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A OMITTED PROOFS

In this section, we collect proofs for Theorem 1 that were omitted from the main paper.

A.1 Proof of Lemma 2

Here, we restate and prove Lemma 2.

Lemma 2. The event E =
T

i2{1,2,3} Ei holds with probability at least 1� 10LT 2� log2 T .

Proof. We will show that each of the three events holds with high probability and the apply the union bound.

Corollary 1 of Section B shows event E1 holds with probability at least 1� 4LT 2� log2 T .

For event E2, i⇤ is the index of the algorithm that is Ri⇤ -compatible and anytime. Let ⇡i⇤
(k) denote the policy

played by Ai⇤ at the kth call to i⇤. For K 2 [T ], these properties guarantee its regret bound holds, with
probability at least 1� �,

X

k2[K]

V ⇤
� V ⇡

i⇤
(k)  Ri⇤(di⇤ , H, log(T/�)) ·

p

K

Taking the union bound over all K 2 [T ] shows that event E2 holds with probability at least 1� T �.

As in the previous case, we can view the process ✏i(1), . . . , ✏
i

(T ) as the pre-drawn di↵erences between the observed

and expected returns for the 1 through (at most) T times of playing model Ai. Applying the Azuma-Hoe↵ding
inequality with |✏i(k)|  H and taking the union bound over all K 2 [T ],

|

X

k2[K]

✏i(k)|  H
p
2K log(2/�)

with probability at least 1 � T �. Taking the union bound over all models, event E3 occurs with probability at
least 1� LT �.

Taking these events together and �0 = 10LT 2� log2 T , event E holds with probability at least 1� �0.

A.2 Full Proof of Theorem 1

Here, we restate and complete the proof of Theorem 1.

Theorem 1. Let the model exploration parameter  = 1/3. Then, the model selection algorithm ECE satisfies

the regret bound

eO
⇣
HLT 2/3 +Ri⇤(di⇤ , H, log(LT/�0)) · i1/3⇤ L1/2T 2/3

⌘
.

with probability at least 1� �0, where eO hides logs and terms independent of T and R.

Proof. Let ⌧⇤ := ⌧i⇤ denote the time that Ai⇤ is chosen as the candidate. Recall that � = �
0

10LT 2 log2 T
. The

analysis can be divided into three phases when conditioned on the event E.

1. t < ⌧min(�): the test to determine switching to i⇤ is not valid yet.

2. ⌧min(�) < t  ⌧⇤: the test is eligible but ECE is still switching among incompatible algorithms.

3. t > ⌧⇤: ECE has switched to Ai⇤ .

Note that it is possible that ⌧⇤ � T . That is, the algorithm only uses incompatible algorithms; however, we will
show that this case still guarantees regret that adapts to the optimal algorithm i⇤.
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Case 1: Invalid Test We require t � ⌧min(�) in order for the condition in Lemma 1 to hold under E when
ı̂t = i⇤. Therefore, we can view this period t < ⌧min(�) as an unavoidable burn-in period. The regret during this
interval can then be upper bounded in the worst case as

Regret1:⌧min(�)�1 =
⌧min�1X

t=1

V ⇤
� V ⇡t  H⌧min = O

⇣
HL

2
1� log

1
1� (1/�)

⌘

Case 2: Misspecified Case In the second phase, the test is valid, but ECE is either utilizing algorithms
below i⇤ or switching among them in the event the test fails. The regret can be decomposed across each set T j

⌧⇤
of times playing Aj up to time ⌧⇤:

Regret
⌧min(�):⌧⇤ =

X

j2[L]

X

t2T j
⌧⇤

V ⇤
� V ⇡t

 4H(L� i⇤)⌧
1�

⇤ +
X

j<i⇤

X

t2T j
⌧j+1

V ⇤
� V ⇡t

 4H(L� i⇤)⌧
1�

⇤ +Hi⇤ +
X

j<i⇤

X

t2T j
⌧j+1�1

V ⇤
� V ⇡t

The second line follows from the fact that for j > i⇤, algorithm j is not selected yet (if ever), so maximal regret
is paid for those algorithms during exploration. Event E1 upper bounds the number of times that can be in T

j

⌧⇤
at time ⌧⇤, since the regret due to j is only due to exploration. Furthermore, for j < i⇤, once j is rejected, it is
never used for exploration again, so we can replace T

j

⌧⇤ with T
j

⌧j+1
for j < i⇤. The third line is necessary as no

guarantee is given during episodes when a test fails and there can be at most i⇤ failing tests since the condition
in Lemma 1 is always true under event E.

Then, we focus on bounding the right-hand term. Fix j < i⇤. Observe that for t 2 T
j

⌧j+1�1 the tests succeed for
all comparisons including with i⇤:

G⌧j+1�1(j, i) W(|T j

⌧j+1�1|,Rj , dj , �)

for all i > j. Therefore, since i⇤ > j, the definition of G can be used the bound the following:

X

t2T j
⌧j+1�1

V ⇤
� V ⇡t =

X

t2T j
⌧j+1�1

(V ⇤
� gt) +

X

t2T j
⌧j+1�1

✏t


|T

j

⌧j+1�1|

|T
i⇤
⌧j+1�1|

X

t2T i⇤
⌧j+1�1

(V ⇤
� gt) +W(|T j

⌧j+1�1|,Rj , dj , �) +
X

t2T j
⌧j+1�1

✏t


|T

j

⌧j+1�1|

|T
i⇤
⌧j+1�1|

X

t2T i⇤
⌧j+1�1

(V ⇤
� V ⇡t) +W(|T j

⌧j+1�1|,Rj , dj , �)

+
X

t2T j
⌧j+1�1

✏t +
|T

j

⌧j+1�1|

|T
i⇤
⌧j+1�1|

X

t2T i⇤
⌧j+1�1

✏t

Now we can use the fact that E2 and E3 hold to bound the regret and estimation errors:

X

t2T j
⌧j+1�1

V ⇤
� V ⇡t  O

0

@Ri⇤(di⇤ , H, log(T/�)) ·

vuut |T
j

⌧j+1�1|
2

|T
i⇤
⌧j+1�1|

1

A+W(|T j

⌧j+1�1|,Rj , dj , �)

+O

✓
H
q

|T
j

⌧j+1�1| · log(1/�)

◆
+O

0

@H

vuut |T
j

⌧j+1�1|
2

|T
i⇤
⌧j+1�1|

· log(1/�)

1

A

(4)
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Using E1 and the fact that ⌧min(�)  ⌧j+1 � 1  ⌧⇤, we have that

|T
i⇤
⌧j+1�1| �

(⌧j+1 � 1)1�

8L
�

|T
i⇤
⌧j+1�1|

1�

8L
.

Then the terms in (4) that contain |T
i⇤
⌧j+1�1| in the denominator can be upper bounded:

O

0

@Ri⇤(di⇤ , H, log(T/�)) ·

vuut |T
j

⌧j+1�1|
2

|T
i⇤
⌧j+1�1|

1

A  O
⇣
L1/2

Ri⇤(di⇤ , H, log(T/�)) · |T j

⌧j+1�1|
1+
2

⌘

O

0

@H

vuut |T
j

⌧j+1�1|
2

|T
j

⌧j+1�1|
· log(1/�)

1

A  O
⇣
HL1/2

|T
j

⌧j+1�1|
1+
2 · log1/2(1/�)

⌘

The bound then becomes
X

t2T j
⌧j+1�1

V ⇤
� V ⇡t  O

⇣
L1/2

Ri⇤(di⇤ , H, log(T/�)) · |T j

⌧j+1�1|
1+
2

⌘
+W(|T j

⌧j+1�1|,Rj , dj , �)

+O
⇣
H|T

j

⌧j+1�1|
1/2

· log1/2(1/�)
⌘
+O

⇣
HL1/2

|T
j

⌧j+1�1|
1+
2 · log1/2(1/�)

⌘

Since Rj  Ri⇤ , the regret for j in this case is
X

t2T j
⌧j+1�1

V ⇤
� V ⇡t  O

⇣
L1/2

Ri⇤(di⇤ , H, log(T/�)) · |T j

⌧j+1�1|
1+
2 +HL1/2

|T
j

⌧j+1�1|
1+
2 · log1/2(1/�)

⌘

Observe that
P

j<i⇤
|T

j

⌧j+1�1|  T and the right-hand side is a sum of concave functions of each |T
j

⌧j+1�1|. Using

Jensen’s inequality with the uniform distribution over |T j

⌧j+1�1| for j < i⇤ and then upper bounding by T yields
the bound:

Regret
⌧min(�):⌧⇤  O

⇣
HLT 1� +Hi⇤ +

⇣
Ri⇤(di⇤ , H, log(T/�)) +H log1/2(1/�)

⌘
· i

1�
2⇤ L1/2

· T
1+
2

⌘

Case 3: Selecting Ai⇤ Starting at ⌧⇤ + 1, Ai⇤ is selected. Note that the condition in Lemma 1 holds under
event E, so ECE will never reject i⇤. Then

Regret
⌧⇤+1:T 

X

j2[i⇤+1,L]

H|T
j

T
|+

X

t2T i⇤
T

V ⇤
� V ⇡t



X

j2[i⇤+1,L]

H|T
j

T
|+O

⇣
Ri⇤(di⇤ , H, log(T/�) ·

p

T
⌘

 O
⇣
HLT 1� +Ri⇤(di⇤ , H, log(T/�) ·

p

T
⌘

Adding the terms from these three phases gives the final bound:

Regret
T
= O

⇣
HL

2
1� log

1
1� (1/�) +HLT 1� +Hi⇤ +

⇣
Ri⇤(di⇤ , H, log(T/�)) +H log1/2(1/�)

⌘
· i

1�
2⇤ L1/2

· T
1+
2

⌘

Then we choose  = 1/3 to recover the statement in the theorem.

A.3 Proof of Theorem 2

Here, we restate an prove Theorem 2.

Theorem 2. For a given M, let (Ai,Fi) be R
⇧i
i
-compatible with respect to ⇧i for all i 2 [L]. Then, with

probability at least 1� �0, ECE with  = 1/3 satisfies the regret bound with respect to policy class ⇧i⇤ :

eO
⇣
HLT 2/3 +R

⇧i⇤
i⇤

p
T + L3/2(R

⇧i⇤
i⇤

)3
P

i<i⇤
��2

i,i⇤

⌘

If  = 1/2, then it satisfies

eO
⇣
HL
p
T +R

⇧i⇤
i⇤

p
T + L2(R

⇧i⇤
i⇤

)4
P

i<i⇤
��3

i,i⇤

⌘
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Proof. First we will show that the su�cient events to prove this result occur with high probability. While the
other events remain the same. we must modify event E2 from Lemma 2 slightly because we are interested in the
case when all algorithms are compatible with respect to their own policy classes. Let E0

2 denote the following
event: for all t 2 [T ] and i 2 [L],

P
t02T i

t
V ⇤
i
� V ⇡t0  R

⇧i
i
(di, H, log(T/�))

p
|T i

t
|

As in Lemma 2, this almost follows from Definition 2; however, we also union bound over all algorithms. Thus
E0

2 occurs with probability at least 1 � LT �. Let E0
1 = E1 and E0

3 = E3. Then E0 =
T

i21,2,3 E
0
i
occurs with

probability at least 1� 10LT 2� log2 T , as before.

Recall that i⇤ = minB⇤ where B⇤ is the set of indices that achieve maximal value, argmax
i
V ⇤
i
. For shorthand,

we will let Rj := R
⇧j

j
(dj , H, log(T/�)). We now verify that the statistical test will not fail once ECE reaches

some i⇤ 2 B⇤. This is nearly identical to Lemma 1, but we must verify it with respect to values that are not the
optimal value.

Lemma 3. Let (Ai,Fi) be an R
⇧i
i
-compatible algorithm with respect to ⇧i for all i 2 [L] and let i⇤ = minB⇤.

Given that event E0
holds and t � ⌧min(�), then, for all j 2 [i⇤+1, L], it holds that Gt(i⇤, j) W(|T i⇤

t
|,Ri⇤ , di⇤ , �).

Proof. From the definition of G,

Gt(i⇤, j) =
|T

i⇤
t

|

|T
j

t
|

X

t02T j
t

gt0 �
X

t02T i⇤
t

gt0

=
|T

i⇤
t

|

|T
j

t
|

X

t02T j
t

(V ⇡t0 + ✏t0)�
X

t02T i⇤
t

(V ⇡t0 + ✏t0)



X

t02T i⇤
t

�
V ⇤
i⇤ � V ⇡t0

�
+

|T
i⇤
t

|

|T
j

t
|

X

t02T j
t

✏t0 �
X

t02T i⇤
t

✏t0

where the last step uses the fact that V ⇤
i⇤

= maxi V ⇤
i
. Since (Ai⇤ ,Fi⇤) is R

⇧i⇤
i⇤

-compatible, the remainder of the
proof is identical to that of Lemma 1 by applying the conditions in E0.

As before, in the full proof we handle three cases: (1) before the test is valid, (2) while i < i⇤ is chosen, (3) after
i⇤ is chosen. In the first case, we again pay the burn-in period regret of Regret1:⌧min(�)�1 = O(H⌧min(�)). In the

third, we showed that the test will never fail once ı̂t = i⇤. Therefore, Regret⌧⇤:T = O
⇣
HLT 1� +Ri⇤ ·

p
T
⌘
.

To bound the regret during the misspecified phase, we construct an upper bound on the number of times Aj can
be played for j < i⇤. Let t be a time such that ı̂t = j < i⇤ and the test succeeds. First, we bound the size of the
gaps.

Note that by definition V ⇤
j
�

1
|T j

t |

P
t02T j

t
V ⇡t0 and event E0 ensures that V ⇤

i⇤


Ri⇤
|T i⇤

t |1/2 + 1
|T i⇤

t |

P
t02T i⇤

t
V ⇡t0 .
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Then,

�j,i⇤ = V ⇤
i⇤ � V ⇤

j


1

|T
i⇤
t

|

X

t02T i⇤
t

V ⇡t0 +
Ri⇤

|T
i⇤
t

|1/2
�

1

|T
j

t
|

X

t02T j
t

V ⇡t0

=
Ri⇤

|T
i⇤
t

|1/2
+

1

|T
i⇤
t

|

X

t02T i⇤
t

(gt0 � ✏t0)�
1

|T
j

t
|

X

t02T j
t

(gt0 � ✏t0)


W(|T j

t
|,Rj , dj , �)

|T
j

t
|

+
Ri⇤

|T
i⇤
t

|1/2
�

1

|T
i⇤
t

|

X

t02T i⇤
t

✏t0 +
1

|T
j

t
|

X

t02T j
t

✏t0

 CW ·

 
Rj

|T
j

t
|1/2

+H

s
16L log(2/�)

|T
j

t
|1�

+H

s
2 log(2/�)

|T
j

t
|

!

+
Ri⇤

|T
i⇤
t

|1/2
+H

s
2 log(2/�)

|T
i⇤
t

|
+H

s
2 log(2/�)

|T
j

t
|

where we have applied the definition ofW and event E3 to bound the noise of the returns. Let C 0
W = max{1, CW}.

Since i⇤ has not been selected yet |T i⇤
t

| �
t
1�

8L �
|T j

t |1�

8L . Then, since Rj  Ri⇤ ,

�j,i⇤  C 0
W ·

 
2
p
8LRi⇤

|T
j

t
|
1�
2

+H
2
p
16L log(2/�)

|T
j

t
|
1�
2

!

Rearranging gives

|T
j

t
| = O

0

B@
L

1
1�

⇣
Ri⇤ +H log1/2(1/�)

⌘ 2
1�

�
2

1�

j,i⇤

1

CA

Now this bound can be used to bounding the regret with dependence on the gap. The regret during this phase
is again

Regret
⌧min(�):⌧⇤  H(L� i⇤)⌧

1�

⇤ +
X

j<i⇤

X

t2T j
⌧j+1

V ⇤
i⇤ � V ⇡t

 H(L� i⇤)⌧
1�

⇤ +Hi⇤ +
X

j<i⇤

X

t2T j
⌧j+1�1

V ⇤
i⇤ � V ⇡t

As in the proof of Theorem 1, we focus on bounding the right-hand term. For a fixed j < i⇤, at time ⌧j+1 � 1

we have that the test succeeds so G⌧j+1�1(j, i⇤)  W(|T j

⌧j+1�1|,Ri⇤ , di⇤ , �). Then, applying the bound on the
number of times j can be played,

X

t2T j
⌧j+1�1

V ⇤
i⇤ � V ⇡t  �j,i⇤ |T

j

⌧j+1�1|+Rj ·

q
|T

j

⌧j+1�1|

 O

0

B@
L

1
1�

⇣
Ri⇤ +H log1/2(1/�)

⌘ 2
1�

�
1+
1�

j,i⇤

+
Ri⇤L

1
2(1�)

⇣
Ri⇤ +H log1/2(1/�)

⌘ 1
1�
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1
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1
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= O

0
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1
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⇣
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Therefore, the regret in this phase can be upper bounded by

Regret
⌧min(�):⌧⇤  O

0

@H(L� i⇤)T
1� +Hi⇤ + L

1
1�

⇣
Ri⇤ +H log1/2(1/�)

⌘ 2
1�

X

j<i⇤

1

�
1+
1�

j,i⇤

1

A

Combining these three phases, the total regret is

O

0

@HL
2

1� log
1

1� (1/�) +HLT 1� +Hi⇤ + L
1

1�

⇣
Ri⇤ +H log1/2(1/�)

⌘ 2
1�

X

j<i⇤

1

�
1+
1�

j,i⇤

+Ri⇤

p

T

1

A

Choosing either  = 1/3 or  = 1/2 gives us the statements of Theorem 2. This completes the proof.

B FREEDMAN INEQUALITY

In this section, we use a Freedman inequality to lower and upper bound with high probability the number of
times a particular algorithm is played both during exploration and while it is chosen by the meta-algorithm
(Lemma 2). First, we state a variant of the Freedman inequality from Bartlett et al. (2008).

Lemma 4 (Lemma 2, Bartlett et al. (2008)). Suppose X1, · · · , XT is a martingale di↵erence sequence with

|Xs|  b. We define

VarsXs = Var(Xs|X1, · · · , Xs�1)

Further, let VT =
P

T

s=1 VarsXs be the sum of conditional variances of X 0
s
s, and �T =

p
VT . Then we have, for

any choice of � < 1/e and T � 4:

P
 

TX

s=1

Xs > 2max(2�T , b
p
ln(1/�))

p
ln(1/�)

!
 log2(T )� (5)

Recall that Bs denotes the indices of algorithms that have not been selected by time s. Note that |Bs|  L. For
all i 2 [L] and t 2 [T ], define the event

Ei,t :=

8
<

:
||T

i

t
|�

P
s2[t]

1
|Bs|s |  4

qP
s2[t]
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s

log(1/�) ⌧i � t

||T
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t
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s2[⌧i]

1
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s2[⌧i+1,t]
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1� 1

s

�
|  4

qP
s2[t]

1
s

log(1/�) ⌧i < t

Lemma 5. The event E = \i2[L],t2[T ]Ei,t holds with probability at least 1� 4LT 2� log2 T

Proof. Define

Si(t, t
0) =

X

s2[t0]

Ys,i +
X

s2[t0+1,t]

Y s,i

where Ys,i ⇠ Ber
⇣

1
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⌘
and Y s,i ⇠ Ber

�
1� 1

s

�
. Then define
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X
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1st0 ·

✓
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1
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+ 1s>t0

✓
Y s,i �

✓
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1

s
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✓
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1
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✓
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1
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◆◆◆

where Vars denotes the conditional variance up to time s. By definition, {Zi(t, t0)}t�1 is a martingale sequence
and Vi(t, t0) 

P
s2[t]

1
s
. By the Freedman inequality from Lemma 4,

P

0

B@|Zi(t, t
0)| � 4

vuut
X

s2[t]

1

s
· log(1/�) + 4 log(1/�)

1

CA  2� log2 T
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Let this event be denoted by E i(t, t0) for each i 2 [L] and t, t0 2 [T ]. Then, by the union bound, the eventS
i,t,t0 E i(t, t0) holds with probability at most 4LT 2� log2 T . Therefore,

T
t,t0�1 Ei(t, t

0) holds with probability at

least 1� 4LT 2� log2 T , and this event implies for all i 2 [L] and t 2 [T ], if t > ⌧i, then

||T
i

t
|�

X

s2[⌧i]

1

|Bs|s
�

X

s2[⌧i+1,t]

✓
1�

1

s

◆
|  4

vuut
X

s2[t]

1

s
log(1/�) + 4 log(1/�)

and if ⌧  ⌧i, then

||T
i

t
|�

X

s2[t]

1

|Bs|s
|  4

vuut
X

s2[t]

1

s
log(1/�) + 4 log(1/�)

Corollary 1. With probability at least 1 � 4LT 2� log2 T , for all i 2 [L] and t 2 [T ] such that t � ⌧min(�), the
following is true:

1. If t  ⌧i, then
t
1�

8L  |T
i

t
|  4t1�

.

2. If t > ⌧i, then |T
i

t
|  t� ⌧i + 4t1�

.

Proof. Note that when t  ⌧i, it is also the case that |Bs| � 1 for all s  t. We condition on the event E from
above, which occurs with probability at least 1� 4LT 2� log2 T . Given this event, it follows that if t  ⌧i, then

|T
i

t
| �

X

s2[t]

1

s|Bs|
� 4

vuut
X

s2[t]

1

s
log(1/�)� 4 log(1/�)

�
1

2L

X

s2[t]

1

s
� 32L log(1/�)

�
1

2L

�
t1�

� 2
�
� 32L log(1/�)

�
t1�

4L
� 32L log(1/�)

�
t1�

8L

The second inequality uses the AM-GM inequality along with the fact that |Bs|  L, which implies

vuut
X

s2[t]

1

Ls
· 16L log(1/�) 

1

2L

X

s2[t]

1

s
+ 8L log(1/�)

The third applies the integral approximation of the sum. The last two follow from the condition that t �

⌧min(�) = Cmin · L
2

1� log
1

1� (1/�) for a large enough constant Cmin > 0.

The other side follows similarly with

|T
i

t
|  3t1� + 32 log(1/�)

 4t1�

when t � (32 log(1/�))
1

1� .
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Similarly, for t > ⌧i, event E guarantees

|T
i

t
| 

X

s2[⌧i]

1

s|Bs|
+

X

s2[⌧i+1,t]

✓
1�

1

s

◆
+ 4

vuut
X

s2[t]

1

s
log(1/�) + 4 log(1/�)

 t� ⌧i + 32 log(1/�) +
3

2

X

s2[⌧i]

1

s

 t� ⌧i + 32 log(1/�) + 3t1�

 t� ⌧i + 4t1�

when t � ⌧min(�).

C APPLICATIONS

In this section, we expand on the applications of Theorem 1 to paradigms of function approximation in RL.

Linear MDPs Consider the setting of Jin et al. (2020b) which we mentioned as an example in Section 3. In
this setting, we assume access to a set of nested features �i : S ⇥ A ! Rdi for i 2 [L] such that di  di+1 and
the first di components of �i+1 are the same as �i. These features generate linear model classes of the form

Fi =
�
(s, a) 7! h�i(s, a), ✓i : ✓ 2 Rdi

 

Nested-ness of the features ensures that Fi ✓ Fi+1 for all i. In accordance with the setting of Jin et al. (2020b),
we assume that there exists some minimal i⇤ such that for any Fi with i � i⇤ there exist µ(·) and !i,h 2 Rdi

that predict exactly the transition probabilities P and reward r:

P (s0|s, u) = h�i(s, u), µi(s
0)i

rh(s, u) = h�i(s, u),!i,hi
(6)

Here, µi(·) is a di-dimensional vector of measures on S. Let {Ai} be instances of LSVI-UCB equipped with
the doubling trick and model classes {Fi}. We further assume that the features and parameters for each of the
models with i � i⇤ satisfies the regularity conditions of Assumption A of Jin et al. (2020b), i.e. bounded `2
norms, r 2 [0, 1].

Jin et al. (2020b) guarantees that for i � i⇤ and t 2 [T ] with probability at least 1 � �0, Regret
t
(Ai) =

O(
q
d3
i
H4t · log2(diTH/�0)). Adapting this to the framework of ECE, we let Ri = O

✓q
d3
i
H4 · log2(diTH/�)

◆
,

which ensures Ri  Ri+1. A model selection corollary immediately follows from Theorem 1.

Corollary 2. In the linear MDP setting of (6) with LSVI-UCB, ECE guarantees with probability at least 1� �0

Regret
T
= eO

✓q
d3
i⇤
H4 log2(di⇤LTH/�0) · L5/6T 2/3

◆

Yang and Wang (2020) consider a similar setting of linear MDPs where the transition dynamics P are linear.
We again assume access to nested linear models but of the form

Fi =
n
(s, u, s0) 7! �i(s, u)

>M i(s
0) : M 2 Rdi⇥d

0
i

o

where {�i}i2[L] and { i}i2[L] are nested features of dimension di and d0
i
respectively. Yang and Wang (2020)

assume that there is some minimal i⇤ such that for any i � i⇤, there is M 2 Rdi⇥d
0
i such that

P (s0|s, u) = �i(s, u)
>M i(s

0) (7)

for all s, s0 2 S, u 2 U . We further adhere to the regularity conditions of Assumption 2 of Yang and Wang

(2020), who guarantee the MatrixRL Ai with model Fi has regret Regret
t
(Ai) = eO

⇣p
d3
i
H5t · log(diTH/�0)

⌘



Lee, Pacchiano, Muthukumar, Kong, Brunskill

with probability at least 1� �0. Letting Ri = eO
⇣p

d3
i
H5 · log(diTH/�)

⌘
, we have the following model selection

guarantee.

Corollary 3. In the linear MDP setting of (7) with MatrixRL, ECE guarantees with probability at least 1� �0

Regret
T
= eO

✓q
d3
i⇤
H5 log2(di⇤LTH/�0) · L5/6T 2/3

◆

The final linear setting we consider is that of low inherent Bellman error studied by Zanette et al. (2020). We let
Fi be defined as it is in (3) and let B = {✓ 2 Rdi : k✓k  D} for some D > 0. Then assume there is a minimal
i⇤ such that for any i � i⇤ and ✓h+1 2 B, there is ✓h such that

h�i(s, u), ✓hi �BhQh+1(✓h+1)(s, u) = 0

for all s 2 S and u 2 U , where Qh(✓) is the linear action-value function parameterized by ✓ (with features �i)
and Bh is the Bellman operator with reward rh. In other words, this condition asserts that Fi⇤ has zero inherent
Bellman error. Under the same regularity conditions, for i � i⇤, Zanette et al. (2020) guarantees ELEANOR

achieves Regret
t
(Ai) = eO

⇣
di
p
H4t

⌘
with probability at least 1 � �0. Letting Ri = eO

⇣
di
p
H4

⌘
, we have the

following model selection guarantee.

Corollary 4. In the inherent Bellman error setting with ELEANOR, ECE guarantees with probability at least

1� �0

Regret
T
= eO

⇣
di⇤
p

H4 · L5/6T 2/3
⌘

where eO hides polylog dependencies.

Low Bellman Rank Another class of algorithms using more general function approximation considers the
setting of MDPs with low Bellman rank (Jiang et al., 2017). In this setting, a finite model class F : S ⇥ U ! R
realizes M if there exists f⇤

2 F such that Q⇤
h
(s, a) = f⇤(s, a), where Q⇤ is the optimal action-value function for

all h 2 [H]. For any f 2 F , define ⇡f as the greedy policy with respect to f , and the Bellman error at h 2 [H]
as

E(f,⇡, h) := E [f(s,⇡f (s))� r(s,⇡f (s))� f(s0,⇡f (s
0))] ,

where the expectation is over s from the state distribution of ⇡ at h and s0 ⇠ P (·|s,⇡f (s)). In this setting, it is
assumed that there is a Bellman rank M ⌧ |F| such that for any f, g 2 F , we have E(f,⇡g, h) = h⌫h(g), ⇠h(f)i
for ⌫h(g), ⇠h(f) 2 RM and k⌫kk⇠k  ⇣. We assume access to a set of finite model classes {Fi}i2[L] such that
there is at least one that realizes M, and the complexity of Fi is a function of its cardinality |Fi| and induced
Bellman rank Mi. We consider instances of the AVE algorithm {Ai} of Dong et al. (2020) with the doubling

trick, which has nominal regret eO
✓q

M2
i
|U|H4t log3 |Fi|

◆
. Choose RFi = eO

✓q
M2

i
|U|H4 log3(|Fi|)

◆
and let

i⇤ be the smallest index that realizes M. This yields the following corollary.

Corollary 5. In the low Bellman rank setting with AVE, the model selection algorithm guarantees with probability

at least 1� �0

Regret
T
(A) = eO

✓q
M2

i⇤
|U|H4 log3(|Fi⇤ |) · L

5/6T 2/3

◆
.

D Implications of fast rates of estimating V ⇤ and/or gap between policy classes

We previously discussed the recent results that prove PAC (Modi et al., 2020) and regret (Pacchiano et al., 2020)
results for model selection in RL given knowledge of V ⇤. We now show an analogous result for our setting. We
use the framework of Algorithm 1 but set the probability of forced exploration to zero, i.e. set  = 1. Then,
the test is modified to check the following condition for eliminating model ı̂t:

X

t02T ı̂t
t

V ⇤
� gt0 > WV ⇤(|T ı̂t

t
|,Rı̂, dı̂t , �)
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where

WV ⇤(�,R, d, �) = CW · R(d,H, log(1/�)) ·
p

�

+ CW ·H
p
� · log(1/�)

for a su�ciently large constant CWV ⇤ > 0. The test e↵ectively measures the regret of Aı̂t up to noise in gt and
rejects when we are confident that the regret does not match the nominal.

Proposition 1. Given side information of the optimal value V ⇤
for MDP M, the above model selection algorithm

A guarantees regret

Regret
T
(A) = eO

⇣
Ri⇤(di⇤ , H, log(LT/�0)) ·

p

LT
⌘

with probability at least 1� �0.

Proof. The proof is identical to that of Theorem 1 except for the handling of the misspecified case. For any
model j < i⇤ for which there is a time when the test succeeds,

X

t2T j
⌧j+1�1

V ⇤
� V ⇡t =

X

t2T j
⌧j+1�1

(V ⇤
� gt) +

X

t2T j
⌧j+1�1

✏t

WV ⇤(|T j

t
|,Rj , dj , �) +

X

t2T j
⌧j+1�1

✏t

= O

✓⇣
Ri⇤ +H log1/2(1/�)

⌘
·

q
|T

j

t
|

◆

Summing over all j < i⇤ and using Jensen’s inequality again shows that the dominant term remains O(Ri⇤

p
T )

instead of O(Ri⇤T
2/3).

This regret optimally matches the regret of the base algorithms in both Ri⇤ and T , but a dependence on L is
still included.

Unfortunately, it is unclear whether such an assumption of knowing V ⇤ is realistic in practice. An immediate
alternative solution is to try to estimate V ⇤ without first finding the optimal policy. The original test in Section 4.2
attempts this: the average returns of the algorithms in Bt act as a noisy lower bound of V ⇤. The test, however,
is sensitive to the amount of exploration allocated to the base algorithms, and, since we are comparing to the
nominal regret, the flat dependence on R is unlikely to improve. We hypothesize that better estimates of V ⇤

can significantly improve the model selection guarantee.

In the following subsections, we consider the implications of having access to fast estimators, either of the optimal
value V ⇤ := V ⇤

i⇤
or gaps between optimal values of di↵erent model orders, i.e. �i,j := V ⇤

i
� V ⇤

j
. We employ

our instance-dependent analysis to show that improved regret rates can be obtained in both cases when the gap
between the value of the optimal policy class and others is relatively large (i.e. constant). These consequences
are demonstrated for the special case of linear contextual bandits, where such fast estimators are known to be
available (Dicker, 2014; Kong and Valiant, 2018; Kong et al., 2020; Verzelen et al., 2018).

D.1 Implications for access to a fast rate of estimating gaps in policy class optimal values

We first consider the possibility of fast rates in estimating the gap in optimal policy values, i.e. �i,j := V ⇤
j
� V ⇤

i

for all i < j. In this section, we show that a modification of our ECE algorithm with a direct estimator of the gap
in maximal values would yield improved model selection rates if there is a constant gap between all lower-order
models and the true model, i.e. �i,i⇤ > 0 for all i. Along with the replaced estimator, the radius of the statistical
test is also modified according to the faster estimation error rate in the policy gap. For the special case of linear
contextual bandits, these modifications will correspond exactly to the ModCB algorithm proposed by Foster et al.
(2019).

Since our focus is on instance-dependent analysis, we carry over the assumptions from Section 6, and further
assume model nested-ness in the sense that V ⇤

j
= V ⇤ for j � i⇤. Thus, we get �i⇤,i = 0 for all i � i⇤, and
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Algorithm 2 Explore-Commit-Eliminate With Fast Gap Estimator And Forced Exploration Routines(ECE-Gap)

1: Input: {Ai, eAi,Fi,Vi, di}i2[L], T, �
0, ⌧min(·)

2: �  �
0

10LT 2 log2 T
, ı̂t  1, T i

1 = ; for i 2 [L], B1 = [2, L]

3: Ut =

(
0 w.p. 1� 1

t

1 w.p. 1
t

for all t 2 [T ].

4: for t = 1, . . . , T do

5: if Ut = 0 then

6: Set j  ı̂.
7: else

8: Sample Jt ⇠ Unif{Bt}

9: Set j  Jt
10: end if

11: T
j

t
 T

j

t
[ {t} and T

k

t
 T

k

t
for all k 6= j.

12: IF Ut = 0: Rollout policy ⇡t from Aj .

13: ELSE: Rollout policy ⇡t from eAj .
14: Observe zt := (st,1, ut,1, . . . , ut,H , st,H+1) and gt :=

P
h2[H] rt,h

15: Update Aj if Ut = 0, else update eAj with t, zt, gt
16: if t � ⌧min(�) and there exists j 2 Bt such that b�ı̂t,j(T

j

t
) > Z(|T j

t
|,Vj) then

17: ı̂t+1  ı̂t + 1
18: Bt+1  Bt \ {ı̂t+1}

19: If ı̂t+1 = L, break and run AL to end of time
20: else

21: Bt+1 = Bt

22: end if

23: end for

�i,i⇤ > 0 for all i < i⇤. To estimate the gap during exploration episodes, rather than running Ai directly, we

allow an exploration algorithm eAi to be run. In the case of Foster et al. (2019) for contextual bandits, this would
be an exploration policy that picks an arm uniformly at random from the set of K arms. Finally, we make the
following assumption on the estimation error rate of the gaps.

Assumption 1. For any i < j, we define b�(n)
i,j

as an estimate of �i,j that is a functional of the (context

and reward) feedback obtained after running n exploration episodes for eAj. Then, we say that our estimate is

Vj := V(dj , H, log(1/�))-consistent if, for some positive constant C > 1, we have

|b�(n)
i,j
��i,j | 

�i,j

C
+

Vj
p
n

for all n 2 [T ] and i < j (8)

with probability at least 1 � �. As with the earlier definition
5
, V| is poly and non-decreasing in dj, H, |U|, and

log(LT/�)).

The original estimator used in the ECE algorithm satisfies the above assumption with V := R. In what follows,
we want to exploit situations in which we have available an estimator b�i,j with guarantee V ⌧ R; in particular,
the dependence of the function V on dimension d could be significantly improved over any regret bound. While
constructing such estimators is in general a open problem in RL, we do have one example for the linear contextual
bandit problem where this is known to be possible.

Example 1. [Linear contextual bandits.] Consider the stochastic dth-order linear contextual bandits model

as in Chu et al. (2011), parameterized by K context distributions {⌃i}
K

i=1, reward parameter ✓⇤ 2 Rd
, and

�-sub-Gaussian noise in the rewards. Further, we carry over the assumptions from Foster et al. (2019) of ⌧ -

sub-Gaussianity of the contexts and �min(⌃) � ⌫ > 0 where ⌃ := 1
K

P
K

i=1 ⌃i is the action-averaged covariance

matrix. We assume that ⌧, ⌫ are universal positive constants. Then, Assumption 1 holds with the choice of forced

5
Similar to R, the definition of Vj can be general and include other problem dependent parameters as well.
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exploration eAi that chooses arms uniformly at random from the set [K] (regardless of round index t and model

index i), with the choices C = 2 and Vi(di, log(1/�)) scaling as eO(d1/4
i

) for the estimator based on the square loss

gap, used in Foster et al. (2019). Meanwhile, the regret bound for the base algorithms (e.g. instances of Exp4-IX)

would give Ri scaling as eO(d1/2
i

). Further, note that Algorithm 2 exactly becomes the ModCB algorithm for this

case.

We now described the modified ECE algorithm, ECE-Gap, to work with a plugged-in estimate of �i,j with the

above guarantees. Note that the input now has extra “exploration algorithms” eAi, and what was earlier defined
as regret bound leading factors, i.e. Ri, is replaced by Vi, the leading factors in the gap estimation error.
Importantly, we are now using the fast estimator b�i,j(t) in place of the earlier estimator Gt(j, i)/|T

j

t
|.

Moreover, the threshold is now defined as:

Z(n,V) :=
V
p
n

Note that the threshold is always applied to the more complex model d := di for i > j. The algorithm is stated
formally in Algorithm 2. We derive the following instance-dependent result for this algorithm.

Proposition 2. For a given M, let Assumption 1 hold and let {�i,i⇤}i<i⇤ be the gaps. Then, with probability

at least 1� �0, ECE-Gap in Algorithm 2 satisfies the regret bound

eO
 
HLT 1� +R

⇧i⇤
i⇤

p

LT +
i⇤�1X

i=1

min{L
1

1�V

2
1�

i⇤
�

� 1+
1�

i,i⇤
,�i,i⇤T}

!
,

where regret is measured with respect to the optimal value V ⇤
.

Before proving Proposition 2, let us consider its implication for the linear contextual bandits setting, ignoring
dependence on K = |U| for now. Here, the modified ECE algorithm will essentially correspond to ModCB.

By choosing  = 1/3 and using the gap estimator from Foster et al. (2019), we can achieve an instance-dependent
result with lower di⇤ dependence than that of Theorem 2 for the same setting of  under the assumption of
constant gaps. Furthermore, in the case the case of variable gaps, this result can immediately imply a minimax
guarantee that matches that of Foster et al. (2019).

Corollary 6. For the linear contextual bandit problem, under the same setting as Corollary 7, with probability

at least 1� �0, Algorithm 2 with  = 1/3 and constant gaps satisfies the instance-dependent regret bound

eO
 
LT 2/3 +

p
di⇤LT + L3/2d3/4

i⇤

X

i<i⇤

��2
i,i⇤

!
= eO

⇣
LT 2/3 +

p
di⇤LT

⌘
. (9)

Furthermore, for variable gaps, let Regret
T
(A;M, {�i,i⇤}i) denote the regret as a function of the gaps. Since

min{L3/2
V
3
i⇤
��2

i⇤,i
,�i⇤,iT}  L1/2

Vi⇤T
2/3

, ECE-Gap also satisfies the minimax regret bound

sup
�i,i⇤>0 : i<i⇤

Regret
T
(ECE-Gap;M, {�i,i⇤}i) = eO

⇣
Ld1/4

i⇤
T 2/3 +

p
di⇤LT

⌘
.

The equality in the (9) uses di ⌧ T for all i 2 [L] and the constant gap assumption. If we knew a priori that the
gaps are constant, the instance-dependent bound in (9) can be improved by a more aggressive choice of  = 1/2,
as in Theorem 2. We can then achieve the desired regret rate of eO(

p
di⇤T ) regret if and only if the gaps are

constant. Again there is only sub-optimal di⇤ -dependence on the term independent of T .

Corollary 7. For the linear contextual bandit problem under Assumption 1 with constant gaps {�j,i⇤}j<i⇤ , let

Vi⇤ := eO(d1/4
i⇤

) and R
⇧i⇤
i⇤

:= eO(d1/2
i⇤

). Then, with probability at least 1 � �0, Algorithm 2 with  = 1/2 satisfies

the regret bound

eO
 
L
p

T +
p
di⇤LT + L2di⇤

X

i<i⇤

��3
i,i⇤

!
= eO

⇣
L
p

T +
p
di⇤LT

⌘
.
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In summary, Proposition 2 not only recovers the minimax rate, but shows an improved instance-dependent
guarantee for more favorable cases when the gap between optimal policy values is larger.

Let us now prove the proposition.

Proof. Let b�t

i,j
:= b�(|T i

t |)
i,j

. First, we show that under the intersection of the event of Equation (8) and event E0

of Theorem 2, we will never reach ı̂t > i⇤. For every i > i⇤, and all t � 1, Equation (8) gives us

b�t

i⇤,i 
Vip
|T i

t
|

Thus, model order i⇤ is never rejected under this event, and higher order models have no contribution to the
overall regret.

Next, we bound the regret arriving from the misspecified models i < i⇤. We do this by bounding the number of
rounds during which model order i < i⇤ is used, given by |T

i

T
|. From Equation (8), we get

�i,i⇤ 
b�t

i,i⇤ +
�i,i⇤

C
+

Vi⇤q
|T

i⇤
t

|

=) �i,i⇤ 
C

C � 1

0

@b�t

i⇤,i +
Vi⇤q
|T

i⇤
t

|

1

A


CVi⇤

(C � 1)
q

|T
i⇤
t

|

where the last inequality follows because the condition in the test has not yet been violated. More-over, since

model i⇤ has not been selected yet, we have |T
i⇤
t

| �
t
1�

8L �
|T i

t |1�

8L . This gives us

�i,i⇤ 
8(CL)1/2Vi⇤
p
C � 1|T i

t
|
1�
2

=) |T
i

t
| = O

0

@L
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Thus, the total contribution to the regret from the misspecified model i is given by

T 1� + |T
i

t
|�i,i⇤ +R
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q
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|

 T 1� + |T
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|�i,i⇤ +R

⇧i⇤
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q
|T i

t
|.

The first term comes from the forced exploration, and the last term is equivalent to the regret we would pay
anyway if we knew i⇤ = 2 beforehand. Focusing on the second term, the contribution to regret is upper bounded
by

min

(
�i,i⇤T,

✓
CZL1/2

Vi⇤

�i,i⇤

◆ 2
1�

·�i,i⇤

)

D.2 Implications for a fast rate of estimating V ⇤

An alternative setting is one where we have access to an estimator of V ⇤ instead of an estimator of the gap.

Corollary 1 of Kong et al. (2020) shows that an ✏-close approximation of V ⇤ is possible in eO
⇣p

d/✏2
⌘
interactions
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in the disjoint linear bandit setting (where there is a di↵erent parameter vector for each arm) under Gaussian
assumptions. Whether or not such fast estimators exist or are practical for other general settings is still open,
but future work on this problem could be applied to the instance dependent results here.

We will retain the same problem assumptions as the previous subsection. We also assume there is bVi for each
i 2 [L]. Each estimator o↵ers a high-probability guarantee on the estimation error as a function of the number
of exploration episodes using corresponding exploration algorithms { eAi}.

Assumption 2. For all i 2 [L], we define the bV (n)
i

where n 2 [T ] as the estimator of V ⇤
i

given n exploration

rounds with eAi. We assume with probability at least 1� �, for all i � i⇤, the estimator bV (n)
i

satisfies

|V ⇤
� bV (n)

i
| 

Vi

n↵
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V
0
i

n�
(10)

where Vi and V
0
i
are poly and increasing in d, H, |U|, and log(LT/�)) and ↵,� 2 (0, 1).

Let V̂ t

i
:= bV (|T i

t |)
i

. The algorithm will be of the same form as Algorithm 2, but instead we leverage the following
alternative test: X

t2T ı̂t
t

bV t

j
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t
|,Vj ,V

0
j
) (11)

where

Zi(t,V,V
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0
j
L�t1�(1�)� +H
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t
⌘

for a su�ciently large constant CZ > 0. That is, if the above inequality holds, then ECE continues to use ı̂t;
otherwise, ECE switches to ı̂t +1 for round t+1. First, we prove an analogous result to Lemma 1, showing that
the test will not fail under the good event E00. Here, we let E00 = E0

\E4 where E0 is the event from Theorem 2
and event E4 is the following.

Event E4: Let {bVi} be the estimators from Assumption 2. For all i � i⇤ and n 2 [T ], equation (10) is satisfied.

Note that E4 holds with probability at least 1 � � by assumption. Therefore E00 still holds with probability at
least 1� 10LT 2� log2(T ).

Lemma 6. Given that event E0
holds, then for all t � ⌧min and j 2 [i⇤ + 1, L], it holds that

P
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j
)

Proof. Since j > i⇤, we use the assumption on the estimator bVj to write the di↵erence in terms of regret,
estimation error and noise:
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Furthermore, under E0, we have |T
j

t
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t
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for CZ large enough. Therefore, it holds that
P

t02T i⇤
t

bV t

j
� gt0  Zi⇤(|T
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t

|,Vj ,V 0
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).

The main proposition states that a better instance-dependent rate is available under less restrictive assumptions
on “realizability” by utilizing the test based on the V ⇤ estimators.
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Proposition 3. For a given M, let Assumption 2 hold some for ↵,� and i � i⇤ and let  2 (0, 1/2]. Then, with

probability at least 1� �0, ECE in Algorithm 1 with the modified test (Equation 11) satisfies the regret bound
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Proof. As discussed previously, the su�cient events occur with probability at least 1� �0. Similar to Theorem 2,
we now show that the gaps �j,i⇤ can be bounded by using the estimation error of V̂ i⇤ and the concentration
bounds from E0. Let t be such that ı̂t = j and the test succeeds. Then,
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Again noting that |T i⇤
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8L , the above can be simplified to
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where C 0
Z = max{1, CZ}. Then, we can consider the three potential cases to upper bound |T
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|. Depending on

the maximal term, one of the three possible cases occurs:
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The regret during the misspecified phase becomes
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The total regret is
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Consider again the implications of this bound in the contextual bandit setting. It is possible that to estimate

an upper bound of V ⇤ with rate eO
✓

d
1/4
j

n1/2 + 1
n1/4

◆
, where n is the number of samples and j � i⇤ (Foster et al.,
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2019; Kong and Valiant, 2018). However, this would only give a one-sided estimation error bound. If a two-sided
guarantee of the same form were possible, we would have ↵ = 1/2, � = 1/4, and Vi⇤ = eO

�
d1/4

�
,V 0

i⇤
= eO (1).

We now state the following immediate corollary in this setting with constant gaps under the hypothesis that
such an estimator for this problem exists and is given.

Corollary 8. For the linear contextual bandit problem under Assumption 2 with constant gaps {�j,i⇤}j<i⇤ , let

↵ = 1/2, � = 1/4, Vi⇤ = eO(d1/4
i⇤

) and V
0
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= eO(1). Let the exploration parameter  = 1/2. Then with probability

at least 1� �0, ECE in Algorithm 1 with the modified test (Equation 11) satisfies the regret bound
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where eO hides dependence on the number of models L, the number of actions K = |U|, and log factors.

For constant gaps, the scalings in d and T are nearly same for this estimator and the gap estimator of the
previous section. The main di↵erence arises in the dependence on the gap, O(��5

min) in this case compared to
O
�
��2

min

�
in the previous case. In this case, it is clearly suboptimal.


