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Abstract

Phase I clinical trials are designed to test
the safety (non-toxicity) of drugs and find
the maximum tolerated dose (MTD). This
task becomes significantly more challenging
when multiple-drug dose-combinations (DC)
are involved, due to the inherent conflict be-
tween the ezponentially increasing DC candi-
dates and the limited patient budget. This
paper proposes a novel Bayesian design, SDF-
Bayes, for finding the MTD for drug combi-
nations in the presence of safety constraints.
Rather than the conventional principle of es-
calating or de-escalating the current dose of
one drug (perhaps alternating between drugs),
SDF-Bayes proceeds by cautious optimism: it
chooses the next DC that, on the basis of
current information, is most likely to be the
MTD (optimism), subject to the constraint
that it only chooses DCs that have a high
probability of being safe (caution). We also
propose an extension, SDF-Bayes-AR, that
accounts for patient heterogeneity and enables
heterogeneous patient recruitment. Extensive
experiments based on both synthetic and real-
world datasets demonstrate the advantages
of SDF-Bayes over state of the art DC trial
designs in terms of accuracy and safety.

1 INTRODUCTION

The use of combinations of drugs is becoming an in-
creasingly valuable-and common—treatment modality
(Bamias et al., 2011; Flaherty et al., 2012; Ocana et al.,
2019; Kelly and Halabi, 2018), especially in the treat-
ment of cancer, where it has been widely observed
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that combinations of drugs can be effective when single
drugs are not (Paller et al., 2019). (Similar observations
have been made for other diseases, including COVID-
19.) As a result, there has been an enormous effort
to test and validate drug combinations for treatment;
indeed combination trials now account for more than
25% of all clinical trials in oncology (Wu et al., 2014).

However, clinical trials of drug combinations face
greater challenges than those of single drugs, espe-
cially in Phase I trials which are required to find safe
doses. The essential problem is that the number of
potential dose-combinations (DCs) to be tested in a
trial increases exponentially with the number of drugs,
but the patient budget cannot scale proportionately.
Indeed, a typical real-world Phase I trial often recruits
fewer than 100 patients; a few examples are shown in
Table 1. The limited patient budget constrains the
number of DCs that can be throughly tested. More-
over, because drugs interact differently with different
body chemistry of different groups of patients (e.g.,
with the different hormone balances and levels in males
and females), it is frequently possible to identify in
advance groups of patients who might be expected to
exhibit very different tolerances for the same DC (Sun
and Braun, 2015; Kim et al., 2009; Dasari et al., 2013;
Moss et al., 2015; Wages et al., 2015).

In view of the growing importance of drug combinations
in the treatment of disease, it is of enormous importance
to design Phase I drug combination trials in a way that
is efficient, informative and safe (Hamberg et al., 2010).
This design includes the path of DC testing and, in
the presence of identified heterogeneous groups, the
allocation of patient budgets to groups as well.

This paper develops a new dose-finding Phase I clinical
trial method for drug combinations and heterogeneous
patient groups and demonstrates that it is superior to
existing methods. For a given patient budget, the de-
sign objective is to maximize the probability of finding
the maximum tolerated dose (MTD), defined to be the
DC that is closest to a given target toxicity threshold,
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Table 1: Examples of Phase I clinical trial studies with drug combinations

Study Drugs No. of DC No. of Patients Target disease
(Plummer et al., 2008) Rucaparib & temozolomide 12 32 Advanced solid tumors
(Bailey et al., 2009) Nilotinib & imatinib 20 50 Gastrointestinal stromal tumors
(Bagatell et al., 2014) Temsgotl;ﬁlésszogf&(;tecan 24 71 Solid tumors
(Calvo et al., 2017)  Dacomitinib & Figitumumab 12 74 Advanced solid tumors

subject to constraints on the exposure of patients to
unsafe doses throughout the trial. Our safe dose-finding
(SDF) method employs an adaptive design: the DC to
be tested in the current round is chosen on the basis
of past observations. This is possible because Phase
I trials are not blind; the trialist knows the DC given
to each patient and observes the outcome. The SDF-
Bayes algorithm builds on a novel learning principle
we call Cautious Optimism, which manifests by com-
bining two opposing ideas: (1) SDF-Bayes constrains
the choice of DC to be tested in the current round to
a set of DCs that it estimates to be unlikely to violate
the safety constraint; this is the principle of caution,
and (2) within this constrained set of DCs, SDF-Bayes
chooses the DC to be tested in the current round to
be the one estimated to be most likely to be the MTD;
this is the optimistic belief principle (Aziz et al., 2019).

To deal with settings in which potentially heterogeneous
patient groups can be identified in advance, we also pro-
pose a extension, that we call SDF-Bayes-AR, in which
both the DC to be tested and the patient group to be
sampled in the current round are chosen adaptively. To
determine the group from which to recruit the next pa-
tient, SDF-Bayes-AR uses the criterion of ezpected im-
provement (EI). Adaptive recruitment is especially use-
ful when there is prior information about one or several
groups (Pallmann et al., 2018; Park et al., 2018; Atan
et al., 2019), and an appealing feature of our approach is
that it can smoothly incorporate prior information, be
it from the drug development phase, from dose-toxicity
models, from tests in vitro and in animals, or from
previous trials (Gasparini, 2013; Shen et al., 2019).

We validate the proposed designs via extensive simu-
lated trials using both synthetic and real-world datasets.
We show that, using a realistic number of patients, our
algorithms provide significantly more accurate recom-
mendations than state-of-the-art designs, while obeying
the safety constraints, for both homogeneous and het-
erogeneous patient populations.

2 DC-FINDING CLINICAL TRIALS
2.1 Dose-Toxicity Model

We consider a dual-agent dose-finding Phase I clinical
trial for the combination of agents (drugs) A and B. We
assume discrete dose levels J ={1,...,J} for agent A

and K={1, ..., K} for agent B. We use (j, k) to denote
the combination of dose j of agent A and dose k of
agent B so that the set of all DCs is just A=7 x K. We
model the toxicity event Y of DC (4, k) as a Bernoulli
random variable with unknown parameter p;;. We set
Y;r =1 to indicate that a dose-limiting toxicity (DLT)
was observed for (j,k), and Yj; = 0 otherwise.

We assume the toxicities follow a parametric joint dose-
toxicity model

T:0OxJxK—][0,1] (1)

where © is some space of parameters, and 7(0, j, k) =
pjk(0) is the toxicity of the DC (4, k) if the parameter
is # € ©. The true vector of parameters #* is un-
known and must be learned/estimated. The literature
has suggested various dose-toxicity models (Gasparini,
2013; Riviere et al., 2014); we present details of some
commonly-used models in the Supplementary Material;
we focus here on developing a methodology that can be
used with many parametric joint dose-toxicity models.

2.2 Problem Formulation

We consider an adaptive Phase I clinical trial for drug
combinations with a given patient budget 7. The nom-
inal trial objective is to find the DC whose estimated
toxicity is closest to the threshold &; i.e. to find any
DC that belongs to

A* = argmin |p; (%) — £|.
jk

For each t, write O(t) = {(Y;,a(7))}.Z} for the history
of trial actions and observations before t; a(7) is the DC
that was administered to patient 7 and Y, is the ob-
served toxicity for DC a(7) on patient 7. As in typical
adaptive clinical trial designs, all DCs are actionable in
the trial. A DC-finding algorithm II maps the history
O(t) to the DC a(t) € A that is to be administered to
patient ¢. At the end of the clinical trial, the algorithm
recommends a DC a*. The recommendation is correct
if a* € A*; otherwise the recommendation is an error.
We set the objective of our algorithm to minimize the
probability that errors occur. (Because the occurrence
of toxicity events is stochastic, there is always some
positive probability that errors will occur.)

Because testing unsafe DCs should be avoided, we
insist that, with high probability, the average toxicity
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should not exceed the toxicity threshold plus a margin
of error. We formalize this by defining the DLT
observation rate to be

and we impose the safety constraint
P(S(T) <&+¢)>1-4, (2)

where € > 0 is a prescribed margin of error and § > 0
is a prescribed acceptable probability of failure.

3 CAUTIOUS OPTIMISM

3.1 Preliminaries

Given the dose-toxicity structure, we begin with a prior
distribution f(#) on the parameter vector 6 and update
the posterior distribution, based on the observations.
(The assumption of a prior distribution is common in
the literature, and is natural, because the toxicities
of the individual drugs are usually understood on the
basis of prior use, and the various drug combinations
will have already been tested in vitro and in animals.)
We write f(0|O(t)) to denote the posterior distribution
of 6 following the history O(t). The likelihood of 4 in
round ¢ for the observations O(t) satisfies

L(6|O(t)) H Da S“(t)
acEA

pa(g))na(t)—Sa(t)7

where n,(t) is the number of times DC a has been
chosen before round t and s,(t) = S0} Tla(r) = a]Y;
is the number of DLTs observed for the DC a before
round t. The posterior distribution satisfies

f(0]O(t)) o< L(O]O(1)) £ (6). (3)
3.2 Cautious Optimism in Bayesian SDF

We base our algorithm on the principle of “optimism
in the face of uncertainty” (Bubeck and Cesa-Bianchi,
2012), which means choosing the DC that is currently
estimated to be most likely to be the MTD, but we
maintain safety by constraining the set of DCs from
which we choose.

Optimism for Efficiency We assess which DC is
most likely to be the MTD by using the posterior
distribution f(6]O) as described in (3). For this, in our
algorithm we follow the literature (see (Riviere et al.,
2014), for example) and find the DC

_£| < ’LL}),

where u is some prescribed allowable margin of error,
and the probability is taken with respect to the poste-
rior distribution on the parameter space ©.

argmax P({0 : |pa(6)

The probability Gg(t)(u) that the toxicity of DC a be-
longs to the given target toxicity interval [§ —u, & +u] is

GO (u) =Ppa(0) € [€ —u,& + u]|O()] (4)
- /O Ipa(6) € [€ — u.& + ull F(B1O(t))d6

Then, we find a DC a(t) that is deemed most likely
to have toxicity in [§ — u, & + ul; i.e

ao(t) = argmax GO® (u).
a
The DC is chosen to be allocated if it is deemed “safe
enough” (see the next paragraph) at round ¢. If the
argmax is not a singleton, we choose arbitrarily, subject
to maximizing the total dose of both drugs.

Caution for Safety To determine the set of DCs
that are “safe enough” in round ¢ we first choose a
hyperparameter v > 0 that controls conservativeness
and define

FOT)(y) = max {x € [0,1] : P[pa(d) <z | O(7)] < U}

a(t.0) = 3" FOU(0)
T=1
r(t,v) = (€ + )t = (t,v). (5)

Roughly speaking, ®(¢,v) represents the number of
DLT observations that would have been expected before
round ¢, given the posterior. For safety, we are “allowed”
a DLT observation rate £ +e€ so if ®(t,v) < (t—1)(£+e€)
the safety constraint holds in expectation after t — 1
rounds; if we choose a(t) so that ®(t + 1,v) < t(£ +¢)
then we will have met the safety constraint in expecta-
tion after ¢ rounds. We cannot be assured of choosing
such an a(t) because we do not know what the posterior
will be after ¢ rounds, but if the posterior after ¢ rounds
were the same as the posterior after t — 1 rounds and
we choose a(t) to have expected toxicity less than the
residual r(t,v) then the safety constraint will be met
in expectation after ¢ rounds. So define

A (t) ={ac A: FOO(v) <r(t,v)}. (6)

Unfortunately it might be that a,(t) ¢ A.(¢). (That
would certainly be the case if (¢, v) < 0, which means
that the safety constraint had already been violated in
expectation.) In that case we can use a conservative
DC, one whose expected toxicity is no greater than &,
so that after ¢ rounds the residual r(¢t + 1,v) will be
greater than the residual (¢, v). The set of conservative
DCs is

Act) ={ae A: FO®(v) < ¢}.

We allocate the most likely conservative DC to be the
MTD; i.e., argmax,e 4, 1) co® (u). Finally, if A.(t) =
() we terminate the procedure with no recommendation.
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Theoretical Guarantee The following Proposition
shows that, when this cautiously optimistic procedure
can be carried out, it maintains the safety constraint
by keeping the residual non-negative with a high prob-
ability. (The proof is in the Supplementary Materials.)

Proposition 1 Fixt <T. For each T < t, set v, =
(1 — &)Y/7. If the residuals r(T,v;) are non-negative
for all T < t then the cautious optimism principle in
Bayesian SDF satisfies

o(t)

t
1
P ;;pa<7>(9)s5+e >1-4.

3.3 Algorithm Description

Here we provide an implementation of the cautious
optimism principle described above. Because we are
considering an arbitrary joint dose-toxicity model, our
implementation relies on Bayesian sampling in order to
ensure the universal applicability of the algorithm. We
comment that our algorithm can be easily extended
for drug combinations with more than two drugs if a
corresponding dose-toxicity model is given.

We denote the number of samples from the posterior
distribution f(0]O) by L, and the samples in round
t as O(t) = {00 (t)}1ez)- We use a Gibbs sampler
(Gilks et al., 1995); this is a common multidimensional
Bayesian sampling algorithm. Inside the Gibbs sam-
pler, we use the adaptive rejection Metropolis sampling
method (Gilks et al., 1995). Details can be found in

the Supplementary Material.

In round ¢, we use the samples to approximate the

probability Gf(t)(u) by

1 L

GO () = £ ;H{t E—u < pa(0V (1) <€+ uf.
Using this approximation, the DC most likely to be
the MTD in round t is G,(t) = argmax,c 4 é?(t)(u).
SDF-Bayes then infers whether the safety constraint
is violated or not for the chosen DC by evaluating
the residual. To calculate the residual in practice, we
define ) (v) := Prctile(a, ©(t),v) that returns the
percentile of the toxicities of DC a calculated from
the samples O(t) for the percentage v € [0,1]. Then,
from (5), we calculate the residual r(¢,v) in round ¢ by

r(t,v) = (E+e)t — S0 FOW (v) and define A, (t) as

7=1"a(r)
in (6) with FP® (v). To keep the residual non-negative,
SDF-Bayes accepts the chosen DC a(t) if it does not
make the residual negative: a,(t) € A,(t). Otherwise,
it rejects the chosen DC and chooses the most likely
DC to be the MTD in the set of conservative DCs; i.e.,

argmax,c i ég(t)(u), where

Act,v)={aec A: FOW(v) < ¢}

Algorithm 1 SDF-BAYES
1: whilet < T do

2: Sample 6 from their posterior distribution
3. if a,(t) € A, (t) then
4: a(t) + ao(t)
5: else if A.(t,v) # () then
6: a(t) « argmax ¢ 1 (¢ . C;g)(t)(u)
7 else
8: if w > 1 then
9: a(t) < argmax ¢ 1 (¢ ) Gow (u)
10: else
11: Terminate trial without recommendation
12: end if
13: end if
14: Observe the DLT Y;
15: Update s4¢4)(t + 1) and ng)(t + 1)

16: t—t+1
17: end while R
18: Output: a* = argmax,¢ 4 GO (u)

If the set is empty, then the trial is terminated in the
cautious optimism principle. However, this may be too
conservative in the practical implementation, especially
if v is relatively large, because it implies that there is
no “safe enough” DC in a conservative view, not all
DCs are unacceptably unsafe. Hence, if Ac(t,v) =0,
SDF-Bayes first finds w so that A.(t,w) # 0 and
Ac(t,v") = 0 for all v’ > w. Then, it continues the trial
by choosing the most likely DC in A, (t,w) if w > 10,
where 1) is a predefined parameter for early termination
rule. Otherwise, it terminates the trial with no recom-
mendation because it implies all DCs are unsafe. (This
early termination rule is widely used in the literature
(Riviere et al., 2014; Yin and Yuan, 2009a).) With the
chosen DC a(t), the DLT Y; is then observed, and the
observation O(t + 1) is updated. This process repeats
until 7" patients have been administered. At the end
of the clinical trial, the DC recommendation is given
by a* = argmax,c 4 Go™ (u). The pseudocode of the
algorithm is summarized in Algorithm 1.

4 HETEROGENEOUS GROUPS

4.1 Problem formulation

We now show how to adapt SDF-Bayes to deal with
heterogeneous groups. We continue to assume a total
budget of T patients, which now can be distributed
across M patient groups M = {1,2,..., M'}. We allow
for the possibility that the dose-toxicity model varies
across different groups, and model the toxicity Y
of (j, k) for group m as a Bernoulli random variable
with unknown parameter pﬁ. For each group m, we
assume p7; follows a parametric joint dose-toxicity
model p7;(0) = 7™ (j, k,0); we write 0y, for the true
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parameter and &, for the prescribed toxicity threshold.
For patient ¢, the algorithm first chooses a group g(t) €
M from which to recruit the next patient, then chooses
a DC for the recruited patient based on the history
o) = {(Yr,9(7),a(r)}.Z} prior to round t. The
outcome (DLT or not) is then observed and recorded.
This continues until the total budget T is exhausted.

At the end of the trial, the algorithm recommends, for
each group m, a DC a}, to be used as the MTD for
that group. As before, the (set of) true MTD(s) for
group m is

A, = argmin |pg"(07,) — &l
acA

and the recommendation is an errorif af, ¢ A% . The
safety constraint for group m is P[S,;,(T) < &, + €] <

_ _ XLy Yille(h=m]
1—-19, ¥m € M, where S,,,(T) = Zilﬂ[g(t):m] .

4.2 SDF-Bayes for Heterogeneous Groups

The goal of a clinical trial with heterogeneous groups
is to minimize the DC recommendation error while sat-
isfying the safety constraints of each group. Given the
flexibility of recruiting patients from different groups,
it is intuitive that uniform recruitment across groups,
which does not utilize the history information prior to
each decision time, may be inefficient. For example,
if a particular patient group has already accumulated
sufficient observations to determine the MTD with high
confidence, recruiting more patients for this group is
not as beneficial as for other groups. We reinforce this
intuition by proposing SDF-Bayes-AR, a modification
of SDF-Bayes in which patients are adaptively recruited.
We will prove that SDF-Bayes-AR utilizes the limited
number of patients more efficiently, by adaptively re-
cruiting patients to obtain the best information for
each group while satisfying the safety constraints.

Adaptive Patient Recruitment In SDF-Bayes-
AR, we use the probability GoW (u) in (4) to measure
the likelihood of MTD. We denote the probability in
round ¢ that the DC a for group m is the MTD by

GO () = /@ T (8) € [em—tts -+l i (B1O(£)) 6.

where f,,,(8|O(t)) is the posterior distribution of 6 for
group m. The posterior distribution for each group can
be calculated as in (3) by using, for each DC a, the
number (n?*(t)) of times a is used for group m before

round ¢ and the number (s7'(t)) of DLTs observed
when a is used within group m before round ¢t. The
improvement of the probability of the most probable
DC for group m in round ¢ for an additional patient

with DC a' and observed toxicity Y is given by

197 () = |GEE ™ ) - 69 L ()|

where G%* = mMaXeeA Gno%a. Define the expected

improvement (EI)

10w = [ {men o
+ (1= PO () } fn(61O())dB

Denote the tentatively allocated DC of group m in
round ¢ by a,,(t). Then, in SDF-Bayes-AR, we adap-
tively recruit a patient of group m* by using a,(t)’s
as m*(t) = argmax,, ¢ v HS,(;),,L@)(“)-

Algorithm Description In round ¢, we apply SDF-
Bayes for each group m to find the DC a,,(t) that
should be chosen for that group. Specifically, we
use lines 2-13 of Algorithm 1. We then approx-
imate the EI Hgf;)rn(t)(u) for group m. To this
end, we sample from three different posterior dis-
tributions, f,,(0|O(t)), fm(0]{O(t),(1,m,a’)}), and
fm(01{O(t), (0,m,a’)}). We denote the sets of the
samples by ©,, (), éﬁ};m’a’)(t), and éﬁﬁ’m’“’)(t), respec-
tively. We approximate the EI Hg(t) (u) by ﬂo(t)(u) =

FROM)ITO () + (1= FR(O®)) 0@ (u), where
PRO) = 1 Yseo,mPi'().  Finaly, the
group to be recruited is chosen to be g(t) =
argmax,, c aq flgfizn(t)(u), and the DC to be allocated
to that group is a(t) = ay)(t). (Ties for g(t) or agyq
are broken arbitrarily.) We then observe the DLT Y,
from the recruited patient of group ¢(t) with the allo-
cated DC a(t) and construct the history O(t +1). At
the end of the trial, the DC recommendation for each
fe fe ~O(T)
group is given by a4}, = argmax,c 4 Gm,a’ (u). A more
detailed description of SDF-Bayes-AR is provided in
the Supplementary Material.

5 EXPERIMENTS

Here we describe a variety of experiments using a real-
world dataset and several synthetic data sets. Synthetic
datasets are widely used in designing and evaluating
novel Phase I clinical trials in order to thoroughly inves-
tigate the design before subjecting human subjects to
a potentially dangerous regime of drugs. Moreover, be-
cause a Phase I trial never identifies toxicity probabili-
ties exactly and never identifies the MTD with certainty,
a real-world dataset is not “completely realistic” either.

The real-world dataset RW we use is taken from (Bailey
et al., 2009), which reports the observations during
a real Phase I clinical trial for the combination of
two oncology drugs, nilotinib and imatinib. Bailey
et al. (2009) constructs a dose-toxicity model based
on DLT observations and on prior information about
the drugs. The dose combinations consist of 400, 600,
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Table 2: True toxicity probabilities in datasets A,B,C,D,RW

| Synthetic A | Synthetic B | Synthetic C | Synthetic D | Real-World

|1 2 3 4|1 2 3 4|1 2 3 4|1 2 3 4|1 2 3 4
3 10.15 0.30 0.45 0.50]0.09 0.12 0.15 0.30(0.08 0.15 0.45 0.60|0.30 0.42 0.52 0.620.13 0.21 0.30 0.43
2 10.10 0.15 0.30 0.45|0.05 0.10 0.13 0.150.05 0.12 0.30 0.55|0.10 0.20 0.30 0.40 [0.08 0.13 0.20 0.30
1 [0.05 0.10 0.15 0.30|0.02 0.08 0.10 0.11|0.02 0.10 0.15 0.50{0.05 0.12 0.20 0.30|0.04 0.07 0.11 0.17

and 800 mg of nilotinib (drug A) and 0, 400, 600,
and 800 mg of imatinib (drug B). (Further details
are in the Supplementary Materials.) The synthetic
datasets A,B,C,D are constructed as variations on RW.
(Additional synthetic datasets and results are presented
in the Supplementary Materials.) Table 2 reports the
true toxicities for the various doses in the datasets
A.B,C,D,RW; the true MTD’s are shown in boldface.

For comparison purposes, we implemented five dose-
finding algorithms: SDF-Bayes; DF-Bayes (SDF-Bayes
without caution, chosen to illustrate the effect of op-
timism without caution); SOTA Bayes (Riviere et al.,
2014), a state-of-the-art Bayesian dose-finding algo-
rithm; IndepTS (Aziz et al., 2019), a Thompson
sampling-based multi-armed bandit (MAB) clinical
trial algorithm; and StructMAB, a structured MAB-
based clinical trial algorithm that exploits the joint
dose-toxicity model based on the structured bandit
method from (Gupta et al., 2019) while taking into
account the safety constraint, which is an advanced
version of the safe dose allocation method in Shen
et al. (2020) to drug combinations. In the algorithms
that exploit the joint dose-toxicity model (SDF-Bayes,
DF-Bayes, SOTA Bayes and StructMAB), we use the lo-
gistic model in Riviere et al. (2014) for fair comparison.

5.1 Homogeneous Groups

For each of these datasets, we conducted 5,000 runs
of each algorithm, each with a pool of 60 patients,
using & = 0.30,¢ = 0.05,0 = 0.05 (these values are
typical of actual Phase I trials). In any run, we counted
a recommendation error if the recommended DC is
not the true MTD and a safety violation if the DLT
observation rate exceeds the threshold £ 4 e. Table
3 reports, for each algorithm and each dataset, the
proportions of runs in which there was a safety violation
and runs in which the recommended DC was an error,
with 95% confidence intervals. Safety violations do
not satisfy the safety constraint (i.e., the proportion of
runs in which there was a safety violation is more than
0.05) are shown in red; in the absence of those safety
violations, the best error performance for each dataset
is shown in boldface. As can be seen, for every dataset,
SDF-Bayes satisfies the safety constraint while making
fewer recommendation errors than SOTA Bayes, Indep
TS, or StructMAB. Indeed, SOTA Bayes is the only one

of these algorithms that is at all competitive with SDF-
Bayes; Indep TS and StructMAB are recommending
the wrong MTD more than half the time. DF-Bayes
makes fewer recommendation errors than SDF-Bayes
for dataset B, in which no DC exceeds the threshold &,
but makes wildly unacceptable proportions of safety
violations for all other datasets.

SDF-Bayes does best because cautious optimism allows
it to more efficiently explore the boundary between safe
and unsafe DCs. In the Supplementary Materials, we
document that SDF-Bayes is more often testing DC’s
that are believed to be close to being unsafe, while other
algorithms more often test DC’s that are believed to
be safe. Because the primary objective of a Phase I
trial is to find the MTD while maintaining acceptable
patient safety, which is determined by the trialist, SDF-
Bayes is making the proper trade-off between accurate
prediction and safety of patients in the trial.

5.2 Heterogeneous Groups

To evaluate SDF-Bayes for heterogeneous groups, we
use the groups A, B whose toxicities are given by
Synthetic A and Synthetic B, respectively, provided
in Table 2. Because we have two groups, we allow for
a total of 80 patients. For each simulated trial, we
compute both the safety violations for each group and
the overall safety violation for the whole trial. (Other
details are in the Supplementary Material.)

To evaluate the effectiveness of adaptive recruitment
in SDF-Bayes-AR, we use as baselines the various
Bayesian algorithms with uniform recruitment (UR),
so that patients from each group are recruited with
equal probability, and SOTA Bayes-AR in which the
proposed adaptive patient recruitment is adopted to
SOTA Bayes. (We have already found that the MAB-
based algorithms are not competitive, so we do not use
them here.) We also apply the Bayesian algorithms
to the entire population, treated as a single group
called EP, whose true toxicity probabilities are just the
averages of the toxicity probabilities for the two groups
A and B. At the end of each trial, the algorithms
recommend a single DC for EP, which we evaluate as a
recommendation for each group separately. As before,
we use boldface to indicate the best performance
subject to satisfying the safety constraints.
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Table 3: Safety Violations and Recommendation Errors for datasets A,B,C,D,RW

[l Synthetic A [l Synthetic B [l

Synthetic C [l

Synthetic D [l Real-World

Algorithms ||Safety Viol.|Rec. Errors|[Safety Viol.|Rec. Errors|[Safety Viol| RecErrors |[Safety Viol.| Rec Errors ||Safety Viol.| Rec Errors

SDF-Bayes [|0.0194.004]|0.205+.011||0.001+.001| 0.193+.009 ||0.010+£.002]0.443+.012||0.040+.005]0.344+.011||0.0034+.001 |0.368+.011

DF-Bayes

0.411+.014|0.237£.012([0.020%+.003|0.123+.008||0.4344-.012| 0.6434+.011 ||0.4604.012| 0.3174+.011 {|0.154+.008| 0.341+.011

SOTA Bayes||0.023+.004| 0.233+£.012||0.000+.000| 0.196=£.009 ||0.013+£.003| 0.570%.012 ||0.041£.005| 0.394+.011 ||0.0024+.001 | 0.391+£.011
StructMAB||0.0184+.004| 0.516£.014 |{0.000+£.000| 0.4884.012 ||0.011£.002| 0.740+.010 ||0.060+.006 | 0.564£.012 |{0.002+.001| 0.621+.011

IndepTS

0.013+£.003| 0.603+.014 ||0.000£.000| 0.847+.008 ||0.006+.002| 0.819+£.009 ||0.072+£.006| 0.623%.011 ||0.000£.000| 0.749+.010

Table 4: Safety Violations and Recommendation Errors

Algorithm

‘ ‘ Safety Violation Rate

‘ Recommendation Error Rate

HEntire trial‘ Group A ‘ Group B ‘

Average ‘ Group A ‘ Group B

SDF-Bayes-AR ||0.000+£.000 | 0.0494.006 | 0.002+.001 |0.283+.012|0.287+.013|0.279+.012
SDF-Bayes-UR ||0.000+£.000 | 0.028=+.005 | 0.001£.001 | 0.2884+.013 |0.287+.013| 0.288+.013
DF-Bayes-UR || 0.0954.008 | 0.452+.014 | 0.0254.004 | 0.257+.012 | 0.3254+.013 | 0.1884+.011
SOTA Bayes-AR || 0.0004.000| 0.0644.006 | 0.000+.000 | 0.2944.011 | 0.3014.011 | 0.287+.011
SOTA Bayes-UR||0.0004.000| 0.0364.005 | 0.000+.000 | 0.298+.013 | 0.3144.013 | 0.283+.012
SDF-Bayes-EP ||0.004%.002| 0.7344-.012 | 0.000+£.000 | 0.806+.011 | 0.706+£.008 | 0.906+£.008
DF-Bayes-EP [[0.139£.010| 0.842+.010 | 0.007£.002 | 0.819+.011 | 0.807£.011 | 0.830+.010
SOTA Bayes-EP ||0.003£.002| 0.4934.014 | 0.000£.000 | 0.800+.011 | 0.692+.013 | 0.908+£.008

Safety Violations and Recommendation Errors
Table 4 shows that SDF-Bayes-AR achieves the lowest
overall error rate among the algorithms that satisfy the
safety constraint, but that the improvement of SDF-
Bayes-AR over SDF-Bayes-UR is marginal. As we will
see below, this is because no prior information is used;
as we show, adaptive recruitment is more effective when
prior information is available.

When we force the algorithms to treat EP as a homo-
geneous group, we see that the rate of safety violations
in group B is extremely low; as a result, the overall
rate of safety violations is also low (for SDF-Bayes and
SOTA Bayes, applied to EP) although the rate of safety
violations for group A is extremely high. We also see
that, in this setting, the recommendation errors are all
very high. This is because according to the averages
of the toxicity probabilities for the two groups A and
B, the true MTDs for EP are (2,4) and (3,3), neither
of which is an MTD for either group A or group B.
This highlights the danger of treating heterogeneous
populations as if they were homogeneous.

Impact of Prior Information As we have noted,
useful prior information about one or both groups may
be available (Hobbs et al., 2011). To illustrate the im-
pact of prior information on the adaptive recruitment
in SDF-Bayes-AR and hence on the results, we assume
that the prior information comes from a previous trial
for group B; we parametrize the amount/quality of
prior information by controlling the number of patients
T, in the previous trial. Table 5 records the fraction
of patients recruiting in group A, the safety violation
rates, and the recommendation error rates of SDF-
Bayes-AR and SDF-Bayes-UR for various sizes of prior

trials (and hence various amounts of prior information).
We can see that SDF-Bayes-AR adaptively recruits
the patients according to the amount of the prior
information. In SDF-Bayes-AR, patients from group
B are seldom recruited after the most likely MTD DC
for group B is determined with high probability. (See
the Supplementary Material for more detail.) Because
patients from group A are recruited more frequently,
more is learned about group A and the error rate for
group substantially reduced; the cost is only a marginal
increase in the error rate for group B. As a result, the
overall error rate is improved as expected. Because
adaptive recruitment reduces the number of patients
recruited from group B, it also reduces the possibility
of balancing the risk of group B and increases the
rate of safety violations in group B — although fewer
group B patients are exposed to DCs that are found
to be unsafe. Overall, SDF-Bayes-AR outperforms
SDF-Bayes-UR in both accuracy and safety: it makes
fewer total errors with fewer total safety violations.

6 RELATED WORK

Bayesian methodology for clinical trials
Bayesian methodology has been widely used for clinical
trials, first to label the effectiveness of treatments
(Atan et al., 2019; Berry, 2006). It has also been
used in dose-finding clinical trials (Wages et al., 2015;
O’Quigley et al., 1990) and for drug combination
trials (Riviere et al., 2014; Yin and Yuan, 2009a,b;
Yan et al., 2017), which are about online learning
for dose-finding clinical trials. In the latter setting it
is typically used in conjunction with a dose-toxicity
model because it can significantly reduce the size
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Table 5: Impact of Prior Information (A: Group A, B: Group B, E: Entire trial)

H Fraction Recruited from Group ‘

|| Tp=20 | T, =40 | T, =60 | Tp=20 | T, =40 | T, =60 | T, =20 | T, =40 | T, =60

Safety Violation Rates ‘ Recommendation Errors

A1|0.517+£.001]0.5994.003|0.719+.004 |0.027=£.004|0.0144.003|0.014+£.003|0.286+.013|0.281+£.012|0.258+.012
AR|B||0.483+.001|0.4014.003|0.2814.004|0.047+.006 |0.1054.009|0.2074+.011{0.233+.012|0.170+£.010|0.131+.009
E - - - 0.0014.001{0.0024.001|0.001+£.001|0.259+.012|0.226+.012{0.1954+.011
A1|0.500+£.000{0.5004.000{0.500+.000|0.031£.005{0.0314.005|0.031+£.005|0.3034+.013|0.303+£.013|0.303+.013
UR|B||0.500=£.000|0.500=+.000|0.5004.0000.0214.004 |0.0394.005|0.0554.006 |0.2344.012(0.1624+.010|0.1274+.009
E - - - 0.0064.002{0.0114.003|0.017£.004|0.268+.012|0.232+.012{0.215+.011
Table 6: Comparison of adaptive clinical trial Phase I methodologies
Reference Principle | No. of DCs Tﬁ’gﬁgﬁ’ Safety Hetg‘f()gltlerr)l;aous
Villar et al. (2015); Garivier et al. (2017);
Villar and Rosenberger (2018) MAB less than 10 No No No
Varatharajah et al. (2018) MAB less than 10 No No Yes
Aboutalebi et al. (2019) MAB less than 10 No Tmplicitly considered No
Aziz et al. (2019) MAB less than 10 Fixed [Implicitly considered No
Shen et al. (2020) MAB less than 10 Fixed d-safety guaranteed No
Lee et al. (2020) MAB less than 10 Fixed J-safety guaranteed Yes
Yan et al. (2017) Bayesian | less than 10 No Dose-escalation No
Wages et al. (2015) Bayesian | less than 10 Fixed Dose-escalation Yes
Yin and Yuan (2009a); Riviere et al. (2014) | Bayesian | more than 10| Fixed Dose-escalation No
This work (SDF-Bayes) | Bayesian [more than 10 [ Arbitrary | d-safety guaranteed | Yes

of the search space (Shen et al., 2019). By using
the posterior distribution of the parameters of the
dose-toxicity model, traditional Bayesian DC-finding
algorithms are proposed to find the MTD based on
dose escalation and de-escalation from the lowest dose
levels for safety (Riviere et al., 2014; Yin and Yuan,
2009a; Yan et al., 2017).

MAB for clinical trials MABs have also been
widely proposed for dose-finding clinical trials, espe-
cially for trials with a single drug (Aziz et al., 2019;
Shen et al., 2020; Varatharajah et al., 2018; Villar and
Rosenberger, 2018; Lee et al., 2020). Nevertheless, they
do not address the challenging issues of Phase I clinical
trials for multiple drugs, which operate in the small
sample size regime relative to the number of potential
doses. In trials for drug combination with more than
ten potential DCs, their asymptotic optimality is not
meaningful for a practical number (fewer than 100) of
patients in Phase I trials. In MAB models, various
safety management methods have been studied to ad-
dress safety issue. However, they deal with the safety
issue only implicitly or cannot be applied to the drug
combination setting because they rely on a very limited
dose-toxicity model with a single drug.

Methods for heterogeneous groups For both
Bayesian and MAB methods, there has been only lim-
ited work involving heterogeneous groups. In Wages
et al. (2015), a well-known Bayesian continual reassess-
ment method (CRM) is extended for an adaptive clin-

ical trial design for heterogeneous groups. However,
it does not consider drug combinations and a patient
recruitment with a limited number of patients. In Atan
et al. (2019), a patient recruitment with a limited num-
ber of patients is adaptively determined based on a
Bayesian knowledge gradient policy, but its goal is to la-
bel the effectiveness of drugs as opposed to dose-finding.
(Varatharajah et al., 2018; Lee et al., 2020) adapt a
contextual MAB for clinical trials with heterogeneous
groups by treating groups as contexts. However, this
work does not consider either drug combinations or
patient recruitment with a limited number of patients.

Table 6 provides a summary comparison of our work
with other methodologies.

7 CONCLUSION

In this paper, we have studied the problem of design-
ing Phase I clinical trials for drug combinations. We
have enunciated a principle of cautious optimism and
proposed the SDF-Bayes algorithm that applies that
principle to effectively balance the trade-off between
the exploration of drug combinations and the risk of
safety violation. For settings with identified heteroge-
neous groups, we proposed an extension SDF-Bayes-AR
in which both the DC to be allocated and the group
from which the next patient is to be recruited are
chosen adaptively. On the basis of experiments, we
demonstrated that our proposed algorithms outperform
previous state-of-the-art algorithms.
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