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Abstract

Gromov-Wasserstein (GW) is a powerful tool
to compare probability measures whose sup-
ports are in different metric spaces. However,
GW suffers from a computational drawback
since it requires to solve a complex non-convex
quadratic program. In this work, we con-
sider a specific family of cost metrics, namely,
tree metrics for supports of each probability
measure, to develop efficient and scalable dis-
crepancies between the probability measures.
Leveraging a tree structure, we propose to
align flows from a root to each support instead
of pair-wise tree metrics of supports, i.e., flows
from a support to another support, in GW.
Consequently, we propose a novel discrepancy,
named Flow-based Alignment (FlowAlign), by
matching the flows of the probability mea-
sures. FlowAlign is computationally fast and
scalable for large-scale applications. Further
exploring the tree structure, we propose a vari-
ant of FlowAlign, named Depth-based Align-
ment (DepthAlign), by aligning the flows
hierarchically along each depth level of the
tree structures. Theoretically, we prove that
both FlowAlign and DepthAlign are pseudo-
metrics. We also derive tree-sliced variants
of the proposed discrepancies for applications
without prior knowledge about tree structures
for probability measures, computed by averag-
ing FlowAlign/DepthAlign using random tree
metrics, adaptively sampled from supports of
probability measures. Empirically, we test our
proposed approaches against other variants
of GW baselines on a few benchmark tasks.
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1 Introduction

Optimal transport (OT) theory provides a powerful set
of tools to compare probability measures. OT has re-
cently gained considerable interests in machine learning
community (Cuturi, 2013; Perrot et al., 2016; Genevay
et al., 2016; Muzellec and Cuturi, 2018; Luise et al.,
2019; Mena and Niles-Weed, 2019; Paty and Cuturi,
2019; Togninalli et al., 2019), and played an increasingly
important role in several research areas, such as com-
puter graphics (Solomon et al., 2015; Bonneel et al.,
2016; Lavenant et al., 2018; Solomon and Vaxman,
2019), domain adaptation (Courty et al., 2016, 2017;
Bhushan Damodaran et al., 2018; Redko et al., 2019),
and deep generative models (Arjovsky et al., 2017; Gul-
rajani et al., 2017; Genevay et al., 2018; Kolouri et al.,
2019; Nadjahi et al., 2019; Wu et al., 2019).

When probability measures are discrete and their sup-
ports are in the same space, OT distance can be re-
casted as a linear programming, which can be solved by
standard interior-point method algorithms. However,
these algorithms are not efficient when the number of
supports is large. In order to account for the scala-
bility of the OT distance, Cuturi (2013) initiated a
new research line by regularizing the OT with the
entropy of the transport plans. Several efficient algo-
rithms have been recently proposed to solve the entropic
OT (Altschuler et al., 2017; Dvurechensky et al., 2018;
Lin et al., 2019; Altschuler et al., 2019).

When probability measures are discrete and their sup-
ports are in different spaces, the classical OT distance
is no longer valid to measure their discrepancy. In
his seminal work, Mémoli (2011) introduced Gromov-
Wasserstein (GW) distance to compare probability mea-
sures whose supports are in different metric spaces. Due
to its flexibility, the GW distance has been used in sev-
eral applications, including quantum chemistry (Peyré
et al., 2016), computer graphics (Solomon et al., 2016),
cross-lingual embeddings (Alvarez-Melis and Jaakkola,
2018; Grave et al., 2019), graph partitioning and match-
ing (Xu et al., 2019a,b), and deep generative mod-

*: The first two authors contributed equally.



Flow-based Alignment Approaches for Probability Measures in Different Spaces

els (Bunne et al., 2019). However, the GW is a complex
non-convex quadratic program and NP-hard for arbi-
trary inputs (Peyré and Cuturi, 2019, §10.6.3). There-
fore, its computation is very costly, which hinders ap-
plications in large-scale settings where the number of
supports is large.

Reposing on the entropic regularization idea from OT,
Peyré et al. (2016) proposed an entropic GW (EGW)
discrepancy. The EGW can be efficiently solved by the
Sinkhorn algorithm under certain cases of regulariza-
tion parameter and a specific family of loss functions.
Nevertheless, EGW requires the regularization to be
sufficiently large for a fast computation, which leads to
a poor approximation of GW. Following the direction of
leveraging entropic regularization, Xu et al. (2019a,b)
proposed algorithmic approaches to further speed up
GW for graph data. Another approach for scaling up
the computation of GW is sliced GW (SGW) (Vayer
et al., 2019), which relies on a one-dimensional projec-
tion of supports of the probability measures. Conse-
quently, similar to sliced-Wasserstein, SGW albeit fast
limits its capacity to capture high-dimensional struc-
ture in a distribution of supports (Le et al., 2019b;
Liutkus et al., 2019). Additionally, SGW can be only
either applied for discrete measures with the same num-
ber of supports and uniform weights, or required an
artifact zero-padding for probability measures having
different number of supports (Vayer et al., 2019).

Contributions. In this work, we consider a partic-
ular family of cost metrics, namely tree metrics for a
space of supports of each probability measure, and aim
for developing efficient and scalable discrepancies for
probability measures in different spaces that can be ap-
plied as fast alternative approaches for GW, especially
in large-scale applications.

Although it is well-known that one can leverage tree
metrics to speed up a computation of arbitrary met-
rics (Bartal, 1996, 1998; Charikar et al., 1998; Indyk,
2001; Fakcharoenphol et al., 2004), our goal is rather
to sample tree metrics for spaces of supports, and use
them as cost metrics, similar to tree-sliced-Wasserstein
(TSW) (Le et al., 2019b). However, different to TSW,
one may not apply this idea straightforwardly by only
using tree metrics as cost metrics for GW to develop
scalable discrepancy for probability measures in dif-
ferent tree metric spaces. Therefore, by exploiting a
tree structure, we propose to align flows from a root
to each support instead of pair-wise tree metrics of
supports, i.e., flows from a support to another, in GW
for the probability measures. Consequently, we pro-
pose a novel discrepancy, named Flow-based Alignment
(FlowAlign), by matching the flows of the probability
measures. FlowAlign is fast for computation and scal-

able for large-scale applications. To further explore the
tree structures, we propose to align the flows hierar-
chically along each depth level of the tree structures,
named Depth-based Alignment (DepthAlign). We then
prove that both FlowAlign and DepthAlign are pseudo-
metrics, i.e., they are symmetric and satisfy the triangle
inequality.

For applications without prior knowledge about tree
structures for probability measures, we derive tree-
sliced variants of FlowAlign/DepthAlign, computed
by averaging FlowAlign/DepthAlign using random
tree metrics, sampled by a fast adaptive method, e.g.,
clustering-based tree metric sampling (Le et al., 2019b,
§4). We empirically illustrate that the proposed discrep-
ancies compares favorably with state-of-the-art variants
of GW baselines, e.g., EGW (Peyré et al., 2016) and
SGW (Vayer et al., 2019), in applications. Especially,
FlowAlign is several orders faster than EGW and at
least as fast as SGW while remedies the curse of di-
mensionality in SGW by leveraging tree structures.

Organization. The paper is organized as follows: we
review tree metrics and GW in §2. We propose two
novel discrepancies: FlowAlign and DepthAlign for
probability measures in different tree metric spaces
in §3 and §4 respectively. In §5, we derive their tree-
sliced variants for practical applications, and then give
discussions and related work in §6. We evaluate the
proposed discrepancies against other baselines on some
benchmark tasks in §7 before concluding in §8. We
have released code for our proposal'.

Notation. We denote [n] = {1,2,...,n}, Vn € N,.
For z € R%, let ||z, be the ¢;-norm of z, and &, be
the Dirac function at x. For probability measure u, we
denote supp(u) and |u| for the set and the number of
support(s) of u respectively.

2 Reminders on Tree Metric and GW

In this section, we first recall tree metric space and
then briefly review GW between probability measures
in different tree metric spaces.

2.1 Tree metric space

For a tree metric space (T,dr), dr is a tree metric on
tree 7. The tree metric dr between two nodes in T is
equal to a length of the (unique) path between them
(Semple and Steel, 2003, §7, p.145-182). Given node
x € T, let T'(x) be the set of nodes in the subtree of
T rooted at x, i.e., ['(z) = {z € T | € P(r, z)} where
P(r, z) is the (unique) path between root r and node z

"https://github.com/lttam /FlowBased Alignment-GW
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in 7, S(z) be the set of child nodes of z, and |S(-)]| is
the cardinality of set S(-). Given edge e, we write u,
and v, for the nodes that are respectively at a shallower
(i.e., closer to r) and deeper (i.e., further away from r)
level of edge e, and w, be the non-negative length of
that edge. We illustrate those notions in Figure 1.

Figure 1: An illustration for a tree metric space. z2 is at
depth level 2. P(x3,x4) contains es, e1,eq (the orange
dot path), I'(z2) = {z2, x5, x6} (the green dot subtree),
and S(ry) = {z1,x2,23}. For edge es, v, = x5 and
Ues = T2-

Throughout the paper, we consider two probability
measures f = ;e aidq, (With k supports) and v =
> e bidz; (with k' supports) where supp(p) and
supp(v) are in different tree metric spaces (Tx, dr, ) and
(Tz,dr,)? respectively; a;,b; € Ry, Vi € [k],j € [K]
such that >°, .y ai = > e b5 = 1. Our goal is to
define discrepancies for these probability measures.

2.2 Gromov-Wasserstein with Tree Metrics

Mémoli (2011) defined Gromov-Wasserstein GW be-
tween u,v as

GW? (. v) == 1)

. 2
MiNTert () i oA (Tis @) — duy (25, 25) | T35 Ty,

where II(u, ) is a set of the transport plans T' € le_x K
such that Zje[k/] Tij = a; |i€[k]a Zie[k] Ty = by |j€[k’]‘
Intuitively, GW aligns pair-wise tree metrics of supports
de ($Z‘,ZE2"> |i,i’ and de (Zj7 zj') |j7j' for yu and v.

However, one may not scale up GW by straightfor-
wardly using tree metrics as cost metrics as in Equa-
tion (1) like TSW (Le et al., 2019b). Therefore, we
propose to leverage tree structure to align flows from
a root to each support instead of pair-wise tree metrics
of supports, i.e., flows from a support to another, in
GW to develop scalable discrepancy for the probability
measures. Consequently, we propose two novel discrep-
ancies: FlowAlign and DepthAlign, detailed in §3 and
84 respectively.

3 Flow-based Alignment Discrepancy

In this section, we propose a novel, efficient and scalable
discrepancy, named Flow-based Alignment (FlowAlign),

2clTX ,dr, are tree metrics on tree Tx, 7z respectively.

for probability measures in different tree metric spaces.

3.1 Definition of FlowAlign

Different from GW, FlowAlign exploits tree structures
for the alignment.

Definition 1. The Flow-based Alignment discrepancy
Ay between p, v is defined as

) = @)

minrz,rz,TGH(,u,V) Zi,j ‘dTX (T:m l’i) - dTZ (sz zg)|2ﬂj

Intuitively, FlowAlign considers the matching for flows
from a root to each support for probability measures
based on (i) the flow lengths (i.e., tree metrics from
a root to each support), and (ii) the flow masses (i.e.,
weights on supports corresponding to the flows). More-
over, FlowAlign also takes into account the root align-
ment for corresponding tree structures of tree metric
spaces since the flows depend on which node in the tree
structure has a role as the tree root. Therefore, instead
of matching pairs of supports as in GW for probability
measures in different spaces, FlowAlign exploits tree
structures of the tree metric spaces to align both tree
root and supports for the probability measures. To the
best of our knowledge, our work is the first approach
leveraging tree metric to align probability measures
supported in different metric spaces (i.e., alternative
approach for GW based on flows)®.

One should distinguish FlowAlign from tree-(sliced)-
Wasserstein which directly matches supports for proba-
bility measures in the same tree metric space. Addition-
ally, the goal of FlowAlign is to match the probability
measures u, v like GW, by exploiting the tree structures
(Tx,dry ), (Tz,dr,), but not to compare trees Tx, Tz
themselves like tree edit distance (Zhang and Shasha,
1989).

Theorem 1. FlowAlign is a pseudo-distance. It satis-
fies symmetry and the triangle inequality.

See the supplementary (§A) for the proof of Theorem 1.
When A% (u, v) = 0, we can find roots 5 and r} such
that i* = 7" where i* = >, aila,_(r: ;) and 7* =
> j bjéd'rz (rr,z;)- 1t demonstrates that p and v have
similar weights on supports (i.e., flow masses) while
the tree metrics of their supports to the corresponding
root 7} or r% (i.e., flow lengths) are identical.

While GW with tree metrics relies on pair-wise
supports alignment to match probability measures,
FlowAlign uses flow alignment based on geometric

3 After our preprint, Mémoli et al. (2021) leveraged
ultrametric—a special case of tree metrics—to study ba-
sic topological and geometric properties of Sturm’s dis-
tance (Sturm et al., 2006) and Gromov-Wasserstein.
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structures of trees. We next attempt to draw relations
between them when the deepest levels of trees 7x and
Tz are equal to two.

Proposition 1. If the deepest levels of trees Tx and
Tz are two, then GW(u,v) < 2A5(u,v).

See the supplementary (§A) for the proof of Proposi-
tion 1.

In practical applications without prior knowledge about
tree structures for probability measures, 7x and 7 are
sampled from support data points, e.g., by clustering-
based tree metric sampling (Le et al., 2019b). We ar-
gue that the farthest-point clustering (Gonzalez, 1985)
within the clustering-based tree metric sampling en-
sures that FlowAlign is invariant to rotation and trans-
lation, detailed in the supplementary (§B).

3.2 Efficient computation for FlowAlign

A naive implementation for FlowAlign A; has a com-
plexity O(N3log N) where N is the number of nodes
in tree, if one exhaustively searches the optimal pair
of roots for Tx and Tz*. In this section, we present
an efficient computation approach which reduces this
complexity into nearly O(N?).

Consider A between p,v in Tx, Tz rooted at 74,7,
respectively. When one changes into the new root 7,
for Tz, illustrated in Figure 2, there are two cases that
can happen:

Case 1 : 7, is in the subtree rooted at a node in
S(r,), which is disjoint from supp(v), illustrated in the
left-bottom tree of Figure 2. Then, Vz; € supp(v), we
have

dr, ('sz Zz) =dr, (Tz> Zz) +d7, (fza rz)'

Therefore, the path-length order from the root is pre-
served.

Case 2 : 7, is in the subtree rooted at a node in
S(r.), containing some supports of v, denoted as €2,
illustrated in the right-bottom tree of Figure 2. Then,
Vz; € supp(v) \ Q,, we have

dTZ (an Zj) = dTZ (T27 Zj) + de (7:2,7'2).

Thus, the path-length order from the root (except
those for z; € Q,) is preserved. For supports in 2,
(illustrated in the supplementary (§B)), there are three
following sub-cases:

e Case 2a: For supports z; € Q,, which 7, € P(r., z;),
then

dTZ (F27 ZZ) = dTZ (7‘2, ZZ) - dTZ (7‘27772)'

4More details about (aligned-root) FlowAlign complexity
are given in §3.3, and in the supplementary (§C).

Figure 2: An illustration for an efficient computation
for FlowAlign. Given v = b10,, +b20,, +b30,, +b40,, +
b59.,, when the new root 7, = z3 (z3 is in the subtree
rooted at zz which is disjoint from supp(v)), the order
of dr(rs, 2i) |2,ev is the same as that of dr(zs, 2;) |z, evs
and dr(zs,2;) = dr(r., z;) + dr(rz, 23),Vz; € supp(v)
(Case 1: the left-bottom tree). When 7, = z5 (22 is
in the subtree rooted at z, and containing supports
Q, = {26, 27} of v), the order of dr(r, 2;) |2, esupp()\ 2,
is the same as that of dr(23,2:) |.,esuppr)\0,, and
dr(22, 2i) = dr(rz, 2i) + de(rz, 23),Vz; € supp(v) \ Q,
(Case 2: the right-bottom tree).

So, the path-length order from the root of those sup-
ports are preserved.

e Case 2b: For supports z; € 2, which z; € P(r,,T,),
then

dTZ (7727 ZZ) = dTZ (TZ>FZ) - de (Tza Zz)

Therefore, the path-length order from the root of those
supports are reversed.

e Case 2c: For supports z; € Q, which 7, ¢ P(r., z;)
and z; ¢ P(r,,7,), then one needs to find the corre-
sponding closest common ancestor (; of 7, and z;, i.e.,
¢; is on both paths P(r.,7.) and P(r., z;), and

de (’an Zl) = dTZ (TZ7 'Fz) + dTZ (TZ7 ZZ) - 2de (Tza Cl)

Note that the path-length order from the root of sup-
ports having the same (; is preserved.

Therefore, one only needs to merge the ordered path-
lengths from the root in those above cases with the com-
plexity nearly O(N) (except the degenerated instance
where each above case contains only one support).

Thus, one may not need to sort for tree metrics be-
tween 7, and each support of v by leveraging the sorted
order of the tree metrics between r, and each support.
Moreover, those computational steps can be done sepa-
rately for each tree. Consequently, the complexity of
Ay reduces from O(N3logN) into nearly O(N?). More
details can be seen in the supplementary (§C).
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3.3 Aligned-root FlowAlign

We consider a special case of FlowAlign where roots
have been already aligned®. Therefore, we can leave
out minimization step with roots in Definition 1, and
name it as aligned-root FlowAlign.

Definition 2. Assume that root v, in Tx is aligned
with root r, in Ty. TheQ, the aligned-root Flow-based
Alignment discrepancy Ay between p,v is defined as

~

A?(,uvl/”ﬂa:arz) = (3)

. 2
MINTe(u,v) Ei,j |de (Tasv l‘l) —dy, (T27 ZJ)‘ Tij.

The .;l\f in Equation (3) is equivalent to the uni-
variate Wasserstein distance (1d-OT) between i :=
22 Wildy (ryx) and U = 3704 (r. ;). Which is
equal to the integral of the absolute difference between
the generalized quantile functions of these two uni-
variate probability distributions (Santambrogio, 2015,
§2). Therefore, one only needs to sort flow lengths
dry (13, ;) |i, and dr,(r.,2;) |; for the computation

~

of Ay, i.e., linearithmic complexity. Due to sharing
the same structure as 1d-OT, ,Zf inherits the same
properties as those of the 1d-OT. More precisely, ./Zf
is symmetric and satisfies the triangle inequality. Ad-
ditionally, As(p, v;74,75) = 0 is equivalent to i = .
Furthermore, one can extend the squared loss (in Equa-
tion (2) and Equation (3)) into functions which are a
nonnegative convex function g applied to the difference
(x — z) between two tree metrics, i.e., g(x — z). See the
supplementary (§B) for an illustration of /Tf.

Note that in practical applications, we usually do not
have prior knowledge about tree structures for prob-
ability measures. Therefore, we need to sample tree
metrics for each support data space. Moreover, by
leveraging geometrically spatial information, we choose
means of support data distributions as roots when
using the clustering-based tree metric sampling (Le
et al., 2019b) as a heuristic for sampling likely subop-
timal aligned-root tree metrics. Consequently, we can
reduce the complexity of FlowAlign by using aligned-
root FlowAlign.

Aligned-root FlowAlign barycenter. The
aligned-root FlowAlign can be handily used for a
barycenter problem, especially in large-scale appli-
cations. Given m probability measures p; |ic[m]
in different tree metric spaces (Tx,,dry,)
with aligned-roots 7, |ic(m) respectively, and
corresponding weights p; [ic[m], the aligned-root
FlowAlign barycenter aims to find a flow-based tree

|i€[m]

5By root alignment, we mean the optimal pair of roots
in (r},r3,T") in Equation (2).

structure® Ay = {dr, (rz, @i), ai};epq of an optimal
probability measure p with at most k supports in
(Tx,dry ) that takes the form:

A € argmin(ZPiﬁ%(ﬂ»ﬂi;Tzﬂ“zi)) (4)

B i=1

where the roots r, in T, |ic[m) are aligned with root r,
in Tx. The barycenter problem in Equ. (4) is equivalent
to the free-support 1d-OT barycenter efficiently solved,
e.g., by using Alg. 2 in (Cuturi and Doucet, 2014).

4 Depth-based Alignment Discrepancy

FlowAlign only focuses on flows from a root to each
support and tree root alignment, but ignores the depth
level of supports in trees. In this section, we take
into account the depth level of supports, and propose
Depth-based Alignment (DepthAlign) discrepancy Ay
by considering the alignment for flows hierarchically
for each depth level along the tree structures. We
first introduce some necessary definitions to define Ajg.
Recall that, S(z) is a set of child nodes of z in T.

Definition 3. Given node x in T, a 2-depth-level tree
T2 is an induced subtree of T, rooted as x and spanned
by x and its children S(x).

Let V(T;2) be the set of vertices of T.2. Following Defi-
nition 3, V(7.2) contains z and all € S(z). Moreover,
given p in T, we have a corresponding p72 in T2, de-
fined as py2 = Y, a0z, where Z; € V(T?), and if
Z; # x then

a; = p(I(z:))/ (T (x)),

otherwise

ai=1- Y pu@@)/ml(x)),

z;€S(x)

In order to define DepthAlign, we start with its special
case when roots are aligned. Let M}, and T} (z, z) be a
set of optimal aligned pairs and the optimal matching
mass for the pair (x, z) at the depth level h respectively.

Definition 4. Assume that root r,, in Tx is aligned
with root v, in Tz. Then, the aligned-root Depth-based
Alignment Ay between p, v is defined as

A\d(:u)V;rIaTz) = (5)
Zh Z(z,z)th,,l T}t—l(m7 z)‘Af(:quv V723, Z)v

where h is the considered depth level, starting from 2 to
the deepest level of the lower tree between Tx and Tz;

Recall that ./Z(f is equivalent to 1d-OT, A, is a repre-
sentation (e.g., supports and weights) in 1d-OT problem of

a probability measure p in Ay problem.
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Q,

€ f”@\{'f e VJ’ x{‘;z
\¢s ¢

Tx

Figure 3:  An illustration for aligned-root
DepthAlign Ay between p = a16,, + 6204, + a305, on
Tx and v = b16zl =+ b2(525 + bgézﬁ =+ b45z7 on Tz. In
Xd, we consider the optimal alignment at each depth
level h. At h =1, root r,, is trivially aligned for root
r,. Since 7,7, have their child nodes, the alignment
(ry,72) is recursive into h = 2. For p in Tx, r, has 2
subtrees rooted at x1,xs. Thus, V(7;2T) ={ry,z1,z2},
and pre = (a1 + a2)dz, + asdy,. Similarly, for v in
Tz, vr2 = b10,, + (b2 + b3)0,, + bsd,,. The recursive
prOCGdlle‘e is repeated until the deepest level of the
lower tree where only simple cases exist.

My = {(rs,r2)}; Ti(re,m2) = 1. Solving the optimal
transport maps Ty (-, -) of subproblems Ay at depth level
h will form a set of optimal aligned pairs My,.

Intuitively, at each depth level &, we consider the align-
ment for the corresponding 2-depth-level trees. Note
that the 2-depth-level tree structures are at the same
dfpth level h for both Tx and 7z, and one can consider
Ay for such alignment. Moreover, at h = 1, Ay trivially
matches r, to 7, with optimal matching mass 1. Solv-
ing the optimal transport maps T (-, -) of subproblems
,fo at depth level h will form a set of optimal aligned
pairs My,. Then, T} (-,-) and My, are used in the next
depth level (h + 1). Thus, the matching procedure is
recursive along all depth levels in trees, illustrated in
Figure 3. The simple case of the recursive procedure
is that either at least one node of considered pair does
not have child nodes, or sum of weights of child nodes
in the corresponding 2-depth-level tree is equal to 0.

When roots of trees Tx and 7z are not aligned yet, we
optimize the root alignment as follow:

Aq(p,v) := min fAld(/i,V;TmTz)a (6)

Tx,Tz

which is referred to as DepthAlign. Similar to

FlowAlign, we have a following theorem:

Theorem 2. DepthAlign is a pseudo-distance. It sat-
isfies symmetry and the triangle inequality.

See the supplementary (§A) for the proof of Theorem 2.
When Ay(p, v) = 0, we can find roots 7% and r% such

that all the hierarchical corresponding A r(pre, v2; -, )

for each depth level along the trees are equal to 0. It
demonstrates that g and v have similar weights on
supports while their supports have similar depth levels,
and for each depth level, the tree metrics of supports
in the corresponding p72, V72 to the 2-depth-level-tree
roots are identical, i.e., corresponding weight edges are
identical.

DepthAlign computes a set of ﬁd subproblems hier-
archically for each tree depth level. The number of
Ay subproblems depends on the tree deepest level,
and the number of assignments at each depth level.
DepthAlign takes into account the depth level of each
support which is not addressed in FlowAlign, but
DepthAlign is much slower than FlowAlign.

5 Tree-sliced Variants by Sampling
Tree Metrics

In practical applications, one usually do not have prior
knowledge about tree structure for each probability
measure. Computing FlowAlign/DepthAlign requires
to choose or sample tree metrics for each space of sup-
ports. One way is to optimize tree metrics for probabil-
ity measures from input data for a given task. However,
this approach may be expensive and gives an extra cost
for the computation of FlowAlign/DepthAlign.

Following the approach of TSW (Le et al., 2019b), we
propose the tree-sliced variants for our proposed dis-
crepancies, computed by averaging the corresponding
FlowAlign/DepthAlign using randomly sampled tree
metrics. We use fast adaptive methods, e.g., clustering-
based tree metric sampling (Le et al., 2019b), to sample
tree metrics from support data points of a given task.

Definition 5. Given pu,v supported on a set
in which tree metric spaces {(Txi,dyxiﬂie [n]}
and {(7-Zi’dTZi) |i€n]} can be defined respec-
tively, the tree-sliced wvariants of (aligned-root)
FlowAlign/DepthAlign is defined as an average of corre-
sponding (aligned-root) FlowAlign/DepthAlign for u,v
on (Tx,,dry,), and (Tz,,dr, ) respectively.

As discussed in (Le et al., 2019b), the average over
different random tree metrics can reduce quantization
effects or clustering sensitivity problems in which data
points may be clustered to adjacent but different clus-
ters respectively in tree metric sampling. Moreover, the
complexity of tree metric sampling is negligible. Indeed,
for clustering-based tree metric sampling’, its complex-
ity is O(Hrmlog k) when one fixes the same number

“In principle, one can control the number of nodes in
sampled trees by hyperparameters (Hr, k) of the clustering-
based tree metric sampling. We empirically follow sugges-
tions in (Le et al., 2019b) to sample each tree containing
about 4000 nodes.
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of clusters k for the farthest-point clustering (Gonzalez,
1985) and sets Hp for the predefined deepest level of
tree 7, and m is the number of input data points.

Much like one-dimensional projections do not have
interesting properties in a distortion viewpoint, but re-
main useful for SGW (or for sliced Wasserstein (Rabin
et al., 2011)). We believe trees with high distortion
can be useful for FlowAlign/DepthAlign (similar to
TSW (Le et al., 2019b, §4)). Moreover, excessive ef-
forts to optimize the problem in Equation (2) for each
randomly sampled tree metric would be self-defeating
since it would lead to overfitting within the computa-
tion of FlowAlign itself (see (Peyré and Cuturi, 2019,
§8.4) and (Le et al., 2019b, §4)). Therefore, we ap-
ply the clustering-based tree metric sampling where
we choose population means as tree roots as a heuris-
tic based on geometrically spatial information to sam-
ple aligned-root tree metrics which are likely subop-
timal in applications. Consequently, we can reduce
the computational complexity of tree-sliced variants
of FlowAlign/DepthAlign by using their aligned-root
formulations with those randomly sampled aligned-root
tree metrics.

6 Discussion and Related Work

For specific applications with prior knowledge about
tree metrics for probability measures, one can apply
FlowAlign, or consider DepthAlign if the known tree
structure is important for the applications. Moreover,
if roots of those known tree metrics are already aligned,
one can use the corresponding aligned-root formula-
tions to reduce the complexity. For general applications
without prior knowledge about tree metrics for prob-
ability measures, one can use a heuristic to sample
aligned-root tree metrics, e.g., by choosing a mean
of support data as its root for the clustering-based
tree metric sampling (Le et al., 2019b), and use the
aligned-root formulations for an efficient computation.

Ultrametric (a.k.a, non-Archimedean or isosceles met-
ric (Shkarin, 2004)) is a special case of tree metrics.
Meémoli et al. (2019) employed ultrametric to study
geometric and computational properties of Gromov-
Hausdoff, and later basic topological and geometric
properties of Sturm’s distance (Sturm et al., 2006) and
Gromov-Wasserstein in (Mémoli et al., 2021). Addition-
ally, tree metrics are also used for other OT problems,
e.g., tree-Wasserstein barycenter (Le et al., 2019a) and
entropy partial transport (Le and Nguyen, 2021).

7 Experiments

We evaluate our proposed discrepancies for quantum
chemistry and document classification with random

linear transformation word embeddings®. We also
carry out the large-scale FlowAlign barycenter problem
within k-means clustering for point clouds of handwrit-
ten digits in MNIST dataset rotated arbitrarily in the
plane as in (Peyré et al., 2016).

Setup. We consider two baselines: (i) SGW (Vayer
et al., 2019) and (i) EGW (Peyré et al., 2016). In all
of our experiments, we do not have prior knowledge
about tree metrics for probability measures. Therefore,
we apply the clustering-based tree metric sampling (Le
et al., 2019b) where means of support data points are
chosen as tree roots, as a heuristic to sample aligned-
root tree metrics from support data points. Thus, we
can leverage the aligned-root formulations for both
FlowAlign (FA) and DepthAlign (DA) to reduce their
complexity. For SGW, we follow Vayer et al. (2019) to
add artifact zero-padding for discrete measures having
different numbers of supports, and use the binomial
expansion to reduce its complexity. For EGW, we
use the entropic regularization to optimize transport
plan, but exclude it when computing GW, which gives
comparative or better performances than those of stan-
dard EGW. We also apply the log-stabilized Sinkhorn
(Schmitzer, 2019). We observe that the quality of EGW
is better when entropic regularization becomes smaller,
but the computation is considerably slower. In our ex-
periments, the computation for EGW is either usually
blown up, or too slow for evaluation when entropic
regularization is less than or equal 1. We run exper-
iments with Intel Xeon CPU E7-8891v3 (2.80GHz),
and 256GB RAM. Reported time consumption for all
methods has already included their corresponding pre-
processing, e.g., tree metric sampling for FlowAlign and
DepthAlign, or one-dimensional projection for SGW.

7.1 Applications
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Figure 4: MAE and time consumption of k-NN regres-
sion on gqm7 for EGW (eps=5), SGW (10 slices), FA
(10 tree-slices), and DA (1 tree-slice).

Quantum chemistry. We consider a regression prob-
lem on molecules for qm7 dataset as in (Peyré et al.,
2016). The task is to predict atomization energies for

8We apply different random linear transformation for
word embedding in each document.
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molecules based on similar labeled molecules instead
of estimating them through expensive numerical simu-
lations (Rupp et al., 2012; Peyré et al., 2016).

For simplicity, we only used the relative locations in
R3 of atoms in molecules, without information about
atomic nuclear charges as the experiments in (Rupp
et al., 2012; Peyré et al., 2016). Therefore, a molecule
with ¢ atoms is represented as a probability measure
o= %Zle dz;, where z; is the relative location of
atom i in R®. We randomly split 80%,/20% for training
and test sets, and repeat 20 times. As in (Peyré et al.,
2016), we use k-nearest neighbor (k-NN) regression.

Document classification with non-registered
word embeddings. We also evaluate our pro-
posed discrepancies for document classification with
non-registered word embeddings in TWITTER, RECIPE,
CLASSIC, and AMAZON datasets. For each document
in these datasets, we apply different random linear
transformation for word2vec word embedding (Mikolov
et al., 2013), pre-trained on Google News’, contain-
ing about 3 million words/phrases. word2vec maps
those words/phrases into R3%°. Following Kusner et al.
(2015); Le et al. (2019b), we remove SMART stop words
(Salton and Buckley, 1988), and drop words in doc-
uments if they are not in the pre-trained word2vec.
Therefore, each document can be considered as an em-
pirical measure where each word and its frequency are
regarded as a support and its weight respectively. We
randomly split 80%/20% for training and test sets, and
repeat 20 times.
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Figure 5: Accuracy and time consumption of k-NN
classification on document datasets for EGW (eps=5
in TWITTER, and eps=10 in others), SGW (10 slices),
FA (10 tree-slices), and DA (1 tree-slice).

Performance results, time consumption and dis-
cussions. The results of averaged mean absolute value
(MAE) for different k in k-NN regression, and time
consumption of quantum chemistry in qm7 dataset are
illustrated in Figure 4, while the results of averaged ac-

“https://code.google.com/p/word2vec

curacy for different k in k-NN, and time consumption of
document classification with non-registered word em-
beddings in TWITTER, RECIPE, CLASSIC, and AMAZON
datasets are shown in Figure 5.

Mean Absolute Error Time Consumption (s)
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Figure 6: Trade-off between performances and time
consumption for FlowAlign w.r.t. tree slices in qm?7.

The computational time of FlowAlign is at least com-
parative to that of SGW, and several-order faster than
that of EGW. Especially, in CLASSIC, it took 12 min-
utes for FlowAlign (10 slices), while 6.8 hours for
SGW (10 slices), and 3.3 days for EGW (entropic
regularization eps=10). Moreover, the performances
of FlowAlign compare favorably with other baselines,
except EGW in RECIPE dataset. FlowAlign performs
better when the number of tree slices is increased, but
its time consumption is also increased linearly. We
show this trade-off on qm7 in Figure 6. For DepthAlign,
its performances are comparative with other baselines.
However, DepthAlign is slow in practice due to solv-
ing a large number of sub-problems, i.e., aligned-root
FlowAlign between corresponding 2-depth-level trees.
For EGW, its performances are improved when the
entropic regularization small enough for the problems,
but its computational time is considerably increased
which makes EGW unsuitable for large-scale applica-
tions. The value of entropic regularization is important
for performances of EGW, e.g., EGW performs well in
RECIPE, and is comparative with other approaches on
other datasets. For SGW, its computational time is
slow down when document lengths are large, e.g., in
AMAZON dataset, since it requires to use extra artificial
zeros padding and uniform weights for probability mea-
sures with different number of supports (i.e., documents
with different lengths), while other approaches work
with an original number of supports (i.e., unique words
in documents), and general weights (i.e., frequencies of
unique words) for supports in probability measures.

Similar to tree metric sampling for TSW (Le et al.,
2019b), we observe that the clustering-based tree met-
ric sampling for FlowAlign and DepthAlign is fast and
its time consumption is negligible compared to that of
either FlowAlign or DepthAlign. For examples, for each
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tree metric sampling with the suggested parameters
(e.g., the predefined deepest level H = 6, and the num-
ber of clusters k = 4 for the farthest-point clustering),
it only took about 0.4,1.5,11.0,17.5,20.5 seconds for
qm7, TWITTER, RECIPE, CLASSIC, and AMAZON datasets
respectively.

We further randomly sample 1 million pairs of distribu-
tions in qm7 dataset and compare FlowAlign A using
the optimization in Equation (2) (i.e., optimize the
roots 7,7, and the transport plan T'), and aligned-root
FlowAlign ,fo in Equation (3) with the heuristic of
sampling aligned-root tree metrics by using clustering-
based tree metric sampling where we choose population
means as tree roots (i.e., only optimize the transport
plan 7" with the sampled suboptimal aligned-root tree
metrics). There are 68.12% of those randomly sampled
suboptimal aligned-root tree metrics using the heuristic
for A that are actually optimal when we optimize A
with those sampled trees (the optimization problem
for FlowAlign in Equation (2)), and the average rel-
ative difference (A; — Ay)/ Ay is 0.0244. Therefore,
the sampled aligned-root tree metrics are likely subop-
timal that not only help to reduce the complexity of
the proposed discrepancies by using their aligned-root
formulations, but also play as an efficient regulariza-
tion for the computation of FlowAlign/DepthAlign in
applications. Moreover, there is no need for paying too
much efforts to optimize the proposed discrepancies
with respect to each randomly sampled tree metric
since it would lead to overfitting within the computa-
tion of FlowAlign/DepthAlign (Peyré and Cuturi, 2019,
§8.4), (Le et al., 2019Db, §4).

Further experimental results about performances and
time consumptions of the discrepancies with differ-
ent parameters (e.g., entropic regularization in EGW,
and number of (tree) slices in SGW, FlowAlign and
DepthAlign), and clustering-based tree metric sam-
pling with different parameters (i.e., Hy, k for tree
depths and branches respectively) can be seen in the
supplementary (§D).

We emphasize that the proposed discrepancies are novel
for probability measures in different tree metric spaces,
and we do not try to mimic or approximate either GW
(with tree metrics) or EGW/SGW. Besides their rela-
tions in Proposition 1, we also thoroughly investigate
their empirical relations in the supplementary (§G).

7.2 Large-scale FlowAlign barycenter within
k-means clustering

We applied FlowAlign barycenter (§3.3), using Algo-
rithm 2 in (Cuturi and Doucet, 2014) where we set
k = 100 for the maximum number of supports in
barycenters, into a larger machine learning pipeline

such as k-means clustering on MNIST dataset where
point clouds of handwritten digits are rotated arbitrar-
ily in the plane as in (Peyré et al., 2016). For each
handwritten digit, we randomly extracted 6000 point
clouds. We evaluated k-means with FlowAlign for
60K, 120K, 240K, 480K, and 960K handwritten-digit
point clouds where each handwritten digit is randomly
rotated 1,2,4,8, and 16 times respectively. Further-
more, we grouped the handwritten digit 6 and digit 9
together due to applying random rotation. We used
k-means-+ initialization technique (Arthur and Vas-
silvitskii, 2007), set 20 for the maximum iterations
of k-means, and repeated 10 times with different ran-
dom seeds for k-means-++ initialization. In Figure 7,
we show the averaged time consumption and Fz mea-
sure (Manning et al., 2008) where § is chosen as in (Le
and Cuturi, 2015) for the results of k-means cluster-
ing with FlowAlign. Note that, in these settings, the
barycenter problem from EGW has extremely slow run-
ning time. A small experimental setup for performance
comparison can be found in the supplementary (§D).
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Figure 7: Time consumption and Fjg measure for k-
means clustering with FlowAlign for randomly rotated
MNIST.

8 Conclusion

We proposed two discrepancies FlowAlign and
DepthAlign for probability measures whose supports
are in different tree metric spaces. The FlowAlign is
not only several order faster than EGW and at least as
fast as SGW while remedies its curse of dimensionality,
but its performances also compare favorably with those
of variants of GW baselines. Moreover, FlowAlign can
be applied for large-scale applications (e.g., a million
probability measures) which are usually prohibited for
(entropic) GW. The questions about sampling efficiently
tree metrics from support data points for the proposed
discrepancies, or using them for more involved para-
metric inference are left for the future work.
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