ(�(x)) = ν(�(x)) for every x in T . Now assume that µ(�(x)) =
ν(�(x)) for every x in T . We first claim that µ({a}) = ν({a}) for any a ∈ T . Indeed, if a is not a node then we
have �(a) \�(an) ↓ {a}, where {an}∞n=1 is a sequence of distinct points on the same edge as a and converges to a
from below. Hence,

µ({a}) = lim
n→∞

[
µ(�(a))− µ(�(an))

]
= lim
n→∞

[
ν(�(a))− ν(�(an))

]
= ν({a}).

In case a is a common node for edges e1, ..., ek, then we have �(a) \∪ki=1�(ain) ↓ {a}, where {ain}∞n=1 is a sequence
of distinct points on edge ei that converges to a from below. Then, we obtain

µ({a}) = lim
n→∞

[
µ(�(a))−

k∑
i=1

µ(�(ain))
]

= lim
n→∞

[
ν(�(a))−

k∑
i=1

ν(�(ain))
]

= ν({a}).

Thus, the claim is proved. On the other hand, for any points x, y belonging to the same edge

µ([x, y)) = µ(�(x))− µ(�(y)) = ν(�(x))− ν(�(y)) = ν([x, y)).

Thus, by combining them, we infer further that µ([x, y]) = ν([x, y]) for any x, y ∈ T . It follows that µ = ν, and
the proof is complete.
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Proof. [Of Proposition 3.10 in the main text] We note first that the quantity dα depends only on the values of the
weights at the root r of the tree. This comes from the fact that only w1(r) and w2(r) are used in the definition of
Lα. The proofs of i) and iii) are exactly the same as that of Proposition 3.7 in the main text.

For ii), it follows from the fact

dα(µ, ν) = sup

{∫
T
f(µ− ν) : f ∈ Lα

}
that dα(µ, ν) ≥ 0, dα(µ, µ) = 0, and dα satisfies the triangle inequality. Also, if dα(µ, ν) = 0, then by Proposition
3.8 in the main text, we get[

wi(r) +
bλ

2
− α

]
|µ(T )− ν(T )|+

∫
T
|µ(�(x))− ν(�(x))|ω(dx) = 0.

As
[
wi(r) + bλ

2 − α
]
> 0 by the assumption, we must have µ(T ) = ν(T ) and

∫
T |µ(�(x))− ν(�(x))|ω(dx) = 0.

Therefore, µ(�(x)) = ν(�(x)) for every x ∈ T . By using Lemma A.2, we then conclude that µ = ν.

Alternatively, we can argue as follows. Assume that dα(µ, ν) = 0. Since

Lα ⊃ ~L :=

{
f : −w2(r)− bλ

2
+ α ≤ f(x) ≤ w1(r) +

bλ

2
− α, ‖f‖Lip(T ) ≤ b

}
,

we have
0 ≤ sup

f∈L̃

∫
T
f(µ− ν) ≤ dα(µ, ν) = 0.

Thus, supf∈L̃
∫
T f(µ− ν) = 0. Then, by applying Corollary 3.5 in the main text and Lemma A.1 for constant

weights ~w1 := w1(r) + bλ
2 − α > 0 and ~w2 := w2(r) + bλ

2 − α > 0, we obtain that µ = ν.

A.10 Proof for Proposition 3.11 in the main text

Proof. Let f(xi, xj) = ~a(xi + xj) for ~a, xi, xj ∈ R. We first prove that f is negative definite.

For all n ≥ 2, for c1, c2, . . . , cn such that
∑n
i=1 ci = 0. Given x1, x2, . . . , xn ∈ R, we have∑

i,j

cicjf(xi, xj) =
∑
i,j

cicj~axi +
∑
i,j

cicj~axj ≤ 0.

Therefore, f is negative definite.

From Proposition 3.8 in the main text, we have

ẼT
α

λ(µ, ν) = −bλ
2

[
µ(T ) + ν(T )

]
+
[
wi(r) +

bλ

2
− α

]
|µ(T )− ν(T )|+

∫
T
|µ(�(x))− ν(�(x))|ω(dx).

The first term is negative definite since f is negative definite. Additionally, the second and third terms are
equivalent to the weighted `1 distance with nonnegative weights (i.e., α ≤ wi(r) + bλ

2 and lengths of edges in tree
T are nonnegative). Therefore, the second and third terms are also negative definite. Hence, ẼT

α

λ is negative
definite.

From Proposition 3.10 in the main text, we have

dα(µ, ν) = ẼT
α

λ(µ, ν) +
bλ

2

[
µ(T ) + ν(T )

]
.

Both terms are negative definite. Therefore, dα is also negative definite.

B Further Experimental Results

In this section, we illustrate further experimental results.
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B.1 Further Results on the Efficient Approximation of ẼT
0

λ for ETλ

In this section, we consider some further setups.

Change λ. In Figure 1a, we use the same setup as in Figure 2 in the main text, but set the Lipschitz a1 = b
2 = 0.5

for w1, w2. It shows that when λ is increased, ẼT
0

λ is farther to ETλ.
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Figure 1: In (a), an illustration about the relative difference between ẼT
0

λ and ETλ w.r.t. λ. LT is the longest
path from a root to a node in tree T (LT := LT ). Lipchitz for functions w1, w2 is a1 = 0.5 (where b = 1). In (b,
c), an illustration about the absolute relative difference between ẼT

0

λ and ETλ, i.e., (ẼT
0

λ − ETλ)/ |ETλ|, w.r.t.
b. For (b), the weight functions w1, w2 are set constants (a1 = 0, or w1 = w2 = a0) while for (c), the weight
functions w1, w2 are set with largest Lipchitz (a1 = b).

Change b. We consider 2 following cases:

• For constant functions w1, w2 (with a1 = 0). We use the same setup as in Figure 1 in the main text, but
with constant functions for w1, w2 (i.e., a1 = 0, or w1 = w2 = a0), and change b. We set λ = a0 = 1. In Figure 1b,
we illustrate that when the regularization b between entropy and partial matching is farther to 1 (one of the two
terms is more weighted, see Equation (2) in the main text), ẼT

0

λ is farther to ETλ.

• For functions w1, w2 with largest Lipschitz a1 = b. We use the same setup as in Figure 1b, but with
a1 = b. Figure 1c shows similar results as in Figure 1b for a1 = 0. For the largest Lipchitz for functions w1, w2

(i.e., a1 = b), but for b = a0 = 1, ẼT is almost identical to KT, but they are different when when the regularization
b between entropy and partial matching is farther to 1 (one of the two terms is more weighted, see Equation (2)
in the main text).

B.2 Further Results w.r.t. α

We illustrate further SVM results of dα and ẼT
α

λ w.r.t. value of α in TWITTER, RECIPE, CLASSIC, AMAZON
datasets in Figure 2a, and in Orbit, MPEG7 datasets in Figure 2b. The value of α may affect performances of
dα and ẼT

α

λ in some datasets (e.g., RECIPE, AMAZON datasets for document classification, and Orbit dataset in
TDA), but may not sensitive in some other datasets (e.g., TWITTER, CLASSIC datasets for document classification,
and MPEG7 dataset in TDA). Therefore, although α = 0 gives ẼT

α

λ good property as in Proposition 3.9 in the
main text (upper bound for ETλ), there is a possibility to choose suitable value for α (e.g., via cross validation)
to improve performances of dα and ẼT

α

λ for some certain datasets.
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(a) In TWITTER, RECIPE, CLASSIC, AMAZON datasets.
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Figure 2: SVM results of dα and ẼT
α

λ w.r.t. value of α with 10 tree slices.



Supplementary Material for: Entropy Partial Transport with Tree Metrics: Theory and Practice

B.3 Further Results w.r.t. the Number of (Tree) Slices

Similar as Figure 6 in the main text, we illustrate further SVM results and time consumption for corresponding
kernel matrices for document classification (e.g., TWITTER, RECIPE, CLASSIC, AMAZON datasets) and TDA
(Orbit, MPEG7 datasets in Figure 3a and Figure 3b respectively. For a trade-off between performances and time
consumption, one can choose about ns = 10 slices in applications.
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Figure 3: SVM results and time consumption for corresponding kernel matrices w.r.t. the number of (tree) slices.

B.4 Further Results w.r.t. Parameters of Tree Metric Sampling

Document classification.

• In Figure 4a, Figure 4b, Figure 4c, Figure 4d, we illustrate further SVM results and time consumption
for corresponding kernel matrices of d0 in TWITTER, RECIPE, CLASSIC, AMAZON datasets respectively w.r.t.
different parameters for clustering-based tree metric sampling such as the predefined tree deepest level HT ,
and number of tree branches κ which is the number of clusters in the farthest-point clustering.

• In Figure 5a, Figure 5b, Figure 5c, Figure 5d, we illustrate further SVM results and time consumption for
corresponding kernel matrices of ẼT

0

λ in TWITTER, RECIPE, CLASSIC, AMAZON datasets respectively w.r.t.
different parameters for clustering-based tree metric sampling such as the predefined tree deepest level HT ,
and number of tree branches κ which is the number of clusters in the farthest-point clustering.

TDA.

• In Figure 6a, we illustrate further SVM results and time consumption for corresponding kernel matrices of
d0 in Orbit, MPEG7 datasets w.r.t. different parameters for partition-based tree metric sampling such as the
predefined tree deepest level HT .

• In Figure 6b, we illustrate further SVM results and time consumption for corresponding kernel matrices of
ẼT

0

λ in Orbit, MPEG7 datasets w.r.t. different parameters for partition-based tree metric sampling such as
the predefined tree deepest level HT .

Similar as in [12] (tree metric sampling for tree-sliced-Wasserstein in applications), we also observed that the
default parameters (e.g., the predefined deepest level HT = 6, and the tree branches κ = 4—the number of clusters
in the farthest-point clustering) is a reasonable choice to trade-off about performances and time consumption.
With these default parameters, sampled trees contains about 4000 nodes.

C Further Details and Discussions

In this section, we give further details about experiments, some brief reviews about important aspects used in our
work and discuss other relations to other work.
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(b) In RECIPE dataset.
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Figure 4: SVM results and time consumption for corresponding kernel matrices of d0 w.r.t. different parameters
for clustering-based tree metric sampling (predefined tree deepest level HT , and number of tree branches κ—the
number of clusters in the farthest-point clustering.).

C.1 More Details about Experiments

In this section, we give further details about softwares, datasets and experimental setups.

For softwares.

• For experiments in topological data analysis, we used DIPHA toolbox, available at https://github.com/
DIPHA/dipha, to extract persistence diagrams.

• For the standard complete optimal transport (OT) problem (e.g., KT in our work which we used to compute
the corresponding ETλ), we used a fast OT implementation, available at https://github.com/gpeyre/
2017-ot-beginners/tree/master/matlab/mexEMD. It is about 4 times faster than the popular mex-file with
Rubner’s implementation in C, available at http://robotics.stanford.edu/~rubner/emd/default.htm.

• For tree metric sampling, we used the MATLAB implementation, available at https://github.com/lttam/
TreeWasserstein. We directly used this code for clustering-based tree metric sampling, and adapted it into
its special case partition-based tree metric sampling.

• For Sinkhorn-based approach for unbalanced OT (Sinkhorn-UOT), we used the MATLAB implementation,
available at https://github.com/gpeyre/2017-MCOM-unbalanced-ot.

• For sliced partial optimal transport (SPOT), we adapt the C++ implementation, available at https:
//github.com/nbonneel/spot, into MATLAB.

For datasets.

• For document datasets (e.g., TWITTER, RECIPE, CLASSIC, AMAZON), they are available at https://github.
com/mkusner/wmd.

https://github.com/DIPHA/dipha
https://github.com/DIPHA/dipha
https://github.com/gpeyre/2017-ot-beginners/tree/master/matlab/mexEMD
https://github.com/gpeyre/2017-ot-beginners/tree/master/matlab/mexEMD
http://robotics.stanford.edu/~rubner/emd/default.htm
https://github.com/lttam/TreeWasserstein
https://github.com/lttam/TreeWasserstein
https://github.com/gpeyre/2017-MCOM-unbalanced-ot
https://github.com/nbonneel/spot
https://github.com/nbonneel/spot
https://github.com/mkusner/wmd
https://github.com/mkusner/wmd
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(a) In TWITTER dataset.
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(b) In RECIPE dataset.
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(d) In AMAZON dataset.

Figure 5: SVM results and time consumption for corresponding kernel matrices of ẼT
0

λ w.r.t. different parameters
for clustering-based tree metric sampling (predefined tree deepest level HT , and number of tree branches κ—the
number of clusters in the farthest-point clustering.).

• For Orbit dataset, we follow the procedure, detailed in [1] to generate the dataset.

• For MPEG7 dataset, it is available at http://www.imageprocessingplace.com/downloads_V3/root_
downloads/image_databases/MPEG7_CE-Shape-1_Part_B.zip, then we follow [12] to extract the 10-class
subset of the dataset.

• For granular packing system and SiO2 datasets, one may access to them by contacting the corresponding
authors.

For experimental setups. We further clarify some details about experimental setup.

As mentioned in the main text, for d0 and ẼT
0

λ, we choose the weight functions for w1, w2 as

w1(x) = w2(x) = a1dT (r, x) + a0,

where r is the root of tree T , we set λ = b = 1, a0 = 1. Following §5.1 in the main text, we set a1 = b = 1. As in
§3.2 in the main text, α ∈

[
0, 1

2 (bλ+ w1(r) + w2(r))
]
. Thus, α ∈ [0, 3

2 ] in our experiments (see more experiment

results with different values of α in §B.2). We used ns = 10 (tree) slices for d0, ẼT
0

λ and SPOT. For tree metric
sampling, we used the default hyperparameters, the predefined tree deepest level HT = 6, and the tree branches
κ = 4—the number of clusters used in the farthest-point clustering.

C.2 Some Brief Reviews

In this section, we give some brief reviews (or more referred details) about some important aspects in our work.

For kernels. We review some important definitions (e.g., positive/negative definite kernels [2]) and theorems
(e.g., Theorem 3.2.2 in [2]) about kernels used in our work.

http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/MPEG7_CE-Shape-1_Part_B.zip
http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/MPEG7_CE-Shape-1_Part_B.zip


Tam Le, Truyen Nguyen

0 5 10 15 20
0.71

0.72

0.73

0.74

0.75

0.76

A
ve

ra
ge

 A
cc

ur
ac

y
Orbit1K

0 5 10 15 20
101

102

103

Ti
m

e 
C

on
su

m
pt

io
n 

(s
)

0 5 10 15 20
0.6

0.65

0.7

0.75

0.8
MPEG7

0 5 10 15 20
Number of slices

100HT=4
HT=5
HT=6

(a) For d0.

0 5 10 15 20
0.7

0.72

0.74

0.76

0.78

A
ve

ra
ge

 A
cc

ur
ac

y

Orbit1K

0 5 10 15 20
101

102

103

Ti
m

e 
C

on
su

m
pt

io
n 

(s
)

0 5 10 15 20
0.6

0.65

0.7

0.75

0.8
MPEG7

0 5 10 15 20
Number of slices

100HT=4
HT=5
HT=6

(b) For ẼT
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Figure 6: SVM results and time consumption for corresponding kernel matrices in Orbit, MPEG7 datasets w.r.t.
different parameters for partition-based tree metric sampling (predefined tree deepest level HT ).

• Positive definite kernels [2, p.66–67]. A kernel function k : X × X → R is positive definite if ∀n ∈
N∗,∀x1, x2, ..., xn ∈ X , we have ∑

i,j

cicjk(xi, xj) ≥ 0, ∀ci ∈ R.

• Negative definite kernels [2, p.66–67]. A kernel function k : X × X → R is negative definite if ∀n ≥
2,∀x1, x2, ..., xn ∈ X , we have ∑

i,j

cicjk(xi, xj) ≤ 0, ∀ci ∈ R s.t.
∑
i

ci = 0.

• Theorem 3.2.2 in [2, p.74] for kernels. If κ is a negative definite kernel, then ∀t > 0, kernel

kt(x, z) := exp (−tκ(x, z))

is positive definite.

For tree metric sampling. The tree metric sampling is described in details in [12][S4]. Le et al. [12]
also reviewed the details of the farthest-point clustering in §4.2 in the supplementary, discussed about thee
quantization/clustering sensitivity problems of tree metric sampling in §5 in the supplementary. Tree metric
sampling is also leveraged in other advanced OT problems, e.g., tree-Wasserstein barycenter [10], and a variant of
Gromov-Wasserstein (i.e., alignment problems for probability measures having supports in different spaces) [9].

For persistence diagrams and related mathematical definitions in topological data analysis. We
refer the reader into [8, §2] for a review about mathematical framework for persistence diagrams (e.g., persistence
diagrams, filtrations, persistent homology).

C.3 Discussions about Other Relations to Other Work

We note that ultrametric (i.e., non-Archimedean metric, or isosceles metric) and its special case—binary metric
are tree metrics [12]. Additionally, a metric for points in a line (e.g., in 1-dimensional projections for supports
in SPOT, or SW), or in 1-dimensional manifold (e.g., in 1-dimensional manifold projections for supports in
generalized SW [7]) is also a tree metric since we have a corresponding tree as a chain of these points.

We also list some other studies related to OT problem with tree metrics as follows: (i) Kloeckner [6] derived
geometric properties of OT space for measures on an ultrametric space, (ii) Sommerfeld and Munk [14] studied
statistical inferences for OT on finite spaces including tree metrics.
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We note that we consider the discrete measures in our work (e.g., empirical measures). The closed-form
formulation of our regularized entropy partial transport (EPT) ẼT

α

λ in Equation (8) in the main text is for general
discrete nonnegative measures having different masses. To our knowledge, the proposed regularized EPT (i.e.,
ẼT

α

λ in Equation (8) in the main text) is the first approach that yields a closed-form solution among available
variants of unbalanced OT for discrete measures. In the context of unbalanced OT for continuous measures
(e.g., probability measures are scaled by positive constants), Janati et al. [5] recently showed that entropic optimal
transport for unbalanced Gaussian measures (i.e., Gaussian measures are scaled by different positive constants)
has a closed-form solution.
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