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Abstract

Optimal transport (OT) theory provides pow-
erful tools to compare probability measures.
However, OT is limited to nonnegative mea-
sures having the same mass, and suffers se-
rious drawbacks about its computation and
statistics. This leads to several proposals of
regularized variants of OT in the recent litera-
ture. In this work, we consider an entropy par-
tial transport (EPT) problem for nonnegative
measures on a tree having different masses.
The EPT is shown to be equivalent to a stan-
dard complete OT problem on a one-node
extended tree. We derive its dual formula-
tion, then leverage this to propose a novel
regularization for EPT which admits fast com-
putation and negative definiteness. To our
knowledge, the proposed regularized EPT is
the first approach that yields a closed-form
solution among available variants of unbal-
anced OT for general nonnegative measures.
For practical applications without prior knowl-
edge about the tree structure for measures, we
propose tree-sliced variants of the regularized
EPT, computed by averaging the regularized
EPT between these measures using random
tree metrics, built adaptively from support
data points. Exploiting the negative definite-
ness of our regularized EPT, we introduce a
positive definite kernel, and evaluate it against
other baselines on benchmark tasks such as
document classification with word embedding
and topological data analysis. In addition, we
empirically demonstrate that our regulariza-
tion also provides effective approximations.
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1 Introduction

Optimal transport (OT) theory offers powerful tools
to compare probability measures (Villani, 2008). OT
has been applied for various tasks in machine learning
(Courty et al., 2017; Bunne et al., 2019; Nadjahi et al.,
2019; Peyré and Cuturi, 2019), statistics (Mena and
Niles-Weed, 2019; Weed and Berthet, 2019) and com-
puter graphics (Solomon et al., 2015; Lavenant et al.,
2018). However, OT requires input measures having
the same mass which may limit its applications in prac-
tice since one often needs to deal with measures of
unequal masses. For instance, in natural language pro-
cessing, we can view a document as a measure where
each word is regarded as a point in the support with a
unit mass. Thus, documents with different lengths lead
to their associated measures having different masses.

To tackle the transport problem for measures having
different masses, Caffarelli and McCann (2010) pro-
posed the partial optimal transport (POT) where one
only transports a fixed amount of mass from a measure
into another. Later, Figalli (2010) extended the theory
of POT, notably, about the uniqueness of solutions. A
different approach is to optimize the sum of a trans-
port functional and two convex entropy functionals
which quantify the deviation of the marginals of the
transport plan from the input measures (Liero et al.,
2018), i.e., the optimal entropy transport (OET) prob-
lem. This formulation recovers many different previous
works. For examples, when the entropy is equal to the
total variation distance or the `2 distance, the OET is
respectively equivalent to the generalized Wasserstein
distance (Piccoli and Rossi, 2014, 2016) or the unbal-
anced mass transport (Benamou, 2003). It is worth
noting that the generalized Wasserstein distance shares
the same spirit as the Kantorovich-Rubinstein discrep-
ancy (Hanin, 1992; Guittet, 2002; Lellmann et al., 2014).
Another variant is the unnormalized optimal transport
(Gangbo et al., 2019) which mixes Wasserstein distance
and the `p distance. There are several applications of
the transport problem for measures having different
masses such as in machine learning (Frogner et al.,
2015; Janati et al., 2019), deep learning (Yang and
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Uhler, 2019), topological data analysis (Lacombe et al.,
2018), computational imaging (Lee et al., 2019), and
computational biology (Schiebinger et al., 2019).

One important case for the OET problem is when the
entropy is equal to the Kullback-Leibler (KL) diver-
gence and a particular cost function is used, then OET
is equivalent to the Kantorovich-Hellinger distance
(i.e., Wasserstein-Fisher-Rao distance) (Chizat et al.,
2018; Liero et al., 2018). In addition, one can apply
the Sinkhorn-based algorithm to efficiently solve OET
problem when the entropy is equal to KL divergence,
i.e., Sinkhorn-based approach for unbalanced optimal
transport (Sinkhorn-UOT) (Frogner et al., 2015; Chizat
et al., 2018). Pham et al. (2020) showed that the com-
plexity of Sinkhorn-based algorithm for Sinkhorn-UOT
is quadratic which is similar to the case of entropic
regularized OT (Cuturi, 2013) for probability measures.
However, for large-scale applications where the sup-
ports of measures contain a large number of points,
the computation of Sinkhorn-UOT becomes prohibited.
Following the sliced-Wasserstein (SW) distance (Ra-
bin et al., 2011; Bonneel et al., 2015) which projects
supports into a one-dimensional space and employs the
closed-form solution of the univariate optimal transport
(1d-OT), Bonneel and Coeurjolly (2019) propose the
sliced partial optimal transport (SPOT) for nonnegative
measures having different masses. Unlike the standard
1d-OT, one does not have a closed-form solution for
measures of unequal masses that are supported in a one-
dimensional space. With an assumption of a unit mass
on each support, Bonneel and Coeurjolly (2019) de-
rived an efficient algorithm to solve the SPOT problem
in quadratic complexity for the worst case. Especially,
in practice, their proposed algorithm is nearly linear
for computation. However, as in SW, the SPOT uses
one-dimensional projection for supports which limits
its capacity to capture a structure of a distribution,
especially in high-dimensional settings (Le et al., 2019b;
Liutkus et al., 2019).

In this work, we aim to develop an efficient and scal-
able approach for the transport problem when input
measures have different masses. Inspired by the tree-
sliced Wasserstein (TSW) distance (Le et al., 2019b)
which has fast closed-form computation and remedies
the curse of dimensionality for SW, we propose to con-
sider the entropy partial transport (EPT) problem with
tree metrics. As a high level, our main contribution is
three-fold as follows:

• We establish a relationship between the EPT prob-
lem with mass constraint and a formulation with
Lagrangian multiplier. Then, we employ it to
transform the EPT problem to the standard com-
plete OT problem on a suitable one-node extended
tree.

• We derive a dual formulation for our EPT problem.
We then leverage it to propose a novel regular-
ization which admits a closed-form formula and
negative definiteness. Consequently, we introduce
positive definite kernels for our regularized EPT.
We also derive tree-sliced variants of the regular-
ized EPT for applications without prior knowledge
about tree structure for measures.

• We empirically show that (i) our regularization
provides both efficient approximations and fast
computations, and (ii) the performances of the
proposed kernels for our regularized EPT compare
favorably with other baselines in applications.

The paper is organized as follow: we review tree metric
and introduce important notations in §2. In §3, we
develop the theory for EPT with tree metrics and de-
rive an efficient regularization for EPT computation
in practice. In §4, we distinguish our approach with
other related work in the literature. Then, we evalu-
ate our proposal on document classification with word
embeddings and topological data analysis in §5, before
giving a conclusion in §6. We have released code for
our proposal1.

2 Preliminaries

Let T = (V,E) be a tree rooting at node r and with
nonnegative edge lengths {we}e∈E , where V is the
collection of nodes and E is the collection of edges. For
convenience, we use T to denote the set of all nodes
together with all points on its edges2. We then recall
the definition of tree metric (Semple and Steel, 2003,
§7, p.145–182) as follow:
Definition 2.1 (Tree metric). A metric dT : Ω×Ω→
[0,∞) is called a tree metric on Ω if there exists tree
T such that Ω ⊆ T and for x, y ∈ Ω, dT (x, y) equals
to the length of the (unique) path between x and y.

Assume that V is a subset of a vector space, and let
dT (·, ·) be the tree metric on T . Hereafter, the unique
shortest path in T connecting x and y is denoted by
[x, y]. Let ω be the unique Borel measure (i.e., the
length measure) on T satisfying ω([x, y]) = dT (x, y)
for all x, y ∈ T . Given x ∈ T , the set Λ(x) stands for
the subtree below x. Precisely,

Λ(x) :=
{
y ∈ T : x ∈ [r, y]

}
. (1)

We shall use notationM(T ) to represent the set of all
nonnegative Borel measures on T with a finite mass.

1https://github.com/lttam/EntropyPartialTransport
2Tree T has a finite number of nodes, but all points

on edges can be considered for the tree T and so the tree
includes an infinite number of points.



Tam Le, Truyen Nguyen

Also let C(T ) be the set of all continuous functions
on T , while L∞(T ) be the collection of all Borel mea-
surable functions on T that are bounded ω-a.e. Then,
L∞(T ) is a Banach space under the norm

‖f‖L∞(T ) := inf{a ∈ R : |f(x)| ≤ a for ω-a.e. x ∈ T }.

3 Entropy Partial Transport (EPT)
with Tree Metrics

Let b ≥ 0 be a constant, c : T ×T → R be a continuous
cost with c(x, x) = 0, F1, F2 : [0,∞) → (0,∞) be en-
tropy functions which are convex and lower semicontin-
uous, and let w1, w2 : T → [0,∞) be two nonnegative
weights. For µ, ν ∈M(T ), consider the set

Π≤(µ, ν) :=
{
γ ∈M(T × T ) : γ1 ≤ µ, γ2 ≤ ν

}
with γi (i = 1, 2) denoting the ith marginal of the
measure γ. For γ ∈ Π≤(µ, ν), the Radon-Nikodym
derivatives of γ1 w.r.t. µ and of γ2 w.r.t. ν exist due
to γ1 ≤ µ and γ2 ≤ ν. From now on, we let f1 and f2

respectively denote these Radon-Nikodym derivatives,
i.e., γ1 = f1µ and γ2 = f2ν. Then 0 ≤ f1 ≤ 1 µ-a.e.
and 0 ≤ f2 ≤ 1 ν-a.e. Throughout the paper, m̄ stands
for the minimum of the total masses of µ and ν. That
is, m̄ := min{µ(T ), ν(T )}. Inspired by Caffarelli and
McCann (2010); Liero et al. (2018), we fix a number
m ∈ [0, m̄] and consider the following EPT problem:

Wc,m(µ, ν) := inf
γ∈Π≤(µ,ν), γ(T ×T )=m

[
F1(γ1|µ)

+F2(γ2|ν) + b

∫
T ×T

c(x, y)γ(dx, dy)
]
, (2)

where F1(γ1|µ) :=
∫
T w1(x)F1(f1(x))µ(dx) and

F2(γ2|ν) :=
∫
T w2(x)F2(f2(x))ν(dx) are the weighted

relative entropies. The role of the two entropies in
the minimization problem is to force the marginals of
γ close to µ and ν respectively. Let us introduce a
Lagrange multiplier λ ∈ R conjugate to the constraint
γ(T × T ) = m. As a result, we instead study the
following formulation

ETc,λ(µ, ν) := inf
γ∈Π≤(µ,ν)

[
F1(γ1|µ) + F2(γ2|ν)

+b

∫
T ×T

[c(x, y)− λ]γ(dx, dy)
]
.

In this paper, we focus on the specific entropy functions
F1(s) = F2(s) = |s− 1|. Thus, the quantity of interest
becomes

ETc,λ(µ, ν) = inf
γ∈Π≤(µ,ν)

Cλ(γ), (3)

where Cλ(γ) is defined as follow:

Cλ(γ) :=

∫
T
w1[1− f1(x)]µ(dx) +

∫
T
w2[1− f2(x)]ν(dx)

+ b

∫
T ×T

[c(x, y)− λ]γ(dx, dy)

=

∫
T
w1µ(dx) +

∫
T
w2ν(dx)−

∫
T
w1γ1(dx)

−
∫
T
w2γ2(dx) + b

∫
T ×T

[c(x, y)− λ]γ(dx, dy). (4)

Notice that problem (3) is a generalization of the gen-
eralized Wasserstein distance Wa,b

1 (µ, ν) introduced in
(Piccoli and Rossi, 2014, 2016). We next display some
relationships between problem (2) with mass constraint
m and problem (3) with Lagrange multiplier λ. For
this, let Γ0(λ) denote the set of all optimal plans (i.e.,
minimizers γ) for ETc,λ(µ, ν). Then, since Cλ(γ) is
an affine function of γ ∈ Π≤(µ, ν), the set Γ0(λ) is
a nonempty convex set. Indeed, for any γ̃, γ̂ ∈ Γ0(λ)
and for any t ∈ [0, 1] we have (1 − t)γ̃ + tγ̂ ∈ Γ0(λ)
due to Cλ((1 − t)γ̃ + tγ̂) = (1 − t)Cλ(γ̃) + tCλ(γ̂) ≤
(1 − t)Cλ(γ) + tCλ(γ) = Cλ(γ) for every γ ∈ Π≤(µ, ν).
The following result extends (Caffarelli and McCann,
2010, Corollary 2.1) and reveals the connection between
problem (2) and problem (3).

Theorem 3.1. Let u(λ) := −ETc,λ(µ, ν) for λ ∈ R,
and denote

∂u(λ) :=
{
p ∈ R : u(t) ≥ u(λ) + p(t− λ),∀t ∈ R

}
for the set of all subgradients of u at λ. Also, set
∂u(R) := ∪λ∈R∂u(λ). Then, we have

i) u is a convex function on R, and

∂u(λ) =
{
b γ(T × T ) : γ ∈ Γ0(λ)

}
∀λ ∈ R.

Also if λ1 < λ2, then m1 ≤ m2 for every m1 ∈
∂u(λ1) and m2 ∈ ∂u(λ2).

ii) u is differentiable at λ if and only if every optimal
plan in Γ0(λ) has the same mass. When this hap-
pens, we in addition have u′(λ) = b γ(T × T ) for
any γ ∈ Γ0(λ).

iii) If there exists a constant M > 0 such that
w1(x) + w2(y) ≤ b c(x, y) + M for all x, y ∈
T , then ∂u(R) = [0, b m̄]. Moreover, u(λ) =
−
∫
T w1µ(dx) −

∫
T w2ν(dx) when λ < −M , and

u′(λ) = b m̄ for λ > ‖c‖L∞(T ×T ).

Proof is placed in the Supplementary (§A.1). For any
m ∈ [0, m̄], part iii) of Theorem 3.1 implies that there
exists λ ∈ R such that bm ∈ ∂u(λ). It then follows
from part i) of this theorem that m = γ∗(T × T ) for
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some γ∗ ∈ Γ0(λ). It is also clear that this γ∗ is an
optimal plan for Wc,m(µ, ν), and

Wc,m(µ, ν) = ETc,λ(µ, ν) + λbm.

Thus solving the auxiliary problem (3) gives us a so-
lution to the original problem (2). When u is dif-
ferentiable, the relation between m and λ is given
explicitly as u′(λ) = bm. Note that the above selec-
tion of λ is unique only if the function u is strictly
convex. Nevertheless, it enjoys the following mono-
tonicity regardless of the uniqueness: if m1 < m2,
then λ1 ≤ λ2. Indeed, we have m1 = γ1(T × T ) and
m2 = γ2(T ×T ) for some γ1 ∈ Γ0(λ1) and γ2 ∈ Γ0(λ2).
Since γ1(T × T ) < γ2(T × T ), one has λ1 ≤ λ2 by i)
of Theorem 3.1.

To investigate problem (3), we recast it as the stan-
dard complete OT problem by using an observation in
(Caffarelli and McCann, 2010). More precisely, let ŝ be
a point outside T and consider the set T̂ := T ∪ {ŝ}.
We next extend the cost function to T̂ × T̂ as follow

ĉ(x, y) :=


b[c(x, y)− λ] if x, y ∈ T ,
w1(x) if x ∈ T and y = ŝ,
w2(y) if x = ŝ and y ∈ T ,
0 if x = y = ŝ.

The measures µ, ν are extended accordingly by adding
a Dirac mass at the isolated point ŝ: µ̂ = µ+ ν(T )δŝ
and ν̂ = ν + µ(T )δŝ. As µ̂, ν̂ have the same total
mass on T̂ , we can consider the standard complete OT
problem between µ̂, ν̂ as follow

KT(µ̂, ν̂) := inf
γ̂∈Γ(µ̂,ν̂)

∫
T̂ ×T̂

ĉ(x, y)γ̂(dx, dy), (5)

where Γ(µ̂, ν̂) :=
{
γ̂ ∈ M(T̂ × T̂ ) : µ̂(U) = γ̂(U ×

T̂ ), ν̂(U) = γ̂(T̂ × U) for all Borel sets U ⊂ T̂
}
.

A one-to-one correspondence between γ ∈ Π≤(µ, ν)
and γ̂ ∈ Γ(µ̂, ν̂) is given by

γ̂ = γ + [(1− f1)µ]⊗ δŝ + δŝ ⊗ [(1− f2)ν]

+γ(T × T )δ(ŝ,ŝ). (6)

Indeed, if γ ∈ Π≤(µ, ν), then it is clear that γ̂ defined
by (6) satisfies γ̂ ∈ Γ(µ̂, ν̂). The converse is guaranteed
by the next technical result.

Lemma 3.2. For γ̂ ∈ Γ(µ̂, ν̂), let γ be the restriction
of γ̂ to T . Then, relation (6) holds and γ ∈ Π≤(µ, ν).

Proof is placed in the Supplementary (§A.2).

These observations in particular display the following
connection between the EPT problem and the standard
complete OT problem.

Proposition 3.3 (EPT versus complete OT). For ev-
ery µ, ν ∈ M(T ), we have ETc,λ(µ, ν) = KT(µ̂, ν̂).
Moreover, relation (6) gives a one-to-one correspon-
dence between optimal solution γ for EPT problem (3)
and optimal solution γ̂ for standard complete OT prob-
lem (5).

Proof is placed in the Supplementary (§A.3).

3.1 Dual Formulations

The relationship given in Proposition 3.3 allows us to
obtain the dual formulation of EPT in problem (3) from
that of problem (5) proved in (Caffarelli and McCann,
2010, Corollary 2.6).

Theorem 3.4 (Dual formula for general cost). For
any λ ≥ 0 and nonnegative weights w1(x), w2(x), we
have

ETc,λ(µ, ν) = sup
(u,v)∈K

[ ∫
T
u(x)µ(dx) +

∫
T
v(x)ν(dx)

]
,

where K :=
{

(u, v) : u ≤ w1, −bλ+ infx∈T [b c(x, y)−

w1(x)] ≤ v(y) ≤ w2(y), u(x) + v(y) ≤ b[c(x, y)− λ]
}
.

Proof is placed in the Supplementary (§A.4).

This dual formula is our main theoretical result which
leads to our novel efficient regularization for the EPT
(see §3.2), and can be rewritten more explicitly when
the cost function c is the tree metric. Hereafter, we use
c(x, y) = dT (x, y). To ease the notations, we simply
write ETλ(µ, ν) for ETdT ,λ(µ, ν).

Corollary 3.5 (Dual formula for tree metric). Assume
that λ ≥ 0 and the nonnegative weights w1, w2 are b-
Lipschitz w.r.t. dT . Then, we have

ETλ(µ, ν) = sup
{∫
T f(µ− ν) : f ∈ L

}
− bλ2

[
µ(T ) + ν(T )

]
, (7)

where L :=
{
f ∈ C(T ) : −w2 − bλ

2 ≤ f ≤ w1 +

bλ
2 , |f(x)− f(y)| ≤ b dT (x, y)

}
.

Proof is placed in the Supplementary (§A.5).

Corollary 3.5 extends the dual formulation for the
generalized Wasserstein distance Wa,b

1 (µ, ν) proved in
(Piccoli and Rossi, 2016, Theorem 2) and (Chung and
Trinh, 2019). In the next section, we will leverage (7)
to propose an effective regularization for computation
in practice.

Remark 3.6. An example of b-Lipschitz weight is
w(x) = a1 dT (x, x0) + a0 for some x0 ∈ T and for
some constants a1 ∈ [0, b] and a0 ∈ [0,∞).
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As a consequence of the dual formulation, we obtain
the following geometric properties:

Proposition 3.7 (Geometric structures of metric d).
Assume that λ ≥ 0 and the weights w1, w2 are pos-
itive and b-Lipschitz w.r.t. dT . Define d(µ, ν) :=
ETλ(µ, ν) + bλ

2

[
µ(T ) + ν(T )

]
. Then, we have

i) d(µ+ σ, ν + σ) = d(µ, ν), ∀σ ∈M(T ).

ii) d is a divergence and satisfies the triangle inequal-
ity d(µ, ν) ≤ d(µ, σ) + d(σ, ν).

iii) If in addition w1 = w2, then (M(T ), d) is a com-
plete metric space. Moreover, it is a geodesic space
in the sense that for every two points µ and ν in
M(T ) there exists a path ϕ : [0, a]→M(T ) with
a := d(µ, ν) such that ϕ(0) = µ, ϕ(a) = ν, and

d(ϕ(t), ϕ(s)) = |t− s| for all t, s ∈ [0, a].

Proof is placed in the Supplementary (§A.6).

Let m ∈ [0, m̄], and choose λ ≥ 0 such that there exists
an optimal plan γ0 for ETλ(µ, ν) with γ0(T ×T ) = m.
As pointed out right after Theorem 3.1, this choice of
λ is possible. Then, the proof of Lemma A.1 in the
Supplementary (§A.6) shows that

inf
γ∈Π≤(µ,ν), γ(T ×T )=m

[
F1(γ1|µ) + F2(γ2|ν)

+ b

∫
T ×T

c(x, y)γ(dx, dy)
]
≤ d(µ, ν).

Moreover, the equality happens if and only if there
exists an optimal plan γ0 for ETλ(µ, ν) such that m =
γ0(T ×T ) = 1

2 [µ(T )+ν(T )]. The necessary conditions
for the latter one to hold are µ(T ) = ν(T ) and m = m̄.

3.2 An Efficient Regularization for Entropy
Partial Transport with Tree Metrics

First observe that any f ∈ L can be represented by

f(x) = f(r) +

∫
[r,x]

g(y)ω(dy)

for some function g ∈ L∞(T ) with ‖g‖L∞(T ) ≤ b. Note
that condition |f(x)− f(y)| ≤ b dT (x, y) is equivalent
to ‖g‖L∞(T ) ≤ b. It follows that L ⊂ L0, where we
define for 0 ≤ α ≤ 1

2 [bλ+w1(r) +w2(r)] that Lα is the
collection of all functions f of the form

f(x) = s+

∫
[r,x]

g(y)ω(dy),

with s being a constant in the interval
[
− w2(r) −

bλ
2 + α,w1(r) + bλ

2 − α
]
and with ‖g‖L∞(T ) ≤ b. This

leads us to consider the following regularization for
ETλ(µ, ν):

ẼT
α

λ(µ, ν) := sup
{∫
T f(µ− ν) : f ∈ Lα

}
− bλ2

[
µ(T ) + ν(T )

]
. (8)

Especially, when α = 0 and notice that L ⊂ L0,
ẼT

0

λ(µ, ν) is an upper bound of ETλ(µ, ν) through
the dual formulation. The next result gives a closed-
form formula for ẼT

α

λ(µ, ν) and is our main formula
used for computation in practice.

Proposition 3.8 (closed-form for regularized EPT).
Assume that λ,w1(r), w2(r) are nonnegative numbers.
Then, for 0 ≤ α ≤ 1

2 [bλ+ w1(r) + w2(r)], we have

ẼT
α

λ(µ, ν) =
∫
T |µ(Λ(x))− ν(Λ(x))|ω(dx)

− bλ2
[
µ(T ) + ν(T )

]
+
[
wi(r) + bλ

2 − α
]
|µ(T )− ν(T )|

with i := 1 if µ(T ) ≥ ν(T ) and i := 2 if µ(T ) < ν(T ).
In particular, the map α 7−→ ẼT

α

λ(µ, ν) is nonincreas-
ing and

|ẼT
α1

λ (µ, ν)− ẼT
α2

λ (µ, ν)| = |α1 − α2||µ(T )− ν(T )|.

Proof is placed in the Supplementary (§A.7).

It is also possible to use ẼT
α

λ(µ, ν) to upper or lower
bound the distance ETλ(µ, ν) as follows:

Proposition 3.9 (Bounds for ETλ with ẼT
α

λ). As-
sume that λ ≥ 0 and the weights w1, w2 are b-Lipschitz
w.r.t. dT . Then,

ETλ(µ, ν) ≤ ẼT
0

λ(µ, ν).

In addition, if [4LT −λ]b ≤ w1(r)+w2(r) where LT :=
maxx∈T ω([r, x]), then

ẼT
α

λ(µ, ν) ≤ ETλ(µ, ν),

for every 2bLT ≤ α ≤ 1
2 [bλ+ w1(r) + w2(r)].

Proof is placed in the Supplementary (§A.8).

Analogous to Proposition 3.7, we obtain:

Proposition 3.10 (Geometric structures of regular-
ized metric dα). Assume that λ,w1(r), w2(r) are non-
negative numbers. For 0 ≤ α < bλ

2 +min{w1(r), w2(r)},
define

dα(µ, ν) := ẼT
α

λ(µ, ν) +
bλ

2

[
µ(T ) + ν(T )

]
. (9)

Then, we have

i) dα(µ+ σ, ν + σ) = dα(µ, ν), ∀σ ∈M(T ).
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ii) dα is a divergence and satisfies the triangle in-
equality dα(µ, ν) ≤ dα(µ, σ) + dα(σ, ν).

iii) If in addition w1(r) = w2(r), then (M(T ), dα) is
a complete metric space. Moreover, it is a geodesic
space in the sense defined in part iii) of Proposi-
tion 3.7 but with dα replacing d.

Proof is placed in the Supplementary (§A.9).

Our next result about negative definiteness is a cor-
nerstone to build positive definite kernels upon either
ẼT

α

λ or dα for kernel-dependent frameworks.

Proposition 3.11 (Negative definiteness). With the
same assumptions as in Proposition 3.8 for ẼT

α

λ and in
Proposition 3.10 for dα, both ẼT

α

λ and dα are negative
definite.

Proof is placed in the Supplementary (§A.10).

From Proposition 3.11 and following (Berg et al.,
1984, Theorem 3.2.2, p.74), given t > 0, the kernels
k

ẼT
α

λ
(µ, ν) := exp

(
−tẼT

α

λ(µ, ν)
)

and kdα(µ, ν) :=

exp (−tdα(µ, ν)) are positive definite.

3.3 Tree-sliced Variants by Sampling Tree
Metrics

In most of practical applications, we usually do not
have prior knowledge about tree structure for mea-
sures. Therefore, we need to choose or sample tree
metrics from support data points for a given task. We
use the tree metric sampling methods in (Le et al.,
2019b, §4): (i) partition-based tree metric sampling for
a low-dimensional space, or (ii) clustering-based tree
metric sampling for a high-dimensional space. More-
over, those tree metric sampling methods are not only
fast for computation3, but also adaptive to the distri-
bution of supports. We further propose the tree-sliced
variants of the regularized EPT, computed by averag-
ing the regularized EPT using those randomly sampled
tree metrics. One advantage is to reduce the quantiza-
tion effects or cluster sensitivity problems (i.e, support
data points are quantized, or clustered into an adja-
cent hypercube, or cluster respectively) within the tree
metric sampling procedure.

Although one can leverage tree metrics to approximate
arbitrary metrics (Bartal, 1996, 1998; Charikar et al.,
1998; Indyk, 2001; Fakcharoenphol et al., 2004), our
goal is rather to sample tree metrics and use them as
ground metrics in the regularized EPT, similar to TSW.

3E.g., the complexity of the clustering-based tree metric
is O(HTm log κ) when we set κ clusters for the farthest-
point clustering (Gonzalez, 1985), andHT for the predefined
tree deepest level for m input support data points.

Despite the fact that one-dimensional projections do
not have interesting properties in terms of distortion
viewpoints, they remain useful for SPOT (or SW, sliced-
Gromov-Wasserstein (Vayer et al., 2019)). In the same
vein, we believe that trees with high distortion are still
useful for EPT, similar as in TSW. Moreover, one may
not need to spend excessive effort to optimize ETλ
(in Equation (7)) for a randomly sampled tree metric
since it can lead to overfitting within the computation
of the EPT itself. Therefore, the proposed efficient
regularization of EPT (e.g, ẼT

α

λ in Equation (8)) is
not only fast for computation (i.e., closed-form), but
also gives a benefit to overcome the overfitting problem
within the computation of the EPT.

4 Discussion and Related Work

One can leverage tree metrics to approximate arbitrary
metrics for speeding up a computation (Bartal, 1996,
1998; Charikar et al., 1998; Indyk, 2001; Fakcharoen-
phol et al., 2004). For instances, (i) Indyk and Thaper
(2003) applied tree metrics (e.g., quadtree) to approxi-
mate OT with Euclidean cost metric for a fast image
retrieval. (ii) Sato et al. (2020) considered a generalized
Kantorovich-Rubinstein discrepancy (Hanin, 1992; Gui-
ttet, 2002; Lellmann et al., 2014) with general weights
for unbalanced OT, and used a quadtree as in (Indyk
and Thaper, 2003) to approximate the proposed dis-
tance via a dynamic programming with infinitely many
states. They then derived an efficient algorithm with a
quasi-linear time complexity to speed up the dynamic
programming computation by leveraging high-level pro-
gramming techniques. However, such approximations
following the approach of Indyk and Thaper (2003)
result in large distortions in high dimensional spaces
(Naor and Schechtman, 2007).

Tree metrics are also leveraged for several advanced OT
problems, e.g., tree-Wasserstein barycenters (Le et al.,
2019a); or a variant of Gromov-Wasserstein (a.k.a.,
flow-based alignment approaches) (Le et al., 2021).
Additionally, ultrametric, a special case of tree metrics,
is also utilized on Gromov-Wasserstein (Mémoli et al.,
2021) and Gromov-Hausdoff (Mémoli et al., 2019) for
metric measure spaces.

5 Experiments

In this section, we first illustrate that ẼT
α

λ (Equa-
tion (8)) is an efficient approximation for ETλ (Equa-
tion (7)). Then, we evaluate our proposed ẼT

α

λ and dα
(Equation (9)) for comparing measures in document
classification with word embedding and topological
data analysis (TDA). Experiments are evaluated with
Intel Xeon CPU E7-8891v3 2.80GHz and 256GB RAM.
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Documents with word embedding. We consider
each document as a measure where each word is re-
garded as a point in the support with a unit mass.
Following Kusner et al. (2015); Le et al. (2019b), we
applied the word2vec word embedding (Mikolov et al.,
2013), pretrained on Google News4 containing about
3 millions words/phrases. Each word/phrase in a doc-
ument is mapped into a vector in R300. We removed
all SMART stop word (Salton and Buckley, 1988), and
dropped words in documents if they are not available
in the pretrained word2vec.

Geometric structured data via persistence dia-
grams (PD) in TDA. TDA has recently emerged
in machine learning community as a powerful tool to an-
alyze geometric structured data such as material data,
or linked twist maps (Adams et al., 2017; Lacombe
et al., 2018; Le and Yamada, 2018). TDA applies al-
gebraic topology methods (e.g., persistence homology)
to extract robust topological features (e.g., connected
components, rings, cavities) and output a multiset of
2-dimensional points (i.e., PD). The coordinates of a
2-dimensional point in PD are corresponding to the
birth and death time of a particular topological feature.
Therefore, each point in PD summarizes a life span of
a topological feature. We can regard PD as measures
where each 2-dimensional point is considered as a point
in the support with a unit mass.

Tree metric sampling. In our experiments, we do
not have prior knowledge about tree metrics for nei-
ther word embeddings in documents nor 2-dimensional
points in PD. To compute the EPT (e.g., ẼT

α

λ and
dα), we considered ns randomized tree metrics. We
employed the clustering-based tree metric sampling for
word embeddings in documents (i.e., high-dimensional
space R300), while we used the partition-based tree
metric sampling for 2-dimensional points in PD (i.e.,
low-dimensional space R2). Those tree metric sampling
methods are built with a predefined deepest level HT of
tree T as a stopping condition as in (Le et al., 2019b).

Baselines and setup. We considered 2 typical base-
lines based on OT theory for measures with different
masses: (i) Sinkhorn-UOT (Frogner et al., 2015; Chizat
et al., 2018) (i.e., entropic regularization approach),
and (ii) SPOT (Bonneel and Coeurjolly, 2019) (i.e.,
sliced-formula approach based on 1-dimensional pro-
jection). Following Le et al. (2019b), we apply the
kernel approach in the form exp(−td̄) with SVM for
document classification with word embedding. Here,
d̄ is a discrepancy between measures and t > 0. We
also employed this kernel approach for various tasks in
TDA, e.g., orbit recognition and object shape classi-

4https://code.google.com/p/word2vec

fication with SVM, as well as change point detection
for material data analysis with kernel Fisher discrim-
inant ratio (KFDR) (Harchaoui et al., 2009). While
kernels for ẼT

α

λ and dα are positive definite, kernels for
Sinkhorn-UOT and SPOT are empirically indefinite5.
When kernels are indefinite, we regularized for the cor-
responding Gram matrices by adding a sufficiently large
diagonal term as in (Cuturi, 2013; Le et al., 2019b). For
SVM, we randomly split each dataset into 70%/30%
for training and test with 10 repeats. Typically, we
choose hyper-parameters via cross validation, choose
1/t from {q10, q20, q50} where qs is the s% quantile of
a subset of corresponding discrepancies observed on
a training set, use 1-vs-1 strategy with Libsvm6 for
multi-class classification, and choose SVM regulariza-
tion from

{
10−2:1:2

}
. For Sinkhorn-UOT, we select

the entropic regularization from {0.01, 0.05, 0.1, 0.5, 1}.
Following Proposition 3.9, we take α = 0 for ẼT

α

λ and
dα in all our experiments.

5.1 Efficient Approximation of ẼT
0

λ for ETλ

We randomly sample 500K pairs of documents in
TWITTER dataset. Following Proposition 3.3, we com-
pute ETλ via the corresponding KT (Equation (5)).
Our goal is to compare ẼT

0

λ to ETλ.
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Figure 1: Relative difference between ẼT
0

λ and ETλ
w.r.t. Lipschitz const. of w1, w2.
Change Lipschitz constants. We choose w1(x) =
w2(x) = a1dT (r, x) + a0, and set λ = b = 1, a0 = 1. In
particular, a1 ∈ [0, b] since w1, w2 are b-Lipschitz func-
tions (see Corollary 3.5 and Remark 3.6). We illustrate
the relative difference (ẼT

0

λ − ETλ)/ETλ when a1 is
changed in [0, b] in Figure 1. We observe that when a1

is close to b (i.e., the Lipschitz constants of w1, w2 are
close to b), ẼT

0

λ becomes closer to ETλ. When a1 = b,
the values of ẼT

0

λ is almost identical to ETλ.

Change λ. From the results in Figure 1, we set a1 = b

to investigate the relative different between ẼT
0

λ and
ETλ when λ is changed. As illustrated in Figure 2,

5We empirically observed negative eigenvalues in Gram
matrices corresponding to kernels for Sinkhorn-UOT and
SPOT.

6https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Figure 2: Relative difference between ẼT
0

λ and ETλ
w.r.t. λ when a1 = b. (LT := LT )

ẼT
0

λ is almost identical to ETλ regardless the value of
λ when a1 = b.

5.2 Document Classification with Word
Embedding

We consider 4 datasets: TWITTER, RECIPE, CLASSIC
and AMAZON for document classification with word em-
bedding. Statistical characteristics of these datasets
are summarized in Figure 3.

5.3 Topological Data Analysis (TDA)

5.3.1 Orbit Recognition

We considered a synthesized dataset, proposed by
Adams et al. (2017), for link twist map which is a
discrete dynamical system to model flows in DNA mi-
croarrays (Hertzsch et al., 2007). There are 5 classes of
orbits. Following Le and Yamada (2018), we generated
1000 orbits for each class of orbits, and each orbit has
1000 points. We used the 1-dimensional topological
features for PD extracted with Vietoris-Rips complex
filtration (Edelsbrunner and Harer, 2008).

5.3.2 Object Shape Classification

We evaluated our approach for object shape classifica-
tion on a subset of MPEG7 dataset (Latecki et al., 2000)
containing 10 classes where each class has 20 samples
as in (Le and Yamada, 2018). For simplicity, we fol-
lowed Le and Yamada (2018) to extract 1-dimensional
topological features for PD with Vietoris-Rips complex
filtration7 (Edelsbrunner and Harer, 2008).

5.3.3 Change Point Detection for Material
Analysis

We applied our approach on change point detection for
material analysis with KFDR as a statistical score on
granular packing system (GPS) (Francois et al., 2013)
and SiO2 (Nakamura et al., 2015) datasets. Statistical
characteristics of these datasets are summarized in
Figure 5. Following Le and Yamada (2018), we set

7A more complicated and advanced filtration for this
task is considered in (Turner et al., 2014).

10−3 for the regularization parameter in KFDR and
used the ball model filtration to extract 2-dimensional
topological features for PD in GPS dataset, and 1-
dimensional topological features for PD in SiO2 dataset.
Note that we omit the baseline kernel for Sinkhorn-
UOT in this application since the computation with
Sinkhorn-UOT is out of memory.

We illustrate the KFDR graphs in Figure 5. For GPS
dataset, all kernel approaches get the change point at
the index 23 which supports the observation (corre-
sponding id = 23) in (Anonymous, 1972). For SiO2

dataset, all kernel approaches get the change point in
a supported range (35 ≤ id ≤ 50), obtained by a tradi-
tional physical approach (Elliott, 1983). The KFDR
results of kernels corresponding to d0 and ẼT

0

λ compare
favorably with those of kernel for SPOT.

5.4 Results of SVM, Time Consumption and
Discussions

We illustrate the results of SVM and time consump-
tion of kernel matrices in document classification with
word embedding and TDA in Figure 3 and Figure 4
respectively. The performances of kernels for ẼT

0

λ and
d0 outperform those of kernels for SPOT. They also
outperform those of kernels for Sinkhorn-UOT on TDA,
and are comparative on document classification. The
fact that SPOT uses the 1-dimensional projection for
support data points may limit its ability to capture
high-dimensional structure in data distributions (Le
et al., 2019b; Liutkus et al., 2019). The regularized EPT
remedies this problem by leveraging the tree metrics
which have more flexibility and degrees of freedom (e.g.,
choose a tree rather than a line). In addition, while
kernels for ẼT

0

λ and d0 are positive definite, kernels
for SPOT and Sinkhorn-UOT are empirically indef-
inite. The indefiniteness of kernels may affect their
performances in some applications, e.g., kernels for
Sinkhorn-UOT work well for document classification
with word embedding, but perform poorly in TDA ap-
plications. There are also similar observations in (Le
et al., 2019b). Additionally, we illustrate a trade-off
between performances and computational time for dif-
ferent number of (tree) slices in TWITTER dataset in
Figure 6. The performances are usually improved with
more slices, but with a trade-off about the computa-
tional time. In applications, we observed that a good
trade off is about ns = 10 slices.

Tree metric sampling. Time consumption for
the tree metric sampling is negligible in applications.
With the predefined tree deepest level HT = 6 and
tree branches κ = 4 as in (Le et al., 2019b), it
took 1.5, 11.0, 17.5, 20.5 seconds for TWITTER, RECIPE,
CLASSIC, AMAZON datasets respectively, and 21.0, 0.1
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Figure 3: SVM results and time consumption of kernel matrices on document classification. For each dataset, the
numbers in the parenthesis are respectively the number of classes, the number of documents, and the maximum
number of unique words for each document.
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Figure 4: SVM results and time consumption of kernel
matrices for TDA. For each dataset, the numbers in
the parenthesis are respectively the number of PD, and
the maximum number of points in PD.

seconds for Orbit, MPEG7 datasets respectively.

ẼT
0

λ versus ETλ. We also compare ẼT
0

λ and ETλ (or
KT) in TWITTER dataset for document classification,
and in MPEG7 dataset for object shape recognition in
TDA. The performances of ẼT

0

λ and ETλ are identical
(i.e., their kernel matrices are almost the same for those
datasets), but ẼT

0

λ is faster than ETλ about 11 times
in TWITTER dataset, and 81 times in MPEG7 dataset
when ns = 10 slices.

Further results are placed in the supplementary (§B).

6 Conclusion

We have developed a rigorous theory for the entropy
partial transport (EPT) problem for nonnegative mea-
sures on a tree having different masses. We show that
the EPT problem is equivalent to a standard complete
OT problem on a suitable one-node extended tree which
allows us to develop its dual formulation. By leveraging
the dual problem, we proposed efficient novel regulariza-
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Figure 5: KFDR graphs and time consumption of kernel
matrices for change point detection. For each dataset,
the numbers in the parenthesis are respectively the
number of PDs, and the maximum number of points
in PD.
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Figure 6: SVM results and time consumption for cor-
responding kernel matrices in TWITTER dataset w.r.t.
the number of (tree) slices.

tion for the EPT which yields closed-form solution for a
fast computation and negative definiteness—an impor-
tant property to build positive definite kernels required
in many kernel-dependent frameworks. Moreover, our
regularization also provides effective approximations in
applications. We further derive tree-sliced variants of
the regularized EPT for practical applications without
prior knowledge about a tree structure for measures.
The question about sampling optimal tree metrics for
the tree-sliced variants from data points is left for future
work.
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